(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6403883
(24)【登録日】2018年9月21日
(45)【発行日】2018年10月10日
(54)【発明の名称】タービンブレードチップクリアランス調整システムを備えたガスタービンエンジン
(51)【国際特許分類】
F01D 11/18 20060101AFI20181001BHJP
F02C 7/28 20060101ALI20181001BHJP
【FI】
F01D11/18
F02C7/28 A
【請求項の数】10
【全頁数】11
(21)【出願番号】特願2017-522031(P2017-522031)
(86)(22)【出願日】2014年10月23日
(65)【公表番号】特表2017-531762(P2017-531762A)
(43)【公表日】2017年10月26日
(86)【国際出願番号】US2014061902
(87)【国際公開番号】WO2016064393
(87)【国際公開日】20160428
【審査請求日】2017年6月21日
(73)【特許権者】
【識別番号】599078705
【氏名又は名称】シーメンス エナジー インコーポレイテッド
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【弁理士】
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100135633
【弁理士】
【氏名又は名称】二宮 浩康
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】ジーピン ジャン
(72)【発明者】
【氏名】バートン エム. ペッパーマン
【審査官】
倉田 和博
(56)【参考文献】
【文献】
特開平11−062510(JP,A)
【文献】
米国特許出願公開第2004/0071548(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 11/00 − 11/24
F02C 7/28
(57)【特許請求の範囲】
【請求項1】
ガスタービンエンジン(10)であって、
タービンアセンブリ(26)が、少なくとも1つのタービンブレード(30)を有するロータアセンブリ(28)から形成されており、前記タービンブレード(30)は、概して細長い翼(32)から形成されており、該翼(32)は、前縁(34)と、後縁(36)と、圧力側(38)と、吸込み側(40)と、第1端部(42)のチップ(16)と、前記第1端部(42)とは反対の側の、前記概して細長い翼(32)の第2端部(46)に結合されたプラットホーム(44)とを有しており、
前記少なくとも1つのタービンブレード(30)の前記チップ(16)から半径方向外側に、複数のリングセグメント(18)が配置されており、これらの複数のリングセグメント(18)は、周方向に延びる列(48)に整列させられて、前記少なくとも1つのタービンブレード(30)の移動経路(50)の周りに1つのリングを形成しており、各リングセグメント(18)は、前記タービンアセンブリ(26)内の高温ガス通路の一部を形成する内面(22)を有しており、
前記リングセグメント(18)の前記内面(22)の半径方向外側に、少なくとも1つのクリアランス調整バンド(20)が配置され、且つ前記リングセグメント(18)の少なくとも1つの外面(24)に支持されて、前記リングセグメント(18)の半径方向移動を制限するようになっており、
前記少なくとも1つのクリアランス調整バンド(20)は、前記リングセグメント(18)の前記内面(22)の半径方向外側に、リングを形成しており、
更に、前記少なくとも1つのクリアランス調整バンド(20)から半径方向外側に延びる運動リミッタ(106)が設けられており、
前記運動リミッタ(106)は、前記少なくとも1つのクリアランス調整バンド(20)から半径方向外側に延びる少なくとも1つのピン(108)から形成されており、該ピン(108)のヘッド(110)は比較的大きな横断面積を有していて、前記ピン(108)のボデー(112)から半径方向外側に配置されており、且つ隣接するタービン構成要素(116)に支持面(114)で以て固定されていることを特徴とする、ガスタービンエンジン(10)。
【請求項2】
前記少なくとも1つのクリアランス調整バンド(20)は、前記複数のリングセグメント(18)のうちの少なくとも1つのリングセグメント(18)を形成している材料よりも低い熱膨張率を有している、請求項1記載のガスタービンエンジン(10)。
【請求項3】
