【実施例1】
【0041】
図1は、実施例1に係る脱塩処理装置の付着物監視装置を備えた脱塩処理装置の概略図である。
図2は、実施例1に係る
第1付着物検知部の概略図である。以下の実施例では、分離膜として逆浸透膜を用いた分離膜装置である逆浸透膜装置を例にし、例えば塩分等の溶解成分を脱塩処理する脱塩処理装置について説明するが分離膜を用いて水処理する水処理装置であれば、本発明はこれに限定されるものではない。
図1に示すように、本実施例に係る脱塩処理装置10Aは、被処理水11からイオンや有機物を含む溶解成分(「付着成分」ともいう)を濃縮し、透過水13を得る逆浸透膜を有する脱塩処理装置である逆浸透膜装置14と、イオンや有機物を含む溶解成分が濃縮された非透過水15を排出する非透過水ラインL
11から分岐した非透過水分岐ラインL
12に設けられ、非透過水15から分岐した検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aと、該第1検知用逆浸透膜21Aへの付着物の付着条件を変更させる付着条件変更装置と、第1検知用逆浸透膜21Aで分離した検知用透過水22又は検知用非透過水23のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置である第1検知用透過水側流量計41A、第1検知用非透過水側流量計41Bと、第1検知用分離液流量計測装置(第1検知用透過水側流量計41A、第1検知用非透過水側流量計41B)の計測の結果、逆浸透膜装置14の逆浸透膜への洗浄処理の実行、又は逆浸透膜装置14の付着物を付着させない運転条件(例えば圧力、流量、付着物防止剤の濃度等の運転条件)の変更のいずれか一方又は両方を行う制御装置45と、を備えるものである。なお、
図1中、符号16は被処理水11を逆浸透膜装置14へ供給する高圧ポンプ、L
1は被処理水導入ライン、L
2は透過水排出ラインを各々図示する。
ここで、逆浸透膜装置14は被処理水11から透過水13を生産する装置であるので、以下「本設の逆浸透膜装置」という場合もある。
【0042】
本実施例では、第1検知用分離液流量計測装置(第1検知用透過水側流量計41A、第1検知用非透過水側流量計41B)の計測の結果、本設の逆浸透膜装置14の逆浸透膜への付着物付着が予測されると判断する判定装置40を設置し、この判定装置40での判断により、逆浸透膜装置の逆浸透膜への付着物の付着が予測される際、制御装置45により、逆浸透膜装置14の逆浸透膜への洗浄処理の実行、又は逆浸透膜装置14の逆浸透膜に付着物を付着させない運転条件(例えば圧力、流量、付着物防止剤の濃度等の運転条件)への変更のいずれか一方又は両方を行うようにしているが、この判定装置40は必要に応じて設置するようにすればよい。
【0043】
ここで、第1検知用逆浸透膜21Aで分離した分離液としては、第1検知用逆浸透膜21Aを透過する検知用透過水22と、第1検知用逆浸透膜21Aを透過しない検知用非透過水23とがある。本実施例では、第1検知用分離液流量計測装置として、検知用透過水22の流量を計測する第1検知用透過水側流量計41Aを検知用透過水排出ラインL
13に設けており、検知用非透過水23の流量を計測する第1検知用非透過水側流量計41Bを検知用非透過水排出ラインL
14に設けている。
なお、流量計測装置による流量計測方法としては、流量計により流量を直接的に流量計測してもよいし、例えば電子天秤による重量計測等により間接的に流量を計測するようにしてもよい。以下の実施例については、流量計測装置として流量計を用いた例として説明する。
【0044】
そして、第1検知用透過水側流量計41A、第1検知用非透過水側流量計41Bにより、検知用透過水22又は検知用非透過水23のいずれか一方又は両方の流量を計測している。
ここで、検知用透過水22と検知用非透過水23との流量の総和は、第1付着物検知部24Aへ供給する検知液15aの流量であるので、検知用透過水22の流量を、検知用非透過水23により間接的に求めるようにしてもよい。以下の説明では、検知用透過水22の流量を第1検知用透過水側流量計41Aで計測する場合について、主に説明する。
【0045】
ここで、本実施例における本設の逆浸透膜装置14の逆浸透膜への付着物付着が予測されると判断する判断条件は、検知液15aの供給条件を変更する供給圧力又は供給流量の所定閾値と、その所定閾値における検知用透過水流量の変化率に基づき判断する。
そしてこの判断の「所定閾値」として、付着物の付着条件の変更を、検知液15aの「供給圧力により制御」する場合には、事前に、第1検知用逆浸透膜21Aに付着物が付着すると設定した「圧力値」を「所定閾値」としている(詳細は後述する)。また、付着物の付着条件の変更を、例えば検知液15aの供給流量により制御する場合には、第1検知用逆浸透膜21Aに付着物が付着すると設定した「流量値」を「所定閾値」としている(詳細は後述する)。ここで、供給圧力の制御は後述する付着条件変更装置により行う。
【0046】
ここで、被処理水11は、例えば鉱山廃水、発電プラント冷却塔のブローダウン水、オイル・ガス拙作時の随伴水、かん水、工場廃水等の例えば有機物、微生物、鉱物塩等のイオンの付着物若しくは付着物を生成する成分を含むものである。また、被処理水11として海水を用い、海水淡水化に適用するようにしてもよい。
【0047】
この被処理水11から例えば塩分等の溶解成分を分離する分離膜としては、逆浸透膜(RO:Reverse Osmosis Membrane)以外に、例えばナノフィルタ(NF:Nanofiltration Membrane)、正浸透膜(FO:Forward Osmosis Membrane)を例示することができる。
ここで、分離膜が逆浸透膜以外の他の膜に変更する場合には、検知用の分離膜も同様に変更して検知を行うようにする。
【0048】
この被処理水11は、被処理水
導入ラインL
1に設けた高圧ポンプ16と、逆浸透膜装置14からの非透過
水ラインL
11に設けた流量を調節する調整弁44Bとを操作して、所定圧力まで昇圧され、逆浸透膜を備えた逆浸透膜装置14に導入される。
【0049】
また、逆浸透膜に付着する付着物としては、例えば炭酸カルシウム、水酸化マグネシウム、硫酸カルシウム、珪酸塩等の無機系付着物や、天然有機物及び微生物由来の有機系付着物、シリカなどのコロイダル成分、オイル等のエマルションを含む分散成分があるが、膜への付着を生じるものであれば、これらに限定されるものではない。
