特許第6402271号(P6402271)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本碍子株式会社の特許一覧

<>
  • 特許6402271-電気化学セルスタック 図000002
  • 特許6402271-電気化学セルスタック 図000003
  • 特許6402271-電気化学セルスタック 図000004
  • 特許6402271-電気化学セルスタック 図000005
  • 特許6402271-電気化学セルスタック 図000006
  • 特許6402271-電気化学セルスタック 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6402271
(24)【登録日】2018年9月14日
(45)【発行日】2018年10月10日
(54)【発明の名称】電気化学セルスタック
(51)【国際特許分類】
   H01M 8/243 20160101AFI20181001BHJP
   H01M 8/2418 20160101ALI20181001BHJP
   H01M 8/2484 20160101ALI20181001BHJP
   H01M 8/12 20160101ALN20181001BHJP
【FI】
   H01M8/243
   H01M8/2418
   H01M8/2484
   !H01M8/12 101
   !H01M8/12 102C
【請求項の数】2
【全頁数】11
(21)【出願番号】特願2018-95181(P2018-95181)
(22)【出願日】2018年5月17日
【審査請求日】2018年5月17日
(31)【優先権主張番号】特願2017-133082(P2017-133082)
(32)【優先日】2017年7月6日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】110000202
【氏名又は名称】新樹グローバル・アイピー特許業務法人
(72)【発明者】
【氏名】大森 誠
【審査官】 守安 太郎
(56)【参考文献】
【文献】 国際公開第2008/041593(WO,A1)
【文献】 特開2008−084683(JP,A)
【文献】 特開2013−175306(JP,A)
【文献】 特開2015−170453(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/24
H01M 8/02
(57)【特許請求の範囲】
【請求項1】
配列された複数の電気化学セルと、
前記複数の電気化学セルそれぞれの基端部を支持するマニホールドと、
を備え、
前記複数の電気化学セルのうち端部に配置された端部電気化学セルは、内部にガス流路を有する絶縁性の支持基板と、前記支持基板上に配置された複数の発電素子部とを有し、
前記端部電気化学セルが有する前記複数の発電素子部のうち前記マニホールドに最も近い基端側発電素子部の面積は、前記複数の発電素子部のうち前記基端側発電素子部以外の発電素子部の面積よりも大きく、
前記複数の電気化学セルのうち中央部に配置された中央部電気化学セルは、内部にガス流路を有する絶縁性の支持基板と、前記支持基板上に配置された複数の発電素子部とを有し、
前記端部電気化学セルが有する前記基端側発電素子部の面積は、前記中央部電気化学セルが有する前記複数の発電素子部のうち前記マニホールドに最も近い基端側発電素子部の面積よりも大きい、
電気化学セルスタック。
【請求項2】
前記端部電気化学セルが有する前記複数の発電素子部のうち前記基端側発電素子部以外の発電素子部それぞれの面積は、互いに略同等である、
請求項1に記載の電気化学セルスタック。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気化学セルスタックに関する。
【背景技術】
【0002】
従来、電気化学セルスタックの一種として、一列に並べられた複数の燃料電池と、各燃料電池の基端部を支持するマニホールドとを備える燃料電池スタックが知られている(例えば、特許文献1参照)。
【0003】