前記複数のリングセグメント(18)のうちの少なくとも1つは、前記少なくとも1つのクリアランス調整バンド(20)を係合させるように構成された上流支持面(54)と下流支持面(56)とを有している、請求項1又は2記載のガスタービンエンジン(10)。
【請求項4】
前記複数のリングセグメント(18)のうちの少なくとも1つは、前記リングセグメント(18)の上流側の側面(60)に配置された第1の上流受容通路(58)と、前記リングセグメント(18)の下流側の側面に配置された第1の下流受容通路(62)とを有しており、前記少なくとも1つのクリアランス調整バンド(20)の上流縁部(66)は、前記第1の上流受容通路(58)内に入れられており、前記少なくとも1つのクリアランス調整バンド(20)の下流縁部(68)は、前記第1の下流受容通路(62)内に入れられている、請求項1から3までのいずれか1項記載のガスタービンエンジン(10)。
【請求項5】
前記第1の上流受容通路(58)は、上流支持面(54)と上流外側包囲面(72)とから形成されており、前記第1の下流受容通路(62)は、下流支持面(56)と下流外側包囲面(76)とから形成されている、請求項4記載のガスタービンエンジン(10)。
【請求項6】
少なくとも1つの前記リングセグメント(18)から半径方向外側に、少なくとも1つの上流支持アーム(78)が延びており、少なくとも1つの前記リングセグメント(18)から半径方向外側に、少なくとも1つの下流支持アーム(80)が延びており、前記少なくとも1つの上流支持アーム(78)は、前記第1の上流受容通路(58)を内蔵しており、前記少なくとも1つの下流支持アーム(80)は、前記第1の下流受容通路(62)を内蔵している、請求項5記載のガスタービンエンジン(10)。
【請求項7】
前記少なくとも1つのクリアランス調整バンド(20)は、上半部(82)と下半部(84)とから形成されている、請求項1から6までのいずれか1項記載のガスタービンエンジン(10)。
【請求項8】
前記少なくとも1つのクリアランス調整バンド(20)の前記上半部(82)と前記下半部(84)とは、水平に配置された第1ジョイント部(88)における第1交点(86)で共に結合されており、且つ水平に配置された第2ジョイント部(92)における第2交点(90)で共に結合されている、請求項7記載のガスタービンエンジン(10)。
【請求項9】
前記第1ジョイント部(88)と前記第2ジョイント部(92)のうちの少なくとも一方は、前記下半部(84)に設けられた第1ジョイント結合ブロック(98)の開口(96)と、結合状態において前記第1ジョイント結合ブロック(98)に隣接して配置される、前記上半部(82)に設けられた第2ジョイント結合ブロック(100)の開口(96)と、を貫通して延びる少なくとも1つのロックピン(94)を介して共に結合されている、請求項8記載のガスタービンエンジン(10)。
【請求項10】
前記運動リミッタ(106)は、前記少なくとも1つのクリアランス調整バンド(20)の上半部(82)を固定するための上部運動リミッタ(118)と、前記少なくとも1つのクリアランス調整バンド(20)の下半部(84)を固定するための下部運動リミッタ(120)とを有している、請求項7から9までのいずれか1項記載のガスタービンエンジン(10)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般にタービンエンジンに関し、より詳細には、タービン翼チップと、リングセグメントといった、タービンエンジン内で半径方向に隣接する構成要素との間のギャップを縮小させ、これにより漏れを低減させることでタービンエンジンの効率を向上させるためのシステムに関する。
【背景技術】
【0002】
タービンエンジンは通常、理論的な最高効率未満の効率で運転される。なぜならば、とりわけ高温の圧縮ガスがタービンエンジンの長手方向において下流側に移動する際に、流路内で損失が生じるからである。流路損失の一例は、タービンブレードのチップにわたる高温燃焼ガスの漏れであり、そこではタービンブレードに対して仕事が行われない。この漏れは、回転タービンブレードのチップと、リングシールを形成するリングセグメントのような周囲の静止構造との間の空間にわたって生じる。この空間はしばしば、ブレードチップクリアランスと呼ばれる。
【0003】