【0050】
この逆浸透膜装置14では、被処理水11は逆浸透膜装置14の逆浸透膜で脱塩され、透過水13を得る。また、この逆浸透膜でイオンや有機物を含む溶解成分が濃縮された非透過水15は、廃棄物として適切に廃棄・処理されるか、非透過水中の有価物を回収するために使用される。
【0051】
本実施例では、この非透過水15を排出する非透過水ラインL
11からその一部を分岐する非透過水分岐ラインL
12を設けている。
そして、この非透過水分岐ラインL
12に、分岐した検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aを設置している。
【0052】
この非透過水分岐ラインL
12には、第1付着物検知部24Aの前流側に、高圧ポンプ16aを設けると共に、第1付着物検知部24Aからの検知用非透過水排出ラインL
14に、流量を調節する調整弁44Aを設け、これらの高圧ポンプ16aと調整弁44Aとを操作して、第1付着物検知部24Aからの検知用透過水22の流量を調整するようにしている。そして、この第1付着物検知部24Aの脱塩条件が、本設の逆浸透膜装置14の逆浸透膜の出口近傍と同一となるように、分岐した検知液15aの供給圧力及び供給流量を調整している。この所定圧力及び流量の確認は、圧力計42A、42B及び流量計43A、43Bにより監視している。
さらに、調整弁44A又は高圧ポンプ16aのいずれかにより、第1付着物検知部24Aからの検知用透過水22の流量を調整するようにしてもよい。
なお、検知用非透過水23を排出する検知用非透過水排出ラインL
14には圧力計42Cが、非透過水15の非透過水ラインL
11には調整弁44Bが各々設けられている。
【0053】
図3は、
図2の第1付着物検知部の斜視図である。
図2及び
図3に示すように、第1付着物検知部24Aは、検知部本体24aの入口24b側から分岐した検知液15aを導入するもので、スペーサ(非透過水側)24c、スペーサ(透過水側)24dによって、第1検知用逆浸透膜21Aが挟まれている。そして、この第1検知用逆浸透膜21Aに沿って、導入された検知液15aが流れる(X方向)。また、この検知液15aは、検知液流れ方向(X方向)と直交する方向(Z方向)に移動することで、第1検知用逆浸透膜21Aを通過して、脱塩され検知用透過水22が得られる。透過した検知用透過水22は第1検知用逆浸透膜21Aに沿った透過水流れ(X方向)となり、透過水出口24eから検知用透過水22として、排出される。
図3において、検知液15aの流れ方向(X方向)の長さ(L)が、第1付着物検知部24Aの流路の長さであり、第1付着物検知部24
Aの図
3の奥行方向の長さがWとなる。
【0054】
図4は、第1付着物検知部にスパイラル型逆浸透膜を用いた場合の一部切欠き斜視図である。
図4に示すように、第1付着物検知部24Aの検知用膜としてスパイラル型の第1検知用逆浸透膜21Aとした場合であり、第1検知用逆浸透膜21Aの両面から検知液15aが供給され、第1検知用逆浸透膜21Aを検知液15aの流れ方向と直交する方向(Z方向)に移動し、膜を通過して脱塩され検知用透過水22となる。また、スパイラル型の逆浸透膜であるので、検知用透過水22は中心の集水管に向けて流れる(Y方向)。なお、
図4中、切欠部によって、スパイラル型の
第1検知用逆浸透膜21
Aを切り開いた状態を示し、内部のスペーサ(透過水側)24dが確認される。
【0055】
この第1付着物検知部24Aにおいては、入口24bから非透過水出口24fに亙って一様な流れ(検知液流れ方向(X方向))を形成する流路を確保するために、例えば樹脂製のスペーサ(非透過水側)24cを設けている。また、透過水側においても同様に、透過水出口24eに亙って一様な流れ(透過水流れ方向(X方向))を形成する流路を確保するために、例えば樹脂製のスペーサ(透過水側)24dを設けている。ここで、一様な流れを確保することができる部材であれば、スペーサに限定されるものではない。
【0056】
また、第1付着物検知部24Aの流路の長さ(L)は、本設の逆浸透膜装置14で用いる逆浸透膜装置14の逆浸透膜の供給液の流れ方向の総長さの1/10以下程度の長さ、より好ましくは1/50以下の長さ、さらに好ましくは1/100以下の長さとするのがよい。なお、試験例で用いた第1付着物検知部24Aは、その流路の長さ(L)として16mm、1000mmのものを用いた。
【0057】
ここで、後述するように、本設の逆浸透膜装置14の逆浸透膜のエレメント(長さ例えば1m)は、8本を繋いで、1本のベッセルとしている。例えばエレメント8本/1ベッセルの場合で、2本のベッセルを直列に繋いだ際には、逆浸透膜装置14で用いる供給液流れ方向の膜長さは16mとなり、流路長さ1000mmの逆浸透膜を検知膜として用いた場合、第1付着物検知部24Aの流路長さは1/16(1/10以下)となる。
同様に、16mmの逆浸透膜を検知膜として用いた場合、第1付着物検知部24Aの流路長さは0.016/16(1/100以下)となる。
【0058】
また、第1付着物検知部24Aの検知膜である第1検知用逆浸透膜21Aの奥行方向の長さW(供給水流れに垂直な方向)を一定とすると、膜長さ(L)が短い程、膜面積は小さくなる。そして、「付着物の付着により膜表面の10%が閉塞=10%の透過水流量低下」となり、膜面積が小さいほど、付着による膜閉塞が早く起こるので、付着による透過水流量の低下を高感度、且つ迅速に検知することが可能となる。
【0059】
ここで、第1付着物検知部24Aの第1検知用逆浸透膜21Aとしては、逆浸透作用を奏する膜であり、本設の逆浸透膜装置14の逆浸透膜と同一種類又は類似する種類で脱塩性能を奏する分離膜を用いている。
【0060】
本実施例では、本設の逆浸透膜装置14の逆浸透膜は、スパイラル型の逆浸透膜を備えた逆浸透膜エレメントを複数個、圧力容器内に格納したものである。
【0061】
ここで、スパイラル状の逆浸透膜の一例を説明する。
図5は、スパイラル型の逆浸透膜装置のベッセルの一部切欠き概略図である。
図6は、
図5のベッセルを2つ繋いだものの斜視図である。
図7は、スパイラル型の逆浸透膜エレメントの一部分解概略図である。
図7に示すスパイラル型の逆浸透膜エレメントは、特開2001−137672号公報に開示する一例であり、これに限定されるものではない。ここで、逆浸透膜装置のベッセル100は、以下ベッセル100といい、スパイラル型の逆浸透膜エレメント101は、以下エレメント101という。