各燃料電池は、内部にガス流路を有する絶縁性の支持基板と、支持基板上に配置される複数の発電素子部とを備える。各発電素子部は、燃料極と、空気極と、燃料極と空気極の間に配置される固体電解質層とを含む。燃料電池スタックの運転時、燃料ガスは、マニホールドの内部から各燃料電池のガス流路に供給される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2015−164094号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、燃料電池スタックの発電時において、配列方向の端部に位置する燃料電池(以下、「端部燃料電池」という。)は、配列方向の中央部に位置する燃料電池(以下、「中央部燃料電池」という。)に比べて熱エネルギーを放出しやすいため、温度が低くなりやすい。
【0006】
特に、燃料ガス及び空気が十分に予熱されていない場合には、端部電気化学セルが有する複数の発電素子部のうち最もマニホールド側(ガス供給側)に近い基端側発電素子部が燃料ガス又は空気によって冷却されるため、温度が低くなりやすい。
【0007】
その結果、端部電気化学セルの基端側発電素子部における電気抵抗が大きくなることによって、燃料電池セルの発電効率が低くなるおそれがある。
【0008】
本発明は、上述の状況に鑑みてなされたものであり、発電効率を向上可能な電気化学セルスタックを提供することを目的とする。
【課題を解決するための手段】
【0009】
電気化学セルスタックは、配列された複数の電気化学セルと、複数の電気化学セルそれぞれの基端部を支持するマニホールドとを備える。複数の電気化学セルのうち端部に配置された端部電気化学セルは、内部にガス流路を有する絶縁性の支持基板と、支持基板上に配置された複数の発電素子部とを有する。端部電気化学セルが有する複数の発電素子部のうちマニホールドに最も近い基端側発電素子部の面積は、複数の発電素子部のうち基端側発電素子部以外の発電素子部の面積よりも大きい。
【発明の効果】
【0010】
本発明によれば、発電効率を向上可能な電気化学セルスタックを提供することができる。
【図面の簡単な説明】
【0011】
図1】燃料電池スタックの斜視図
図2】燃料電池(中央部燃料電池と端部燃料電池)の斜視図
図3】端部燃料電池の断面図
図4】中央部燃料電池の断面図
図5】端部燃料電池の支持基板の表裏面における各発電素子部の面積を示す模式図
図6】中央部燃料電池の支持基板の表裏面における各発電素子部の面積を示す模式図
【発明を実施するための形態】
【0012】
(燃料電池スタック100)
図1は、燃料電池スタック100の斜視図である。燃料電池スタック100は、複数の燃料電池1及びマニホールド2を備える。
【0013】
(複数の燃料電池1)
複数の燃料電池1は、配列方向に沿って一列に並べられる。各燃料電池1は、略等間隔で略平行に配置される。各燃料電池1の基端部3は、マニホールド2に固定される。各燃料電池1の先端部4は、自由端である。このように、各燃料電池1は、マニホールド2によって片持ち状態で支持される。
【0014】
複数の燃料電池1は、中央部燃料電池1aと、中央部燃料電池1aの配列方向両側に配置された端部燃料電池1b,1bとを含む。
【0015】
中央部燃料電池1aは、複数の燃料電池1のうち配列方向中央とその近傍に配置された燃料電池1を意味する。具体的には、配列方向中央を中心として、配列方向における複数の燃料電池1の全長の1/3程度の領域に配置された燃料電池1を、中央部燃料電池1aとすることができる。図1に示すように、本実施形態では、6個の燃料電池1が中央部燃料電池1aとされているが、中央部燃料電池1aの個数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。
【0016】
端部燃料電池1b,1bは、配列方向において中央部燃料電池1aの両側に配置される。端部燃料電池1b,1bは、複数の燃料電池1のうち配列方向両端とその近傍に配置された燃料電池1を意味する。具体的には、配列方向両端から複数の燃料電池1の全長の1/3程度までの領域に配置された燃料電池1を、端部燃料電池1bとすることができる。図1に示すように、本実施形態では、6個の中央部燃料電池1aの両側に配置された7個の燃料電池1が端部燃料電池1bとされているが、端部燃料電池1bの個数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。
【0017】
なお、中央部燃料電池1aと端部燃料電池1bとの間には、中央部燃料電池1aと端部燃料電池1bの両方に属さない燃料電池1が配置されていてもよい。
【0018】
