【実施例】
【0034】
以下、実施例を用いて本発明を具体的に説明する。
本発明の実施例として、
図2に示した槽状の熱処理容器(いわゆる、匣鉢)を製造した。
図2に示した槽状の匣鉢は、上部に開口をもつ槽状部20と、槽状部20の開口を覆う蓋部材21と、を有する。なお、本実施例では、槽状の匣鉢を具体的に用いたが、熱処理時にリチウム電池の正極活物質を配する(保持する)ことができる形状であれば、その形状が特に限定されるものではない。例えば、リチウム電池の正極活物質の粉末をその上面に配する(保持する,固定する)略板状の形状(いわゆる、セッター),上方又は側方が開口した槽状(筒状)の形状,槽状(筒状)の開口を蓋部材で覆う閉鎖形状(いわゆる、匣鉢。),等の形状をあげることができる。
(実施例1)
無機材料粉末として、アルミナ粉末:40質量部、コージェライト粉末:20質量部、ムライト粉末:20質量部、スピネル粉末:20質量部を秤量する。JIS標準ふるい(JIS Z 8801)によりふるい分けされた粒度を用い、粗粒部は、公称目開き1.00mm−500μm(16−32メッシュ)の粒度を用いた。粒度分布測定装置(マイクロトラック・ベル社製MT3300II)で測定した無機材料粉末の最大粒径は1mmであった。
【0035】
繊維長:1.5mmのアルミナ長繊維を、無機材料粉末の質量を100質量部としたときに0.2質量部となる割合で準備する。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、1.5である。なお、アルミナ長繊維は、市販品(株式会社ニチビ製、商品名:ニチビアルフヤーン(繊維径)7μm)を所定の長さにカットしたチョップド品を用いた。
準備した無機材料粉末とアルミナ長繊維を、木節粘土、有機バインダを添加して均一に混合し、その後、水を添加して均一に混練する。
【0036】
混合物を20MPaの圧力で加圧して匣鉢形状に成形し、乾燥後、大気雰囲気1350℃で5時間保持で焼成し、本例の熱処理容器が製造された。
【0037】
本例の熱処理容器は、JIS R 2205に記載の測定方法で測定した気孔率が27.8%であった。JIS R 1601に記載の測定方法で測定した曲げ強度は6.9MPaであり、JIS R 1602の共振法に記載の測定方法で測定した弾性率は10.5GPaであった。
【0038】
(実施例2)
本例は、繊維長が2mmのアルミナ長繊維を用いたこと以外は実施例1と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、2である。
本例の熱処理容器は、気孔率が28.0%であり、曲げ強度が6.2MPaであり、弾性率が9.0GPaであった。
【0039】
(実施例3)
本例は、繊維長が3mmのアルミナ長繊維を用いたこと以外は実施例1と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、3である。
本例の熱処理容器は、気孔率が28.0%であり、曲げ強度が6.4MPaであり、弾性率が10.1GPaであった。
【0040】
(実施例4)
本例は、繊維長が5mmのアルミナ長繊維を用いたこと以外は実施例1と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、5である。
本例の熱処理容器は、気孔率が28.6%であり、曲げ強度が6.1MPaであり、弾性率が9.2GPaであった。
【0041】
(比較例1)
本例は、アルミナ長繊維を用いないこと以外は実施例1と同様な熱処理容器である。
本例の熱処理容器は、気孔率が26.0%であり、曲げ強度が8.4MPaであり、弾性率が11.8GPaであった。
【0042】
(比較例2)
本例は、繊維長が1mmのアルミナ長繊維を用いたこと以外は実施例1と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、1である。
本例の熱処理容器は、気孔率が26.3%であり、曲げ強度が8.9MPaであり、弾性率が14.2GPaであった。
【0043】
[評価]
各例の熱処理容器の評価として、耐熱衝撃性、熱衝撃損傷抵抗及び弾性率低下率の評価を下記の通り行った。評価結果を表1に示した。
また、各例の熱処理容器の製造時の成形性の評価も表1に合わせて示した。
【0044】
(耐熱衝撃性)
各例の熱処理容器(を形成する焼成体)を100×50×10mmの直方体(ブロック状の試験片)に加工し、加熱炉内で大気雰囲気1000℃まで昇温(加熱)する。
炉内温度が1000℃で30分後、加熱炉から各例の熱処理容器を取り出し、温度15℃の水に投入して急冷(水冷)する。
急冷後、クラックの有無を確認し、クラックが確認できなかった場合、試験片を100℃12時間乾燥後、再び加熱炉に入れる。