【0062】
図5に示すように、ベッセル100は、複数(例えば5〜8)のエレメント101を直列に接続して円筒状の容器本体(以下「容器本体」という)102内に収納して構成される。容器本体102の一端側の原水供給口103から被処理水11が原水として導入され、他端側の透過水取出口104から透過水13、非透過水取出口105から非透過水15が取り出される。なお、
図5においては、被処理水11導入側の透過水取出口104は閉塞状態としている。
【0063】
図6は、このベッセル100を2本直列に繋いだ場合である。例えばエレメント101の1本を1mとした場合、8本で1ベッセルを構成すると、総流路長(供給液の流れ方向の総長さ)は、8×2=16mの長さとなる。
【0064】
容器本体102内の各エレメント101は、例えば
図7に示すように集水管111の周囲に、流路材112を内包した袋状の逆浸透膜12を流路材(例えばメッシュスペーサ)114によりスパイラル状に巻回し、その一端にブラインシール115を設けた構造を有する。そして各エレメント101は、前方のブラインシール115側から供給される所定圧力の被処理水(原水)11を流路材(例えばメッシュスペーサ)114により袋状の逆浸透膜12間に順に導き、逆浸透作用により逆浸透膜12を透過した透過水13を集水管111により取り出すものとなっている。また、非透過水15も後方シール118側から取り出すものとなっている。なお、被処理水11の移動方向の膜長さがLである。ここで、
図7で示したエレメント101の構成は、
図4で示したスパイラル型の第1付着物検知部24Aの構成においても同様である。
【0065】
この圧力容器を複数本(例えば50〜100本)集合させたものを1ユニットとしており、このユニット数を調整し、処理する被処理水11の供給量に応じて、脱塩処理して生産水を製造するようにしている。
【0066】
従来においては、本設の逆浸透膜装置14からの非透過水の少なくとも一部を、監視用分離膜に透過させ、この監視用分離膜の前後に設けた圧力計の差圧によって、非透過水に含まれる付着物が監視用分離膜の膜面に析出するのを監視していた。しかしながら、差圧で確認する場合には、流路が付着物で塞がれ、差圧に変化が生じる程度に付着物が析出した後でないと判断できない、という問題がある。
また、この差圧で計測する場合は、監視用分離膜の長さが長くないと、精度よく検知できない、という問題がある。
【0067】
通常、逆浸透膜装置の運転においては、被処理水11中に所定のイオンや有機物を含む溶解成分等があると想定し、逆浸透膜にイオンや有機物を含む溶解成分等に起因する付着物が付着しない条件を運転条件として設計している。しかしながら、供給する被処理水11の水質変動等により、設計条件よりもイオンや有機物を含む溶解成分濃度が高くなり、逆浸透膜に付着物が付着し易い状況となるようなことがある。このような場合、逆浸透膜装置14からの透過水13の透過水流量を流量計で確認し、透過水13の流量が所定割合まで低下した時点を閾値として、逆浸透膜の洗浄を実施していたが、この時点では、すでに逆浸透膜へ広範囲に付着物が付着しており、逆浸透膜の洗浄が困難となっていた。
【0068】
そこで、本実施例では、
図1に示すように、被処理水11から逆浸透膜により透過水13をろ過した逆浸透膜装置14からイオンや有機物を含む溶解成分を濃縮した非透過水15を排出する非透過水ラインL
11と、この非透過水ラインL
11から分岐した非透過水分岐ラインL
12に設けられ、分岐した検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aと、該第1検知用逆浸透膜21Aへの付着物の付着条件を変更させる付着条件変更装置と、検知用透過水22の流量を計測する第1検知用透過水側流量計41Aと、を備えた脱塩処理装置の付着物監視装置を設置するようにしている。
【0069】
そして、第1検知用逆浸透膜21Aへの付着物の付着条件を変更させる付着条件変更装置を用いて、第1検知用逆浸透膜21Aへの膜表面の付着物成分(例えば石膏)の過飽和度を変更するようにしている。ここで、付着条件変更装置としては、第1検知用逆浸透膜21Aへ付着物が付着する条件を変更
する装置であれば、特に限定されるものではなく、例えば付着物付着を加速させる付着条件変更装置や、例えば付着物付着を減速させる付着条件変更装置等がある。以下は、例えば付着物付着を加速させる付着条件変更装置を例にして説明する。
【0070】
この付着条件変更装置としては、第1付着物検知部24Aでの脱塩条件を
、本設の逆浸透膜装置14の基準条件からさらに変化させるものであり、供給する非透過水15の一部である検知液15aに対して圧力調整又は流量調整により行うようにしている。
【0071】
例えば圧力調整により付着条件を変更する場合には、付着条件変更装置は、分岐した検知液15aの供給圧力を変化する圧力調整装置であり、具体的には、第1付着物検知部24Aから検知用非透過水23を排出する検知用非透過水排出ラインL
14に設けた調整弁44Aを操作する。また、調整弁44Aと高圧ポンプ16aとを操作して、検知液15aの圧力を変更させるようにしてもよい。
【0072】
また、調整弁44Aと高圧ポンプ16aとを用いて圧力調整を行う以外としては、例えば非透過水15を排出する非透過水ラインL
11で非透過水分岐ラインL
12の分岐部の後流側に、例えばオリフィス等を設け、非透過水分岐ラインL
12に導入される分岐した検知液15aの圧力調整を同様に行うようにしてもよい。
【0073】
そして、分岐した検知液15a中のイオンを含む溶解成分濃度を変化させることなく、検知液15aの供給圧力を変化(例えば調整弁44Aの調整により、検知液15aの供給圧力を増加)させ、第1検知用逆浸透膜21Aの検知用透過水22の透過水量を計測することで、該第1検知用逆浸透膜21Aの付着物付着の有無を判断する。
付着物付着の有無の判断は、検知用透過水22の検知用透過水排出ラインL
13に設けた第1検知用透過水側流量計41Aの流量の計測結果によって行う。
【0074】
本実施例では、第1付着物検知部24Aの第1検知用逆浸透膜21Aに供給する検知液15aの供給圧力を調整弁44Aで増加させることで、第1検知用逆浸透膜21Aに付着する付着物を加速度的に増加させており、検知液15aの流量については、高圧ポンプ16aで調整するようにしている。