ここで、燃料電池スタック100の発電時において、各燃料電池1は、燃料電池1自身のジュール熱や反応熱により熱エネルギーを放出する。中央部燃料電池1aの両側には多数の燃料電池1が配置されているため、中央部燃料電池1aからの熱エネルギーは外部に放散されにくいのに対して、端部燃料電池1bは隣接する燃料電池1が少ないため、端部燃料電池1bからの熱エネルギーは外部に放散されやすい。従って、端部燃料電池1bは、中央部燃料電池1aに比べて低温になりやすい。
【0019】
(マニホールド2)
マニホールド2は、各燃料電池1にガスを分配するように構成されている。マニホールド2は、中空状であり、内部空間を有している。マニホールド2の内部空間には、図示しない燃料ガス供給源から燃料ガスが供給される。
【0020】
マニホールド2は、各燃料電池1を支持する。マニホールド2は、マニホールド本体2a、天板2b、及び導入管2cを備える。本実施形態において、マニホールド本体2a、天板2b、及び導入管2cは、互いに別部材であるが、これらは一体的に形成されていてもよい。
【0021】
マニホールド本体2aは、略直方体状であって、上面が開口した内部空間を有する。マニホールド本体2aは、例えば、耐熱性を有する金属材料(例えば、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、及びNi基合金など)によって構成できる。
【0022】
天板2bは、マニホールド本体2aの上面を塞ぐように、マニホールド本体2a上に配置される。天板2bは、例えば結晶化ガラスによって、マニホールド本体2aに接合される。天板2bは、マニホールド本体2aと同様の材料によって構成できる。
【0023】
天板2bは、複数の貫通孔2dを有する。各貫通孔2dは、マニホールド2の内部空間と外部空間に連通する。各貫通孔2dには、各燃料電池1の基端部3が挿入される。各燃料電池1の基端部3は、接合材(例えば、結晶化ガラスなど)によって貫通孔2dに固定される。結晶化ガラスとしては、例えば、SiO−B系、SiO−CaO系、又はSiO−MgO系を用いることができる。
【0024】
(中央部燃料電池1aと端部燃料電池1bの外観構造)
次に、中央部燃料電池1aと端部燃料電池1bの外観構造について説明する。図2は、中央部燃料電池1aと端部燃料電池1bの斜視図である。中央部燃料電池1aと端部燃料電池1bの外観は略同じであるため、図2では、1つの燃料電池のみが図示されている。
【0025】
中央部燃料電池1aと端部燃料電池1bは、いわゆる横縞型の固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)である。
【0026】
中央部燃料電池1aと端部燃料電池1bそれぞれは、8つの発電素子部A、支持基板10、シール膜11、及び表裏間接続部材12を備える。
【0027】
8つの発電素子部Aのうち4つの発電素子部Aは、支持基板10の表面上において、支持基板10の長手方向に沿って所定間隔で配置され、電気的に直列に接続される。残りの4つの発電素子部Aは、支持基板10の裏面上において、支持基板10の長手方向に沿って所定間隔で配置され、電気的に直列に接続される。
【0028】
以下の説明では、支持基板10の表面上に配置された4つの発電素子部Aのうちマニホールド2に最も近い発電素子部Aのことを「基端側発電素子部Ak」と称し、支持基板10の裏面上に配置された4つの発電素子部Aのうちマニホールド2に最も近い発電素子部Aのことを「基端側発電素子部Aj」と称する(図3及び図4参照)。基端側発電素子部Ak及び基端側発電素子部Ajは、基端部3上に配置された発電素子部Aである。基端側発電素子部Ak及び基端側発電素子部Ajは、後述するガス流路10aの流入口に最も近い発電素子部Aである。
【0029】
支持基板10は、長手方向に延びる平板である。支持基板10は、電子伝導性を有さない多孔質の材料によって構成される。支持基板10は、例えば、CSZ(カルシア安定化ジルコニア)で構成することができる。支持基板10は、8つの発電素子部Aを支持する。
【0030】
支持基板10の内部には、複数のガス流路10aが形成される。各ガス流路10aは、支持基板10の長手方向に沿って延びる。各ガス流路10aは、支持基板10の長手方向両端面で開口している。各ガス流路10aは、支持基板10の短手方向において略等間隔で略平行に形成される。
【0031】
シール膜11は、支持基板10の外表面を覆う。シール膜11は、緻密質材料によって構成することができる。緻密質材料としては、例えば、YSZ、ScSZ、ガラス、スピネル酸化物などが挙げられる。シール膜11は、後述する各発電素子部Aの固体電解質膜40と同じ材料によって一体的に構成されていてもよい。