ブレードチップクリアランスは、エンジンの始動中又は部分負荷運転中といった過渡的な状態の最中に、回転部分(ブレード、ロータ及びディスク)と静止部分(アウタケーシング、ブレードリング及びリングセグメント)とがそれぞれ異なる率で熱膨張するため、消失することはない。その結果、ブレードチップクリアランスは、実際には定常状態運転に達するまでのエンジン始動中は減少可能だが、定常状態運転の時点でクリアランスが増大する可能性があり、これによりエンジンの効率が低下することになる。ゆえに、タービンブレードチップ摩擦の可能性を減らし、且つこの望ましくない大きなブレードチップクリアランスを縮小する必要が生じる。
【発明の概要】
【課題を解決するための手段】
【0004】
タービンブレードチップと半径方向外側のリングセグメントとの間のギャップを縮小させることによりタービンエンジンの効率を高めるためのタービンブレードチップクリアランス調整システムを有するガスタービンエンジンを開示する。タービンブレードチップクリアランス調整システムは、1つ又は複数のクリアランス調整バンドを有していてよく、クリアランス調整バンドは、リングセグメントの内面の半径方向外側に配置され、且つリングセグメントの少なくとも1つの外面に支持されて、リングセグメントの半径方向移動を制限する。運転中、クリアランス調整バンドはリングセグメントの半径方向移動を制限し、過渡的な始動状態の最中には狭窄点を有していない。更に、タービンエンジン運転中の最小ギャップは、ガスタービンエンジンの定常状態運転において見られる。よって、クリアランス調整システムのクリアランス調整バンドは、タービンブレードチップと半径方向外側のリングセグメントとの間のギャップを調節し、定常状態運転では実質的に消失させてゼロにするように構成されていてよく、完全に消失させないと、ギャップの消失手段を介してギャップを通じた高温燃焼ガスの漏れが生じることになる。
【0005】
少なくとも1つの実施形態では、ガスタービンエンジンは、タービンアセンブリから形成されていてよく、タービンアセンブリは、1つ又は複数のタービンブレードを有するロータアセンブリから形成されており、タービンブレードは、概して細長い翼から形成されており、翼は、前縁と、後縁と、圧力側と、吸込み側と、第1端部のチップと、第1端部とは反対の側の、概して細長い翼の第2端部に結合されたプラットホームとを有している。複数のリングセグメントが、タービンブレードのチップから半径方向外側に配置されていてよい。複数のリングセグメントが、周方向に延びる列に整列させられて、少なくとも1つのタービンブレードの移動経路の周りに1つのリングを形成していてよい。各リングセグメントは、タービンアセンブリ内の高温ガス通路の一部を形成する内面を有していてよい。1つ又は複数のクリアランス調整バンドは、リングセグメントの内面の半径方向外側に配置され、且つリングセグメントの1つ又は複数の外面に支持されて、リングセグメントの半径方向移動を制限している。クリアランス調整バンドは、リングセグメントの内面の半径方向外側に、リングを形成していてよい。少なくとも1つの実施形態では、クリアランス調整バンドは、1つ又は複数のリングセグメントを形成している材料よりも低い熱膨張率を有していてよい。
【0006】
1つ又は複数のリングセグメントは、クリアランス調整バンドを係合させるように構成された上流支持面と下流支持面とを有していてよい。リングセグメントは、リングセグメントの上流側の側面に配置された第1の上流受容通路と、リングセグメントの下流側の側面に配置された第1の下流受容通路とを有していてよい。クリアランス調整バンドの上流縁部は第1の上流受容通路内に入れられていてよく、クリアランス調整バンドの下流縁部は第1の下流受容通路内に入れられていてよい。第1の上流受容通路は、上流支持面と上流外側包囲面とから形成されていてよい。第1の下流受容通路は、下流支持面と下流外側包囲面とから形成されていてよい。1つ又は複数の上流支持アームが、リングセグメントから半径方向外側に延びていてよく、1つ又は複数の下流支持アームが、リングセグメントから半径方向外側に延びていてよい。上流支持アームは第1の上流受容通路を内蔵していてよく、下流支持アームは第1の下流受容通路を内蔵していてよい。
【0007】
少なくとも1つの実施形態では、クリアランス調整バンドは、上半部と下半部とから形成されていてよい。クリアランス調整バンドの上半部と下半部とは、水平に配置された第1ジョイント部における第1交点で共に結合されていてよく、且つ水平に配置された第2ジョイント部における第2交点で共に結合されていてよい。第1ジョイント部と第2ジョイント部のいずれか、又はその両方は、第1ジョイント結合ブロックに設けられた開口と、第2ジョイント結合ブロックに設けられた開口とを貫通して延びる1つ又は複数のロックピンを介して共に結合されていてよい。
【0008】