【0075】
次に、圧力調整によりスケール成分の付着条件を変更する場合について、供給圧力と透過水流量との関係について説明する。
【0076】
図8は、検知用逆浸透膜への供給液の石膏過飽和度を4.7で一定とした条件で、第1検知用逆浸透膜21Aの膜長さを16mmとした場合の供給圧力変化によるフラックスの挙動を示す図である。
図8中左縦軸はフラックス(m
3/h/m
2)であり、右縦軸は供給圧力(MPa)、横軸は
試験時間(時間)を示す。本試験例では、付着物として、石膏を用いた。なお、評価値はフラックス(単位膜面積あたりの透過水流量)(m
3/h/m
2)で示している。なお、本試験例において、供給液である検知液15a及び検知用非透過水23の石膏過飽和度は4.7であった。
【0077】
ここで、第1付着物検知部24Aにおいては、検知液15a中の石膏の過飽和度を一定とし、検知液15aの供給圧力のみを変動させて、石膏析出物の有無を確認した。
【0078】
図8に示すように、供給圧力0.7MPa、1.5MPaの場合は、フラックスは変化なく、石膏付着物は生成していない。これに対し、供給圧力を2.0MPaまで上げた場合には、フラックスが低下しており、石膏付着物の生成が確認された。
【0079】
図9は、第1検知用逆浸透膜への供給液の石膏過飽和度を一定とした条件で、第1検知用逆浸透膜の膜長さを1000mmとした場合の供給圧力変化によるフラックスの挙動を示す図である。
図9に示すように、供給圧力0.7MPa、1.5MPaの場合は、フラックスは変化なく、石膏付着物は生成していない。これに対し、供給圧力を2.0MPaまで上げた場合には、フラックスが低下しており、石膏付着物の生成が確認された。
【0080】
図10は、石膏過飽和度の異なる検知液に対してそれぞれ供給圧力のみを変化させた場合の関係を示す図である。
図8に示す試験例では、検知液15aの石膏過飽和度が4.7で行ったが、
図10に示すように、検知液15aの石膏過飽和度が5.5の場合、石膏過飽和度が6.0の場合でも同様に供給圧力が高くなると、石膏析出が確認された。
なお、本試験例においても、検知液15aの石膏過飽和度が5.5の場合、6.0の場合、それぞれの場合において検知用非透過水23の石膏過飽和度は5.5、6.0であった。
【0081】
ここで、過飽和度とは、例えば石膏を例とすると、ある条件で石膏が飽和溶解している状態(石膏の飽和濃度)を「1」とした場合の、石膏濃度の割合であり、例えば、過飽和度「5」とは、石膏飽和濃度の5倍濃い濃度であることを示している。
【0082】
次に、第1検知用逆浸透膜21Aへの洗浄による透過水流量の回復可否の確認試験を行った。
具体的には、第1検知用逆浸透膜21Aへ強制的に石膏を析出させ、洗浄後、付着物析出前の透過水流量に戻るかを確認した。
付着物である石膏析出条件としては、第1検知用透過水側流量計41Aを用いて透過水流量が10%低下するときの条件とした。
表1に運転条件を示す。なお、供給液としては、NaCl評価液(NaCl:2000mg/L)を用いた。
【0083】
【表1】
【0084】
運転操作は以下のように行った。
1)先ず、圧力条件を1.18MPaとし、供給液としてNaCl評価液を用いた場合の透過水量は24ml/hであった。
2)その後、供給圧力条件を2.0MPaまで増加させると共に、供給液をNaCl評価液から石膏過飽和液に変更し、膜に強制的にスケールを析出させ、10分間で透過水流量10%の低下を確認した。
3)その後、供給液を石膏過飽和液からイオン交換水に変更して洗浄を行った。
4)洗浄後、供給液をイオン交換水からNaCl評価液に変更し、1)の操作条件(圧力条件を1.18MPa)で運転をしたところ、透過水量は24ml/hであった。
【0085】
この結果、第1検知用逆浸透膜21Aへの石膏の析出の初期段階においては、水洗浄により石膏付着物の洗浄が可能であり、洗浄を行うことで付着物析出前の透過水流量に戻ることが確認された。
【0086】
石膏を洗浄する場合には、純水を用いて洗浄することができることも確認した。よって、本設の逆浸透膜装置14の洗浄においても、透過水13を用いての洗浄が可能となる。これにより洗浄工程におけるコスト低減、及び膜へのダメージ低減が可能となる。
【0087】
図11は、検知用逆浸透膜への供給液の石膏過飽和度を一定とした条件で、検知用逆浸透膜の膜長さを16mmとした場合の供給流量変化によるフラックスの挙動を示す図である。
図11中、左縦軸は各々のフラックス(m
3/h/m
2)であり、右縦軸は検知液の供給液流量(L/h)、横軸は
試験時間(時間)を示す。
図11に示すように、本試験では、検知液の供給圧力を1.5MPaに固定した状態で、供給液流量が13.5L/h及び6.8L/hの場合には、石膏の析出が無いが、供給液流量を3.7L/hと遅くすると、石膏が析出することが確認された。この結果、検知液15aの供給液流量(以下、単に「供給流量」ともいう。)が少なくなる程、石膏が析出し易くなることが確認された。
【0088】
次に、この第1付着物検知部24Aを用いて、逆浸透膜装置14の逆浸透膜への付着物付着予測について、説明する。
【0089】
通常は、本設の逆浸透膜装置14は、設計値通り運転を行っており、被処理水11の水質変動が無い場合には、所定時間逆浸透膜装置14の逆浸透膜への付着物の付着はみられない。しかしながら、被処理水11の水質変動が起こった場合には、逆浸透膜装置14の逆浸透膜への付着物の付着が生じる場合がある。
本実施例では、このような水質変動等による本設の逆浸透膜装置14の逆浸透膜への付着物の付着を予測するものである。
【0090】
本実施例では、逆浸透膜装置14の逆浸透膜に付着物が付着するまでの裕度を第1付着物検知部24Aでの検知結果から判断し、この裕度によって、最適な逆浸透膜装置14の運転制御を行い、逆浸透膜への付着物の付着を防止するようにしている。
この第1付着物検知部24Aでは、逆浸透膜装置14から排出された非透過水15を分岐して、この分岐した検知液15aを供給する際、供給液の圧力を増加させる事により、第1検知用逆浸透膜21Aでの付着物付着を加速させることとしている。
そして、第1検知用逆浸透膜21Aに付着物が付着するまでの検知液15aの圧力増加割合から、付着物付着裕度を算出し、この裕度に応じて本設の逆浸透膜装置14の運転制御を行い、逆浸透膜への付着物の付着を防止するようにしている。