【0032】
表裏間接続部材12は、先端部4を周回するように設けられる。表裏間接続部材12は、表裏の先端側発電素子部同士を電気的に直列に接続する。
【0033】
表裏間接続部材12は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)、或いは、La(Ni、Fe、Cu)O等で構成することができる。
【0034】
(中央部燃料電池1aと端部燃料電池1bの内部構造)
次に、中央部燃料電池1aと端部燃料電池1bの内部構造について説明する。図3は、端部燃料電池1bの図2のP面における断面図である。図4は、中央部燃料電池1aの図2のP面における断面図である。
【0035】
図3及び図4に示すように、中央部燃料電池1aと端部燃料電池1bは、それぞれ、燃料極20、インターコネクタ30、固体電解質膜40、反応防止膜50、空気極60、及び空気極集電膜70を備える。
【0036】
燃料極20は、燃料極集電部21と燃料極活性部22とを有する。燃料極集電部21は、支持基板10上に配置される。燃料極集電部21は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とによって構成され得る。燃料極集電部21の厚さは特に制限されないが、50〜500μm程度とすることができる。燃料極活性部22は、燃料極集電部21上に配置される。燃料極活性部22は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とによって構成され得る。燃料極活性部22の厚さは特に制限されないが、5〜30μm程度とすることができる。
【0037】
インターコネクタ30は、燃料極集電部21上において、燃料極活性部22から離れた位置に配置される。インターコネクタ30は、電子伝導性を有する緻密材料によって構成される。インターコネクタ30は、例えば、LaCrO(ランタンクロマイト)によって構成され得る。インターコネクタ30の厚さは特に制限されないが、例えば、10〜100μm程度とすることができる。
【0038】
固体電解質膜40は、燃料極20を覆うように配置される。固体電解質膜40は、隣り合う発電素子部Aそれぞれのインターコネクタ30に接続される。固体電解質膜40は、イオン伝導性を有し、電子伝導性を有さない緻密材料によって構成される。固体電解質膜40は、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)によって構成され得る。固体電解質膜40の厚さは特に制限されないが、例えば、3〜50μm程度とすることができる。
【0039】
反応防止膜50は、固体電解質膜40を覆うように配置される。反応防止膜50は、緻密材料によって構成される。反応防止膜50は、例えば、GDC((Ce,Gd)O:ガドリニウムドープセリア)によって構成され得る。反応防止膜50の厚さは特に制限されないが、例えば、3〜50μm程度とすることができる。
【0040】
空気極60は、反応防止膜50上に配置される。空気極60は、電子伝導性を有する多孔質材料によって構成される。空気極60は、例えば、LSCF=(La,Sr)(Co,Fe)O、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、又は、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等よって構成され得る。空気極60は、例えば、LSCFからなる内側層とLSCからなる外側層との2層によって構成されてもよい。空気極60の厚さは特に制限されないが、例えば、10〜100μm程度とすることができる。
【0041】
空気極集電膜70は、隣り合う発電素子部Aのインターコネクタ30と空気極15とに接続される。空気極集電膜70は、電子伝導性を有する多孔質材料によって構成される。空気極集電膜70は、例えば、LSCF、LSC、Ag(銀)、又はAg−Pd(銀パラジウム合金)等によって構成され得る。空気極集電膜70の厚さは特に制限されないが、例えば、50〜500μm程度とすることができる。
【0042】
本実施形態において、インターコネクタ30と空気極集電膜70は、隣り合う発電素子部Aを電気的に接続する「電気的接続部80」を構成している。
【0043】
(中央部燃料電池1aと端部燃料電池1bにおける各発電素子部Aの面積)