クリアランス調整システムは、クリアランス調整バンドから半径方向外側に延びる運動リミッタを有していてもよい。運動リミッタは、クリアランス調整バンドから半径方向外側に延びる1つ又は複数のピンから形成されていてよく、この場合、ピンのヘッドは比較的大きな横断面積を有していて、ピンのボデーから半径方向外側に配置されており、且つ隣接するタービン構成要素に支持面で以て固定されている。少なくとも1つの実施形態では、運動リミッタは、少なくとも1つのクリアランス調整バンドの上半部を固定するための上部運動リミッタと、少なくとも1つのクリアランス調整バンドの下半部を固定するための下部運動リミッタとを有していてよい。
【0009】
使用中、タービンは過渡的な始動状態を経て定常状態運転にもたらされてよい。運転中、クリアランス調整バンドはリングセグメントの半径方向移動を制限し、過渡的な始動状態の最中には一点においてギャップが最小になる狭窄点を有していない。その代わりに、最小ギャップは定常状態運転の最中に生じる。少なくとも1つの実施形態では、クリアランス調整システムのクリアランス調整バンドは、タービンブレードチップと半径方向外側のリングセグメントとの間のギャップを調節し、定常状態運転では実質的に消失させてゼロにするように構成可能であり、完全に消失させないと、ギャップの消失手段を介してギャップを通じた高温燃焼ガスの漏れが生じることになる。ギャップを通じた高温燃焼ガスの漏れを解消することにより、タービンアセンブリ及びガスタービンエンジンの効率が高められる。
【0010】
以下に、上記の実施形態及び別の実施形態をより詳細に説明する。
【0011】
本明細書に組み込まれてその一部を成す添付図面は、開示された本発明の実施形態を図示するものであり、詳細な説明と共に本発明の原理を開示するものである。
【図面の簡単な説明】
【0012】
【
図1】タービンブレードチップクリアランス調整システムを備えたガスタービンエンジンの斜視断面図である。
【
図2】タービンブレードチップクリアランス調整システムのクリアランス調整バンドの斜視図である。
【
図3】ガスタービンエンジンのタービンアセンブリのリングセグメントの斜視図であり、リングセグメントは、部分的にクリアランス調整バンドを入れるように適合されている。
【
図4】タービンアセンブリのリングセグメントを、クリアランス調整バンドと共に示す斜視図である。
【
図5】
図2に線5−5で詳細に示した部分における、クリアランス調整バンドを形成する上半部と下半部との結合部を詳細に示す斜視図である。
【
図6】
図5に示した、クリアランス調整バンドを形成する上半部と下半部との結合部の分解図である。
【
図7】
図5に示した、クリアランス調整バンドを形成する上半部と下半部との結合部を受容するためのポケットを備えたタービン構成要素の部分斜視図である。
【
図8】
図5及び
図7に示した、タービン構成要素のポケット内に配置された、クリアランス調整バンドを形成する下半部の結合部の部分斜視図である。
【
図9】
図5及び
図7に示した、タービン構成要素のポケット内に配置された、クリアランス調整バンドを形成する上半部の結合部の部分斜視図である。
【
図10】クリアランス調整バンドから半径方向外側に延在している運動リミッタの部分斜視図である。
【
図11】タービンエンジンの過渡的な始動及び遮断中に楕円形のリングセグメント形状が形成されることを防止するためにリングセグメントを半径方向外側に付勢する、複数の側方波形ばねの部分斜視図である。
【
図12】タービンエンジンの過渡的な始動及び遮断中に楕円形のリングセグメント形状が形成されることを防止するためにリングセグメントを半径方向外側に付勢する、複数の側方波形ばねの別の部分斜視図である。
【
図13】ブレードとリングセグメントが、タービンエンジンの始動プロセス中の熱成長に反応したときの、タービンブレードチップと、タービンブレードチップのすぐ外側のリングセグメントの内面との間のクリアランスを示すグラフである。
【発明を実施するための形態】
【0013】
図1〜
図13に示すように、複数のタービンブレードチップ16と複数の半径方向外側のリングセグメント18との間のギャップ14を縮小することによりタービンエンジン10の効率を高めるためのタービンブレードチップクリアランス調整システム12を有するガスタービンエンジン10が開示されている。タービンブレードチップクリアランス調整システム12は、1つ又は複数のクリアランス調整バンド20を有していてよく、クリアランス調整バンド20は、リングセグメント18の内面22の半径方向外側に配置されており且つリングセグメント18の半径方向移動を制限するために、リングセグメント18の少なくとも1つの外面24に支持されている。運転中、クリアランス調整バンド20はリングセグメント18の半径方向移動を制限し、過渡的な始動状態の最中には狭窄点を有していない。更に、タービンエンジン運転中の最小ギャップ14は、