【0045】
この所定の加熱温度への昇温(加熱)と、水冷(急冷)を5回繰り返して、熱処理容器(ブロック状の試験片)の割れの有無を目視で観察した。表1には、割れの確認された回数を示した。なお、5回繰り返しても割れが確認できなかった例は、「5回以上」と表記した。
【0046】
(熱衝撃損傷抵抗)
熱衝撃損傷抵抗は、亀裂が発生した際の亀裂の進展を抑える指標となる値として知られている。この値が高いほど熱衝撃でクラックが発生した時に使用不可能となるほどの大きな亀裂を発生させにくいものとなる。熱衝撃損傷抵抗は、破壊エネルギーが材料間で差がないと仮定して、
R’’’=E/σ^2/(1−ν)
の式を用いて算出した。ここで、Eは弾性率、Σは曲げ応力、νはポアソン比である。
【0047】
(弾性率低下率)
弾性率低下率は、耐熱衝撃試験によって発生する目視では確認できないマイクロクラックの存在を、弾性率の低下によって評価する。弾性率の低下が大きいほど(弾性率低下率が小さいほど)マイクロクラックが多く発生していると推測できる。
弾性率低下率の値は、耐熱衝撃試験前後に共振法により弾性率を測定し、(試験後の弾性率)/(試験前の弾性率)から弾性率低下率を算出した。
【0048】
(成形性)
成形性の評価は、プレス成形時に側面上部まで均等に原料が上がって成形されていることを確認するもので、匣鉢形状の底部と側面部の曲げ強度を測定し、底部に対し側面部の曲げ強度が80%以上を合格、以下を不合格とする。評価結果は、合格を○、不合格を△、成形後に形を保てなかったものを×で、それぞれ表記した。
【0049】
【表1】
【0050】
表1に示したように、各例の熱処理容器は、同等の気孔率を備えている。
その上で、各実施例の熱処理容器は、各比較例の熱処理容器と比較して、弾性率が低く、所定量のアルミナ長繊維を入れることによって熱処理容器の柔軟性が向上している。また、各実施例の熱処理容器は、同時に強度が低下しているため熱衝撃抵抗が上昇したとは解釈しにくい。しかしながら、耐熱衝撃試験ではアルミナ長繊維が含まれていない比較例1が4回、アルミナ長繊維の繊維長が短い比較例2が5回で割れが確認されたのに対し、最大粒径よりも長い繊維長のアルミナ長繊維を用いた各実施例では5回の熱衝撃を繰り返しても割れが確認できなかった。これは所定のアルミナ長繊維が熱衝撃を緩和しているためと考えられる。また各実施例は比較例に比べ熱衝撃抵抗係数が高いため、熱衝撃により小さなクラックが発生しても、アルミナ長繊維がマトリックス部内もしくは粗粒外周に沿って2つ以上のマトリックスを跨ぐように配置されているためクラックを進展させにくい構造となっていると考えられる。
このことは、弾性率低下率の結果からも同様である。
以上のように、各実施例の熱処理容器は、耐熱衝撃性と耐割れ性に優れていることが確認できる。
【0051】
(実施例5)
無機材料粉末として、アルミナ粉末:20質量部、コージェライト粉末:40質量部、ムライト粉末:30質量部、粘土鉱物(カオリン)粉末:10質量部を秤量・準備する。粗粒部は、公称目開き2.36mm〜1.00mm(8〜16メッシュ)の粒度を用いた。粒度分布測定装置で測定した無機材料粉末の最大粒径は2.5mmであった。
【0052】
繊維長:3mmのアルミナ長繊維を、無機材料粉末の質量を100質量部としたときに0.2質量部となる割合で準備する。アルミナ長繊維は、繊維長が異なること以外は実施例1と同様である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、1.2である。
その後、実施例1と同様にして、無機材料粉末とアルミナ長繊維を、混合・混練・成形(乾燥)・焼成して本例の熱処理容器が製造された。
本例の熱処理容器は、気孔率が29.0%であり、曲げ強度が7.3MPaであり、弾性率が13.4GPaであった。
【0053】
(実施例6)
本例は、繊維長が5mmのアルミナ長繊維を用いたこと以外は実施例5と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、2である。
本例の熱処理容器は、気孔率が29.6%であり、曲げ強度が7.2MPaであり、弾性率が12.8GPaであった。
【0054】
(実施例7)
本例は、繊維長が10mmのアルミナ長繊維を用いたこと以外は実施例5と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、4である。
本例の熱処理容器は、気孔率が30.6%であり、曲げ強度が6.5MPaであり、弾性率が10.5GPaであった。
【0055】
(比較例3)
本例は、アルミナ長繊維を用いないこと以外は実施例5と同様な熱処理容器である。
本例の熱処理容器は、気孔率が27.6%であり、曲げ強度が9.1MPaであり、弾性率が14.7GPaであった。