【0091】
更には、第1検知用逆浸透膜21Aに付着物が付着するまでの検知液15aの圧力増加割合から、付着物付着裕度を求め、この付着物付着裕度によって、逆浸透膜装置14の運転制御を行い、付着物が付着しない限界の裕度の運転条件とする事で、本設の逆浸透膜装置14の処理効率向上や、処理コストの低廉化を図るようにしている。
【0092】
第1検知用逆浸透膜21Aへの付着物付着は、第1付着物検知部24Aからの検知用透過水22の流量を第1検知用透過水側流量計41Aにより計測し、この流量の低下により付着物付着を間接的に検知するものである。
【0093】
次に、検知液15aの供給圧力を変更する際の付着物付着裕度の判断工程について説明する。
1)先ず、本設の逆浸透膜装置14で被処理水11を処理する際、この逆浸透膜装置14から排出される非透過水15の一部の検知液15aを第1付着物検知部24Aに供給する。この時、第1検知用逆浸透膜21Aの脱塩条件が、本設の逆浸透膜装置14の非透過水15の出口近傍の脱塩条件と同じとなるように、検知液15aの供給圧力、供給流量を調整する。
2)次に、第1付着物検知部24Aからの検知用透過水22の流量を第1検知用透過水側流量計41Aにより計測する。
3)そして、この検知用透過水22の流量の低下が計測されるまで、検知液15aの供給圧力を調整弁44Aにより段階的に上昇させる。
4)検知用透過水22の流量の低下が計測された時の検知液15aの供給圧力と、前記工程1)での供給圧力との差により付着物付着裕度を求める。
そして、この付着物
付着裕度の結果に基づき、本設の逆浸透膜装置14の逆浸透膜を洗浄処理する運転条件へ変更する。または、本設の逆浸透膜装置14の逆浸透膜への付着物を付着させない運転条件への変更を行うようにしてもよい。
【0094】
次に、付着物付着裕度を求める検知液15aの供給圧力の制御の一例を示す。
【0095】
図12−1乃至
図17は、本実施例における検知液の供給圧力を制御する一例を示す図である。なお、
図12−1乃至
図17では、評価値(縦軸)が検知用透過水流量で記載しているが、評価値としては、透過水流量を元に算術計算できる値(例えばFlux、膜における溶液の透過性能を表す係数(A値)、標準化透過水流量等)でも可能である。
【0096】
図12−1乃至
図14は、1台の第1付着物検知部24Aを用いて、検知液15aの供給圧力を段階的に変化させ、検知用透過水22の流量の確認をする場合である。
【0097】
なお、
図15乃至
図17は、
図18に示すように、3台の第1付着物検知部24A−1、24A−2、24A−3を用いて、各々において検知液15aの供給圧力を異なる圧力(圧力条件(1)〜(3))に設定し、透過水流量の確認をする場合である。
図18は、3本の非透過水分岐ラインL
12-1〜L
12-3に第1付着物検知部24A−1、24A−2、24A−3を3台設けた一例を示す図である。
図1に示す脱塩処理装置10Aにおいて、非透過水分岐ラインL
12をさらに3本に分岐して非透過水分岐ラインL
12-1〜L
12-3とし、それぞれのラインに第1付着物検知部24A−1〜24A−3を設けると共に、その検知用透過水22の流量を各々第1検知用透過水側流量計41A−1〜41A−3により計測している。なお、本例では、非透過水分岐ラインL
12をさらに3本に分岐しているが、非透過水ラインL
11から直接分岐する3本の非透過水分岐ラインを各々設け、それぞれのラインに第1付着物検知部24A−1〜24A−3を設けるようにしてもよい。
【0098】
図12−1〜
図14では、検知液15aの供給圧力を条件(1)から(3)に徐々に変更させ、検知用透過水22の透過水流量の変化を第1検知用透過水側流量計41Aで確認した場合を示す。
ここで、通常運転の運転条件(本設の逆浸透膜装置14の設計値での運転条件)において、第1検知用逆浸透膜21Aへの付着物が付着(透過水流量が低下)する検知液15aの供給圧力条件は条件(3)となることを事前に確認しておく。
本実施例では、この供給圧力条件(条件(3))を所定閾値とする。
この検知液15aの供給圧力が条件(3)となった際には、フラックスが低下することで、第1検知用逆浸透膜21Aへの付着物の付着があるとしている。
【0099】
すなわち、付着物付着の判断は、上記の所定閾値において、所定時間で透過水流量が所定割合変化した場合に、第1検知用逆浸透膜21Aに付着物が付着したと判断する。したがって、所定時間で、透過水流量の変化が所定割合未満の場合は、第1検知用逆浸透膜21Aに付着物は付着していないと判断し、所定時間で、透過水流量の変化が所定割合以上の場合は、第1検知用逆浸透膜21Aに付着物が付着したと判断する。
なお、この付着物が付着したと判断する条件(所定時間、透過水流量の所定変化率)は、被処理水の水質や温度などにより適宜変更される。
【0100】
そして、第1付着物検知部24Aに供給する検知液15aの供給圧力を変化させた結果、
図12−1に示すようになった場合、例えば、「付着物付着裕度2」と判断し、以下の制御を行う。
ここで、検知液15aの供給圧力(1)の条件は例えば1.0MPaであり、検知液15aの供給圧力(2)の条件は例えば1.5MPaであり、検知液15aの供給圧力(3)の条件は、例えば2.0MPaである。
【0101】
図12−2に示す場合では、例えば所定閾値を2.0MPaとし、付着物の付着の判断として、所定時間(t)を10分間、透過水流量の所定変化割合を10%とした場合を示しており、透過水流量が10%以上低下した場合には、第1検知用逆浸透膜21Aに付着物が付着したと判断している。
【0102】
図12−1における「付着物付着裕度2」との判断の結果、制御装置45での制御は、例えば下記の制御(1)〜制御(3)のいずれかを実行する。
制御(1):本設の逆浸透膜装置14の運転条件を変更しない現状維持の運転を行う。
制御(2):本設の逆浸透膜装置14に対する運転条件の供給圧力を上げる。
制御(3):
図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を低減する。
なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
【0103】