図13に示すようにガスタービンエンジン10の定常状態運転において見られる。よって、クリアランス調整システム12のクリアランス調整バンド20は、タービンブレードチップ16と半径方向外側のリングセグメント18との間のギャップ14を調節し、定常状態運転では実質的に消失させてゼロにするように構成されていてよく、完全に消失させないと、ギャップ14の消失手段を介してギャップ14を通じた高温燃焼ガスの漏れが生じることになる。
【0014】
少なくとも1つの実施形態では、
図1及び
図4に示すように、ガスタービンエンジン10は、タービンアセンブリ26から形成されていてよく、タービンアセンブリ26は、1つ又は複数のタービンブレード30を有するロータアセンブリ28から形成されており、タービンブレード30は、概して細長い()翼32から形成されており、翼32は、前縁34と、後縁36と、圧力側38と、吸込み側40と、第1端部42のチップ16と、第1端部42とは反対の側の、概して細長い翼32の第2端部46に結合されたプラットホーム44とを有している。複数のリングセグメント18が、タービンブレード30のチップ16から半径方向外側に配置されていてよい。複数のリングセグメント18は、周方向に延びる列48に整列させられて、タービンブレード30の移動経路50の周りに1つのリングを形成していてよい。各リングセグメント18は、タービンアセンブリ26内の高温ガス通路52の一部を形成する内面22を有していてよい。
【0015】
ガスタービンエンジン10は、1つ又は複数のクリアランス調整バンド20を有していてよく、クリアランス調整バンド20は、
図3及び
図4に示すように、リングセグメント18の内面22の半径方向外側に配置され、且つリングセグメント18の1つ又は複数の外面24に支持されて、リングセグメント18の半径方向移動を制限している。
図2に示すように、クリアランス調整バンド20は、リングセグメント18の内面22の半径方向外側にリングを形成していてよい。少なくとも1つの実施形態では、クリアランス調整バンド20は、1つ又は複数のリングセグメント18を形成している材料の熱膨張率とは異なる熱膨張率を有していてよい。少なくとも1つの実施形態では、クリアランス調整バンド20は、1つ又は複数のリングセグメント18を形成している材料よりも低い熱膨張率を有していてよい。少なくとも1つの実施形態では、クリアランス調整バンド20は、限定はされないがIN909と別の適当な材料とを含む複数の材料から形成されていてよい。クリアランス調整バンド20は、1.5インチ未満の厚さを有する薄いストリップから形成されていてよい。別の実施形態では、クリアランス調整バンド20は、0.5インチ未満の厚さを有する薄いストリップから形成されていてよい。更に別の実施形態では、クリアランス調整バンド20は、0.125インチ未満の厚さを有する薄いストリップから形成されていてよい。クリアランス調整バンド20の軸方向の幅は、約40ミリメートル〜約200ミリメートルであってよい。少なくとも1つの実施形態では、クリアランス調整バンド20の軸方向の幅は、約90ミリメートルであってよい。クリアランス調整バンド20の幅:厚さの比は、限定はされないが、約5:1〜約300:1であってよい。
【0016】
図3及び
図4に示したように、複数のリングセグメント18は、クリアランス調整バンド20を係合させるように構成された上流支持面54と下流支持面56とを有していてよい。1つ又は複数のリングセグメント18は、リングセグメント18の上流側の側面60に配置された第1の上流受容通路58と、リングセグメント18の下流側の側面64に配置された第1の下流受容通路62とを有していてよい。クリアランス調整バンド20の上流縁部66は第1の上流受容通路58内に入れられていてよく、クリアランス調整バンド20の下流縁部68は第1の下流受容通路62内に入れられていてよい。第1の上流受容通路58は、上流支持面54と上流外側包囲面72とから形成されていてよい。第1の下流受容通路62は、下流支持面56と下流外側包囲面76とから形成されていてよい。クリアランス調整システム12は、1つ又は複数のリングセグメント18から半径方向外側に延びる1つ又は複数の上流支持アーム78と、1つ又は複数のリングセグメント18から半径方向外側に延びる1つ又は複数の下流支持アーム80とを有していてよい。上流支持アーム78は第1の上流受容通路58を内蔵していてよく、下流支持アーム80は第1の下流受容通路62を内蔵していてよい。