【0056】
(比較例4)
本例は、繊維長が2mmのアルミナ長繊維を用いたこと以外は実施例5と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、0.8である。
本例の熱処理容器は、気孔率が29.2%であり、曲げ強度が7.6MPaであり、弾性率が11.9GPaであった。
【0057】
(比較例5)
本例は、繊維長が15mmのアルミナ長繊維を用いたこと以外は実施例5と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、6である。
本例の熱処理容器は、気孔率が35.2%であり、曲げ強度が5.2MPaであり、弾性率が5.5GPaであった。
【0058】
[評価]
各例の熱処理容器の評価として、耐熱衝撃性、熱衝撃損傷抵抗、弾性率低下率及び成形性の評価を上記と同様に行った。評価結果を表2に示す。
【0059】
【表2】
【0060】
表1の結果と同様に、無機材料粉末の最大粒径が変わってもアルミナ長繊維が最大粒径よりも長い各実施例では耐熱衝撃性、熱衝撃損傷抵抗が高く弾性率の低下も小さいので耐熱衝撃性、耐割れ性に優れていることが確認できる。
アルミナ長繊維を含まない比較例3では比較例1と同様熱衝撃を緩和できていないことがわかる。比較例4は熱衝撃損傷抵抗が高く弾性率低下が小さいが、繊維長が短いため熱衝撃の緩和が十分できていないと考えられる。
【0061】
また、繊維長が過剰に長いアルミナ長繊維を用いた比較例5では、側面の曲げ強度が低く成形性が△と低下している。これに対し、各実施例では、いずれも○と評価している。このことから、アルミナ長繊維の繊維長が過剰に長くなると、繊維同士が絡まる、塊となることで成形性が低下することがわかる。
【0062】
(実施例8)
本例は、アルミナ長繊維の含有割合を0.1質量部としたこと以外は実施例5と同様な熱処理容器である。アルミナ長繊維の無機材料粉末の最大粒径に対する比は、1.2である。
本例の熱処理容器は、気孔率が29.2%であり、曲げ強度が7.6MPaであり、弾性率が13.3GPaであった。
【0063】
(実施例9)
本例は、アルミナ長繊維の含有割合を0.5質量部としたこと以外は実施例5と同様な熱処理容器である。
本例の熱処理容器は、気孔率が32.3%であり、曲げ強度が6.2MPaであり、弾性率が12.5GPaであった。
【0064】
(実施例10)
本例は、アルミナ長繊維の含有割合を1質量部としたこと以外は実施例5と同様な熱処理容器である。
本例の熱処理容器は、気孔率が35.0%であり、曲げ強度が5.6MPaであり、弾性率が11.8GPaであった。
【0065】
(比較例6)
本例は、アルミナ長繊維の含有割合を2質量部としたこと以外は実施例5と同様な熱処理容器である。
本例の熱処理容器は、気孔率が48.5%であり、曲げ強度が4.8MPaであり、弾性率が9.6GPaであった。
【0066】
(比較例7)
本例は、アルミナ長繊維の含有割合を0.05質量部としたこと以外は実施例5と同様な熱処理容器である。
本例の熱処理容器は、気孔率が28.2%であり、曲げ強度が8.6MPaであり、弾性率が14.6GPaであった。
【0067】
[評価]
各例の熱処理容器の評価として、耐熱衝撃性、熱衝撃損傷抵抗、弾性率低下率及び成形性の評価を上記と同様に行った。評価結果を表3に示す。表3には、実施例5と、アルミナ長繊維を含まないこと以外は実施例5と同様な比較例3も合わせて示した。
【0068】
【表3】
【0069】
各実施例では耐熱衝撃性が高く、弾性率の低下も少ないため、アルミナ長繊維の含有割合が0.1質量部から1質量部の範囲では耐熱衝撃性に優れていることがわかる。また、熱衝撃損傷抵抗はアルミナ長繊維含有割合が増えるほど大きくなり、アルミナ長繊維の量が増えるほど耐割れ性が強くなる。
しかし、比較例6でアルミナ長繊維を2質量部の場合、熱衝撃損傷抵抗は高くなるもののアルミナ長繊維で原料のかさが増えることにより、成形性が低下することと、アルミナ長繊維が分散されず塊が増えることでその部分が欠陥となり強度、耐熱衝撃性が低下する。また気孔率も48.5%と非常に高く、リチウム含有化合物の侵食が大きくなる。
したがってアルミナ長繊維の含有割合が過剰に多くなると熱処理容器としての機能を果たせないことがわかる。
【0070】
対して、比較例7でアルミナ長繊維含有割合を0.05質量部の場合熱衝撃損傷抵抗、弾性率低下率ともに低下し、耐熱衝撃性テストは4回で割れる結果となったことから、含有量が少ない場合は、熱衝撃の緩和や割れの進展を抑えるアルミナ長繊維の効果が小さくなることがわかる。アルミナ長繊維がない比較例3も同様である。
以上のように、各実施例の焼成治具は、耐熱衝撃性、耐割れ性に優れていることが確認できる。