これにより、制御(1)では、現状通りの運転であるので、透過水13の生産量には変化がないが、制御(2)の本設の逆浸透膜装置14の運転条件の供給圧力を上昇させて運転負荷を上げる場合には、透過水13の生産量を増量することができる。
【0104】
また、制御(3)の付着物防止剤47の添加量を低減することで、薬剤コストの低廉化を図ることができる。これは、本設の逆浸透膜装置14に対する付着物防止剤47の過剰添加を防止することができる。
【0105】
次に、第1付着物検知部24Aに供給する検知液15aの供給圧力を変化させた結果、
図13に示すようになった場合、例えば、「付着物付着裕度1」と判断し、以下の制御を行う。
ここで、検知液15aの供給圧力(1)の条件は例えば1.0MPaであり、検知液15aの供給圧力(2)の条件は例えば1.5MPaであり、検知液15aの供給圧力(3)の条件は、例えば2.0MPaである。
なお、
図13のようになるのは、逆浸透膜装置14へ供給する被処理水11の水質変動などが原因と考えられる。
この結果、前述した
図12−1の場合よりも付着裕度が低いと判断する。
【0106】
図13における「付着物付着裕度1」との判断の結果、制御装置45での制御は、例えば下記の制御(4)〜制御(7)のいずれかを実行する。
制御(4):
図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を増大する。
制御(5):逆浸透膜装置14の逆浸透膜の洗浄を実行する。
制御(6):逆浸透膜装置14の被処理水11の供給圧力を下げる。
制御(7):被処理水11の供給量を増加する。
なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
【0107】
これらの制御により、本設の逆浸透膜装置14の逆浸透膜への付着物の付着裕度を上げることができる。また、洗浄により、本設の逆浸透膜装置14の逆浸透膜への付着物付着の未然防止を図ることができる。
【0108】
また、制御(5)の洗浄の洗浄方法としては、例えばフラッシング洗浄、サックバック洗浄等を用いることができる。これにより、本設の逆浸透膜装置14の逆浸透膜の長寿命化を図ることができる。なお、この洗浄においても、透過水13の一部を使用することができる。
【0109】
図25は、実施例1に係る脱塩処理装置の運転条件変更の一例を示す概略図である。
図25に示すように、
実施例1に係る脱塩処理装置10Aにおいて、前述した判断の結果、洗浄を実施する場合には、洗浄液供給部52から洗浄液51を供給して洗浄を行う。ここで、洗浄液51として、透過水13の一部13aを用いることができる。例えば透過水排出ラインL
2から分岐した透過水供給ラインL
3により生産された透過水13の一部13aを洗浄液供給部52へ送り、洗浄液51を供給して洗浄処理するようにしてもよい。これにより、薬品による洗浄を回避することができる。
【0110】
また、逆浸透膜装置14に導入する被処理水11へのpHを調整する場合には、凝集ろ過部54の下流側のpH調整部57に供給する酸又はアルカリのpH調整剤58を、酸又はアルカリ供給部59から供給する。
アルカリ側にpHを調整することで、例えばシリカ、ホウ素等のスケール成分の析出を防止する。
また、酸性側にpHを調整することで、例えば炭酸カルシウム等のスケール成分の析出を防止する。
さらに、凝集ろ過部54の上流側の被処理水11へのpHを調整する場合には、酸又はアルカリのpH調整剤58を、pH調整部65に供給する。このpH調整部65において、例えばアルカリ側にpHを調整する際、被処理水11中のスケール成分を例えば水酸化マグネシウム、炭酸カルシウム等として析出させ、固液分離部(図示せず)により固液分離することでスケール成分の析出を防止する。
【0111】
次に、第1付着物検知部24Aに供給する検知液15aの供給圧力を変化させた結果、
図14に示すようになった場合、例えば「付着物付着裕度3又は3以上」とする。
ここで、検知液15aの供給圧力(1)の条件は例えば1.0MPaであり、検知液15aの供給圧力(2)の条件は例えば1.5MPaであり、検知液15aの供給圧力(3)の条件は、例えば2.0MPaである。
この結果、前述した
図12−1の場合よりも付着裕度が高いと判断する。
【0112】
この場合には、逆浸透膜装置14では、設計条件よりも被処理水11中のスケール成分濃度が低く、
図12−1の場合よりも、付着物が付着し難い状態であると判断できる。
【0113】
図14における「付着物付着裕度3又は3以上」との判断の結果、制御装置45での制御は、付着裕度を下げた運転条件に変更でき、以下の制御(2)、制御(3)のいずれかを実行する。
制御(2):例えば逆浸透膜装置14に対する運転条件の供給圧力を上げて、透過水13の生産量を増加する。
制御(3):
図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を低減する。
なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
【0114】
これにより、制御(2)のように、本設の逆浸透膜装置14の運転条件の供給圧力を上昇させて運転負荷を上げる場合には、透過水13の生産量を増量することができる。
また、制御(3)の付着物防止剤47の添加量を低減することで、薬剤コストの低廉化を図ることができる。これは、本設の逆浸透膜装置14に対する付着物防止剤47の過剰添加を防止することができる。
【0115】
以上により、脱塩処理装置の付着物監視装置を用いて、被処理水11を処理する逆浸透膜装置14の膜への付着物の付着を防止することを予測することが可能となる。
【0116】
このように、第1付着物検知部24Aの第1検知用逆浸透膜21Aで分離した検知用透過水22を計測する際、第1検知用逆浸透膜21Aへの付着物の付着条件を付着条件変更装置で変更する場合において、所定閾値で、検知用透過水22の流量が所定条件(所定時間での、流量の所定割合変化)よりも変化したかどうかを、第1検知用
透過水側流量計41Aでの流量計測で行い、計測の結果、本設の逆浸透膜装置14の運転条件の裕度を判断する。
そして、裕度判断の結果に基づき、本設の逆浸透膜装置14の洗浄・運転条件の変更を行う。
【0117】
ここで、本実施例では、第1検知用逆浸透膜21Aの分離液の流量計測として、検知用透過水22を計測する場合であるので、所定条件よりも低下したかどうかで第1検知用逆浸透膜21Aへの付着の有無を判断する事となる。