【0017】
少なくとも1つの実施形態では、
図2に示したように、クリアランス調整バンド20は、上半部82と下半部84とから形成されていてよい。
図2、
図5及び
図6に示すように、クリアランス調整バンド20の上半部82と下半部84とは、水平に配置された第1ジョイント部88における第1交点86で共に結合されていてよく、且つ水平に配置された第2ジョイント部92における第2交点90で共に結合されていてよい。第1ジョイント部88と第2ジョイント部92のいずれか、又はその両方は、第1ジョイント結合ブロック98に設けられた開口96と、第2ジョイント結合ブロック100に設けられた開口96とを貫通して延びる1つ又は複数のロックピン94を介して共に結合されていてよい。
図7〜
図9に示すように、第1ジョイント結合ブロック98は、リングセグメント18とクリアランス調整バンド20の半径方向外側に配置されたタービン構成要素104のポケット102内に配置されていてよい。ポケット102は、第1ジョイント結合ブロック98の周方向移動を防止することができる。同様に、第2ジョイント結合ブロック100も、リングセグメント18とクリアランス調整バンド20の半径方向外側に配置されたタービン構成要素104のポケット102内に配置されていてよい。ポケット102は、第2ジョイント結合ブロック100の周方向移動を防止する。
【0018】
図2及び
図10に示すように、クリアランス調整システム12は、クリアランス調整バンド20から半径方向外側に延びる運動リミッタ106を有していてもよい。運動リミッタ106は、クリアランス調整バンド20から半径方向外側に延びる1つ又は複数のピン108から形成されていてよい。ピン108のヘッド110は、ピンのボデー112よりも大きな横断面積を有していてよく、ボデー112から半径方向外側に配置されていてよい。ヘッド110は、隣接するタービン構成要素116に支持面114で以て固定されていてよい。運動リミッタ106は、クリアランス調整バンド20の上半部82を固定するための上部運動リミッタ118と、クリアランス調整バンド20の下半部84を固定するための下部運動リミッタ120とを有していてよい。上部運動リミッタ118は上死点位置122に配置されていてよく、下部運動リミッタ120は下死点位置124に配置されていてよい。
【0019】
図11及び
図12に示すように、クリアランス調整システム12は、1つ又は複数の側方波形ばね(side wave spring)126を有していてもよく、側方波形ばね126は、タービンエンジン10の過渡的な始動及び遮断中に楕円形のリングセグメント形状が形成されることを避けるために、リングセグメント18を半径方向外側に付勢していてよい。側方波形ばね126は、生じ得る流路振動に対する減衰部材に用いられてもよい。少なくとも1つの実施形態では、側方波形ばね126は、タービンベーンキャリア130の半径方向外向きの面128と、リングセグメント18の半径方向内向きの面132との間に配置されていてよい。側方波形ばね126は、リングセグメント18の上流側又は下流側、或いはその両方に配置されていてよい。少なくとも1つの実施形態では、複数の側方波形ばね126が、リングセグメント18の上流側と下流側とに配置されていてよい。
【0020】
使用中、タービン10は過渡的な始動状態を経て定常状態運転にもたらされてよい。運転中、クリアランス調整バンド20はリングセグメント18の半径方向移動を制限し、
図13に示すように、過渡的な始動状態の最中には一点においてギャップ14が最小になる狭窄点を有していない。その代わりに、最小ギャップ14は定常状態運転の最中に生じている。少なくとも1つの実施形態では、クリアランス調整システム12のクリアランス調整バンド20は、タービンブレードチップ16と半径方向外側のリングセグメント18との間のギャップ14を調節し、定常状態運転では実質的に消失させてゼロにするように構成されていてよく、完全に消失させないと、ギャップ14の消失手段を介してギャップ14を通じた高温燃焼ガスの漏れが生じることになる。ギャップ14を通じた高温燃焼ガスの漏れを解消することにより、タービンアセンブリ26及びガスタービンエンジン10の効率が高められる。
【0021】
上述した記載は、本発明の実施形態の図示、説明及び描写の目的のために提供されたものである。上記の各実施形態に対する変更及び適合は、当業者には明らかであり、本発明の範囲又は意図から逸脱することなく行われてよい。