中央部燃料電池1aと端部燃料電池1bにおける各発電素子部Aの面積について、図面を参照しながら説明する。図5は、端部燃料電池1bの支持基板10の表面及び裏面それぞれにおける各発電素子部Aの面積を示す模式図である。図6は、中央部燃料電池1aの支持基板10の表面及び裏面それぞれにおける各発電素子部Aの面積を示す模式図である。各発電素子部Aの面積とは、支持基板10の表面又は裏面の平面視において、燃料極活性部22、固体電解質膜40、及び空気極60が重複する部分の投影面積である。
【0044】
図5に示すように、端部燃料電池1bでは、支持基板10の表面における基端側発電素子部Akの面積T2は、基端側発電素子部Ak以外の他の発電素子部Aの面積T1よりも大きい。これにより、低温になりやすい端部燃料電池1bにおいて、最もガス供給側に配置された基端側発電素子部Akにおける電流密度を小さくできるため、基端側発電素子部Akにおける電気抵抗を小さくすることができる。従って、温度低下によって基端側発電素子部Akの電気抵抗が大きくなった場合であっても、基端側発電素子部Akと他の発電素子部Aとの電気抵抗差を小さくすることができる。その結果、燃料電池スタック100の発電効率を向上させることができる。
【0045】
基端側発電素子部Akの面積T2は、他の発電素子部Aの面積T1の1.1倍以上であることが好ましい。これによって、燃料電池スタック100の起電力を大きくすることができる。
【0046】
基端側発電素子部Akの面積T2は、他の発電素子部Aの面積T1の2.2倍以下であることが好ましい。なお、基端側発電素子部Akの面積T2を大きくするには、短手方向の寸法を他の発電素子部Aと同じにしたまま、長手方向の寸法を他の発電素子部Aより長くするのが好ましい。
【0047】
また、図5に示すように、基端側発電素子部Ak以外の各発電素子部Aの面積T1は、互いに略同等である。これにより、例えば、基端側発電素子部Ak以外の各発電素子部Aの面積を基端側発電素子部Akに近いほど順次大きくする場合に比べて、発電素子部Aの個数を多くすることができる。そのため、燃料電池スタック100全体としての発電効率をより向上させることができる。本実施形態において、各発電素子部Aの面積T1が互いに略同等であるとは、各発電素子部Aの面積T1が、各発電素子部Aの面積T1の平均値の±10%以内に入っていることを意味する。
【0048】
さらに、図5に示すように、端部燃料電池1bでは、支持基板10の裏面における基端側発電素子部Ajの面積T4は、他の各発電素子部Aの面積T3よりも大きい。従って、基端側発電素子部Ajにおける電気抵抗を小さくすることができるため、燃料電池スタック100全体としての発電効率をより向上させることができる。
【0049】
なお、基端側発電素子部Ajの面積T4は、基端側発電素子部Akの面積T2と異なっていてもよいが、同等であることが好ましい。また、裏面側の各発電素子部Aの面積T3は、表面側の各発電素子部Aの面積T1と異なっていてもよいが、同等であることが好ましい。
【0050】
また、図5に示すように、基端側発電素子部Aj以外の各発電素子部Aの面積T3は、互いに略同等である。従って、発電素子部Aの個数を多くすることができるため、燃料電池スタック100全体としての発電効率をより向上させることができる。
【0051】
一方、図6に示すように、中央部燃料電池1aでは、支持基板10の表面に配置された全ての発電素子部A(基端側発電素子部Akを含む)の面積T5は、互いに略同等である。また、中央部燃料電池1aでは、支持基板10の裏面に配置された全ての発電素子部A(基端側発電素子部Ajを含む)の面積T6は、互いに略同等である。
【0052】
中央部燃料電池1aの基端側発電素子部Akの面積T5は、端部燃料電池1bの基端側発電素子部Akの面積T2及び基端側発電素子部Ajの面積T4それぞれよりも小さい。中央部燃料電池1aの基端側発電素子部Ajの面積T6は、端部燃料電池1bの基端側発電素子部Akの面積T2及び基端側発電素子部Ajの面積T4それぞれよりも小さい。
【0053】
中央部燃料電池1aの表面側の各発電素子部Aの面積T5は、裏面側の各発電素子部Aの面積T6と異なっていてもよいが、同等であることが好ましい。
【0054】
(燃料電池1の製造方法)
次に、燃料電池1の製造方法の一例について説明する。
【0055】
まず、上述した支持基板材料を押出成形することによって、ガス流路10aを有する支持基板10の成形体を形成する。そして、支持基板10の成形体の表裏面に、燃料極集電部21の成形体を収容するための凹部を形成する。この際、端部燃料電池1bを作製する場合には、基端側発電素子部Ak及び基端側発電素子部Ajに対応する凹部の長さを、他の発電素子部Aに対応する凹部の長さよりも長くすることによって、基端側発電素子部Ak及び基端側発電素子部Ajの面積T2,T4を他の発電素子部Aの面積T1,T3よりも大きくすることができる。