【0118】
そして、その裕度の判断に基づいて、本設の逆浸透膜装置14への運転条件の制御(1)〜制御(7)を行い、本設の逆浸透膜装置14の逆浸透膜への付着物の付着を事前に抑制することができる。
【0119】
ここで、第1付着物検知部24Aの第1検知用逆浸透膜21Aに対して付着物が付着した場合には、洗浄により再利用する事が可能となる。これは、前述した試験例の表1に示すように、第1検知用逆浸透膜21Aへの石膏の析出の初期段階においては、水洗浄により石膏付着物の洗浄が可能であり、洗浄を行うことで付着物の除去が可能となるからである。
【0120】
図15乃至
図17は、
図18に示すような3台の第1付着物検知部24A−1〜24A−3を用いて、各々を異なる検知液15aの供給圧力に設定し、透過水流量の変化確認をする場合であるが、1台の第1付着物検知部24Aを用いて、圧力を段階的に変化させ、透過水流量の確認をする場合と同様に判断及び制御するので、その説明は省略する。ここで、
図15の設定は
図12−1と対応し、
図16の設定は
図13と対応し、
図17の設定は
図14と対応する。
なお、第1付着物検知部24A−1は、検知液15aの供給圧力(1)であり、第2付着物検知部24A−2は、検知液15aの供給圧力(2)であり、第1付着物検知部24A−3は、検知液15aの供給圧力(3)である。
【0121】
次に、検知液15aの供給流量を変更する際の付着物付着裕度の判断工程について説明する。
1)先ず、本設の逆浸透膜装置14で被処理水11を処理する際、この逆浸透膜装置14から排出される非透過水15の一部の検知液15aを第1付着物検知部24Aに供給する。この時、第1検知用逆浸透膜21Aの脱塩条件が、本設の逆浸透膜装置14の非透過水15の出口近傍の脱塩条件と同じとなるように、検知液15aの供給圧力、供給流量を調整する。
2)次に、第1付着物検知部24Aからの検知用透過水22の流量を第1検知用透過水側流量計41Aにより計測する。
3)そして、この検知用透過水22の流量の低下が計測されるまで、検知液15aの供給流量を高圧ポンプ16aにより段階的に降下させる。
4)検知用透過水22の流量の低下が計測された時の検知液15aの供給流量と、前記工程1)での供給流量との差により付着物付着裕度を求める。
そして、この付着物付着裕度に基づき、逆浸透膜装置14の逆浸透膜を洗浄処理する運転条件へ変更する。または、逆浸透膜装置14の逆浸透膜への付着物を付着させない運転条件への変更を行うようにしてもよい。
【0122】
次に、付着物付着裕度を求める検知液15aの供給流量の制御の一例を示す。
図19乃至
図24は、本実施例における検知液15aの供給流量を制御する一例を示す図である。
図19乃至
図21は、1台の第1付着物検知部24Aを用いて、検知液15aの供給流量を段階的に変化させ、検知用透過水流量の変化を確認する場合である。
【0123】
図22乃至
図24は、3台の第1付着物検知部24A−1〜24A−3を用いて、各々を異なる検知液15aの供給流量に設定し、透過水流量の確認をする場合である。
【0124】
図19乃至
図21では、検知液15aの供給流量を条件(1)から(3)に徐々に変更させ、透過水流量の変化を第1検知用透過水側流量計41Aで確認する。
ここで、通常運転の運転条件では、付着物が付着(透過水流量が低下)する検知液15aの流量条件は条件(3)となることを事前に確認しておく。
本実施例では、この供給流量条件(条件(3))を所定閾値とする。
この検知液15aの供給流量が条件(3)となった際には、フラックスが低下することで、第1検知用逆浸透膜21Aへの付着物の付着があるとしている。
【0125】
そして、第1付着物検知部24Aに供給する検知液15aの供給流量を変化させた結果、
図19に示すようになった場合、例えば、「付着物付着裕度2」と判断し、以下の制御を行う。
ここで、検知液15aの供給流量(1)の条件は例えば13.5L/hであり、検知液15aの供給流量(2)の条件は例えば6.8L/hであり、検知液15aの供給流量(3)の条件は例えば3.7L/hである。
【0126】
図19における「付着物付着裕度2」との判断の結果、制御装置45での制御は、例えば下記の制御(1)〜制御(3)のいずれかを実行する。
制御(1):本設の逆浸透膜装置14の運転条件を変更しない現状維持の運転を行う。
制御(2):本設の逆浸透膜装置14に対する運転条件の供給圧力を上げる。
制御(3):
図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を低減する。
なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
【0127】
これにより、制御(1)では、現状通りの運転であるので、透過水13の生産量には変化がないが、制御(2)の本設の逆浸透膜装置14の運転条件の供給圧力を上昇させて運転負荷を上げる場合には、透過水13の生産量を増量することができる。
【0128】
また、制御(3)の付着物防止剤47の添加量を低減することで、薬剤コストの低廉化を図ることができる。これは、本設の逆浸透膜装置14に対する付着物防止剤47の過剰添加を防止することができる。
【0129】
次に、第1付着物検知部24Aに供給する検知液15aの供給流量を変化させた結果、
図20に示すようになった場合、例えば、「付着物付着裕度1」と判断し、以下の制御を行う。
ここで、検知液15aの供給流量(1)の条件は例えば13.5L/hであり、検知液15aの供給流量(2)の条件は例えば6.8L/hであり、検知液15aの供給流量(3)の条件は例えば3.7L/hである。
なお、
図20のようになるのは、逆浸透膜装置14へ供給する被処理水11の水質変動などが原因と考えられる。
この結果、前述した
図19の場合よりも付着裕度が低いと判断する。
【0130】
図20における「付着物付着裕度1」との判断の結果、制御装置45での制御は、例えば下記の制御(4)〜制御(7)のいずれかを実行する。
制御(4):
図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を増大する。
制御(5):逆浸透膜装置14の逆浸透膜の洗浄を実行する。
制御(6):逆浸透膜装置14の被処理水11の供給圧力を下げる。
制御(7):被処理水11の供給量を増加する。
なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
【0131】
これらの制御により、本設の逆浸透膜装置14の逆浸透膜への付着物の付着裕度を上げることができる。また、洗浄により、本設の逆浸透膜装置14の逆浸透膜への付着物付着の未然防止を図ることができる。
【0132】
また、制御(5)の洗浄の洗浄方法としては、例えばフラッシング洗浄、サックバック洗浄等を用いることができる。これにより、本設の逆浸透膜装置14の逆浸透膜の長寿命化を図ることができる。なお、この洗浄においても、透過水13の一部を使用することができる。
【0133】
次に、第1付着物検知部24Aに供給する検知液15aの供給流量を変化させた結果、
図21に示すようになった場合、例えば「付着物付着裕度3又は3以上」とする。
ここで、検知液15aの供給流量(1)の条件は例えば13.5L/hであり、検知液15aの供給流量(2)の条件は例えば6.8L/hであり、検知液15aの供給流量(3)の条件は例えば3.7L/hである。
この結果、
図19の場合よりも付着裕度が高いと判断できる。
【0134】
図21における「付着物付着裕度3又は3以上」との判断の結果、制御装置45での制御は、付着裕度を下げた運転条件に変更でき、以下の制御(2)、制御(3)のいずれかを実行する。
制御(2):逆浸透膜装置14に対する運転条件の供給圧力を上げる。
制御(3):
図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を低減する。
なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
【0135】
これにより、制御(2)のように、本設の逆浸透膜装置14の運転条件の供給圧力を上昇させて運転負荷を上げる場合には、透過水13の生産量を増量することができる。
【0136】
また、制御(3)の付着物防止剤47の添加量を低減することで、薬剤コストの低廉化を図ることができる。これは、本設の逆浸透膜装置14に対する付着物防止剤47の過剰添加を防止することができる。
【0137】
以上により、脱塩処理装置の第1付着物検知部24Aを用いて、被処理水11を処理する逆浸透膜装置14の逆浸透膜への付着物の付着を防止することを予測することが可能となる。
【0138】
図22乃至
図24は、
図18に示すような3台の第1付着物検知部24A−1〜24A−3を用いて、各々を異なる検知液15aの供給流量に設定し、透過水流量の変化確認をする場合であるが、1台の第1付着物検知部24Aを用いて、流量を段階的に変化させ、透過水流量の確認をする場合と同様に判断及び制御するので、その説明は省略する。ここで、
図22の設定は
図19と対応し、
図23の設定は
図20と対応し、
図24の設定は
図21と対応する。
なお、第1付着物検知部24A−1は、検知液15aの供給流量(1)であり、第2付着物検知部24A−2は、検知液15aの供給流量(2)であり、第1付着物検知部24A−3は、検知液15aの供給流量(3)である。
【0139】
本実施例では、第1検知用逆浸透膜21Aへの付着物付着を付着条件変更装置により、加速させて、付着物の付着を予測していたが、付着条件変更装置を作動させず、この第1付着物検知部24Aの脱塩条件が、本設の逆浸透膜装置14の逆浸透膜の出口近傍と同一となるように、供給圧力と供給流量を調整して、第1付着物検知部24Aからの分離液を分離液流量計(第1検知用透過水側流量計41A、第1検知用非透過水側流量計41B)で、計測し、この計測の結果、計測流量が所定閾値に対して変化した場合に、本設の逆浸透膜装置14の逆浸透膜への付着物付着の開始と判定装置40で判断するようにしてもよい。
【0140】
具体的には、調整弁44A、高圧ポンプ16aのいずれか一方又は両方を用いて、第1付着物検知部24Aの脱塩条件が、本設の逆浸透膜装置14の逆浸透膜の出口近傍と同一となるように、検知液15aの供給圧力と供給流量を調整することで、第1検知用逆浸透膜21Aでは、本設の逆浸透膜装置14内の逆浸透膜の出口末端近傍と同じ脱塩条件を再現するようにしている。
【0141】
これは、第1付着物検知部24Aの第1検知用逆浸透膜21Aを用いて付着物の付着状態を検知する状況は、本設の逆浸透膜装置14の最後尾(スパイラル型の逆浸透膜エレメント101が8本直列に連結している場合には、エレメント101−1〜101−8の8本目のエレメント101−8最終後尾部分(L))の状態を模擬し、第1検知用逆浸透膜21Aへの付着物成分(例えば石膏)の付着の状況を模擬することとなる。第1付着物検知部24Aの第1検知用逆浸透膜21Aの膜長さLを例えば16mmとする場合には、最終後尾部分の16mmの状態が模擬できることとなる。
【0142】
以上の説明では、検知用透過水22の流量を第1検知用透過水側流量計41Aで計測する場合について、説明したが、検知用非透過水23の流量を第1検知用非透過水側流量計41Bで計測する場合には、付着物の付着があると検知用非透過水23の流量は増加するので、第1検知用逆浸透膜21Aへの付着物の付着条件を変更し、検知用非透過水23の流量が所定量(=第1検知用逆浸透膜21Aに付着物が付着したと判断する非透過水流量の変化(増加)率)よりも変化する場合、逆浸透膜への付着物の「付着が予測される」と判断する。
これにより、被処理水11の水質変動等による本設の逆浸透膜装置14の逆浸透膜へ付着が生じることを予測することができる。
この予測の結果、本設の逆浸透膜装置14の運転条件を変更することで、本設の逆浸透膜装置14の逆浸透膜への付着物の付着の無い安定した運転を継続することができる。
【0143】
以上の実施例においては、供給液の供給圧力、供給液流量を一定とした場合、逆浸透膜に付着物が付着すると、透過水流量(又はフラックス)が低下する事から、検知液の供給圧力、供給流量を所定の値とし、検知用透過水流量(またはフラックス)が閾値以下となった場合に、検知用逆浸透膜へ付着物の付着があったと判断している。
これに対して、透過水流量(又はフラックス)を一定とする場合、逆浸透膜に付着物が付着すると、供給液の供給圧力を上げる(フラックスを上げる)必要がある。
よって、検知用分離液(検知用透過水、又は検知用非透過水)の流量が一定となるように供給液の供給圧力を制御し、供給圧力が閾値以上となった場合に、検知用逆浸透膜へ付着物の付着があったと判断する事もできる。