【0056】
次に、上述した燃料極集電部材料をペースト化してスクリーン印刷することによって、支持基板10の凹部内に燃料極集電部21の成形体を形成する。そして、燃料極集電部21の成形体の表面に、燃料極活性部22とインターコネクタ30の成形体を収容するための凹部を形成する。
【0057】
次に、上述した燃料極活性部材料をペースト化してスクリーン印刷することによって、燃料極集電部21の凹部内に燃料極活性部22の成形体を形成する。
【0058】
次に、上述したインターコネクタ材料をペースト化してスクリーン印刷することによって、燃料極集電部21の凹部内にインターコネクタ30の成形体を形成する。
【0059】
次に、上述した固体電解質膜材料をペースト化してスクリーン印刷することによって、燃料極20とインターコネクタ30の成形体上に固体電解質膜40の成形体を形成する。
【0060】
次に、固体電解質膜40の成形体上に反応防止層材料をディップ成形することによって、反応防止膜50の成形体を形成する。
【0061】
次に、支持基板10、燃料極20、インターコネクタ30、固体電解質膜40、及び反応防止膜50それぞれの成形体を共焼成(1300〜1600℃、2〜20時間)する。
【0062】
次に、空気極材料をペースト化して反応防止膜50上にスクリーン印刷することによって、空気極60の成形体を形成する。
【0063】
次に、空気極集電膜材料をペースト化して空気極60の成形体上にスクリーン印刷することによって、空気極集電膜70の成形体を形成する。
【0064】
次に、空気極60及び空気極集電膜70の成形体を焼成(900〜1100℃、1〜20時間)する。
【0065】
(他の実施形態)
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
【0066】
上記実施形態では、本発明にかかる電気化学セルスタックを横縞型の燃料電池スタックに適用した場合について説明したが、本発明にかかる電気化学セルスタックは、横縞型の燃料電池スタックのほか、固体酸化物型電解セルを含む固体酸化物型電気化学セルスタックに適用可能である。
【0067】
上記実施形態では、図1に示したように、複数の燃料電池1が、6個の中央部燃料電池1aを含むこととしたが、中央部に少なくとも1個の中央部燃料電池1aを含んでいればよい。
【0068】
上記実施形態では、図2に示したように、中央部燃料電池1a及び端部燃料電池1bそれぞれが、支持基板10の表面及び裏面それぞれに発電素子部Aを4つずつ有することとしたが、これに限られるものではない。中央部燃料電池1a及び端部燃料電池1bそれぞれは、支持基板10の表面及び裏面の一方だけに発電素子部Aを有していてもよい。また、中央部燃料電池1a及び端部燃料電池1bそれぞれは、表面又は裏面に2以上の発電素子部Aを有していればよい。
【0069】
上記実施形態では、燃料電池スタック100が、配列方向に並べられた燃料電池1を一列だけ備えることとしたが、配列方向に並べられた燃料電池1を二列以上備えていてもよい。この場合、各列に上記実施形態に係る端部燃料電池1bを採用することが好ましいが、いずれか一列だけに上記実施形態に係る端部燃料電池1bを採用してもよい。
【符号の説明】
【0070】
1 燃料電池(電気化学セルの一例)
1a 中央部燃料電池(中央部電気化学セルの一例)
1b 端部燃料電池(端部電気化学セルの一例)
2 マニホールド
100 燃料電池スタック(電気化学セルスタックの一例)
A 発電素子部
Ak 基端側発電素子部
Aj 基端側発電素子部
【要約】
【課題】発電効率を向上可能な電気化学セルスタックを提供する。
【解決手段】燃料電池スタック100は、一列に配列された複数の燃料電池1と、各燃料電池1の基端部3を支持するマニホールド2とを備える。複数の燃料電池1のうち端部に配置された端部燃料電池1bは、内部にガス流路10aを有する絶縁性の支持基板10と、支持基板10上に配置された複数の発電素子部Aとを有する。端部燃料電池1bが有する複数の発電素子部Aのうちマニホールド2に最も近い基端側発電素子部Akの面積T2は、複数の発電素子部Aのうち基端側発電素子部Ak以外の発電素子部Aの面積T1よりも大きい。
【選択図】図5
図1
図2
図3
図4
図5
図6