【実施例9】
【0058】
登録商標セルガード3401界面活性剤被覆単層ポリプロピレン微多孔質膜はジメチルアセトアミド(DMAc)を溶媒としてポリベンゾイミダゾール(PBI)(ロックヒル、SCのPBI Performance productsから26%ドープとして入手可能)の15%溶液で両面を電界紡糸被覆した。被覆プロセスは、適用電圧は15kV、流れ速度が0.5ml/h、針のゲージは7“ID,.025”ODであり、針の先端と収集板の距離は25cmであるノズル型電界紡糸装置を使用した。被覆試料の合計厚さは55μmである。
【0059】
【表3】
【0060】
【表4】
【0061】
試験方法
厚み:厚みは、ASTM D374に従ってEmveco Microgage 210―A精密マイクロメータを使用して計量される。厚み値は、マイクロメートル(μm)を単位で報告される。
ガーリー:ガーリーは、日本工業規格(JISガーリー)として定義されて、OHKEN透過性検査器を使用して評価される。JISガーリーは、100ccの空気が4.9インチの水圧で1平方インチのフィルムを通過することを必要とする秒単位の時間として定義される。
【0062】
張力の特性:Machine Direction(MD)およびTransverse
Direction(TD)抗張力はASTM―882手順に従ってInstron Model 4201を使用して測定される。
穴強さ:穴強さは、ASTM D3763に基づいてInstron Model 4442を使用して計量される。測定は微小孔構造引っ張られた製品の幅全体になされる、そして、平均穴強さは試験試料に穴をあけるに必要とする力として定義される。収縮:収縮は、120℃で1時間オーブンのサンプルを配置して、1時間の130℃でオーブンの第2のサンプルを配置することによって、2つの温度で測定される。収縮は、Machine Direction(MD)およびTransverse Direction(TD)において測定された。
【0063】
基礎重量:基礎重量はASTM D3776を使用して決定され、単位はmg/cm
2である。
ホット・チップ・ホール伝達試験:ホット・チップ・ホール伝播試験において、0.5mmの先端直径を有する450℃の温度のホット・チップ・プローブが、セパレータ膜の表面に接触する。ホット・チップ・プローブは、10mm/分の速度で膜に接近して、10秒の時間セパレータ膜の表面と接触することができる。ホット・チップ試験の結果は、450℃のホット・チップ・プローブに対するセパレータ膜の応答の結果として形成された穴の形およびホット・チップ・プローブが除去された後のセパレータ膜の穴の直径示す光学顕微鏡写真を伴って撮影されたデジタル画像として提示される。ホット・チップ・プローブとの接触から得られるセパレータ膜の穴の最小の伝播は、Li−イオン電池の内部ショートの過程で生じる局地的なホットスポットに対するセパレータ膜の望ましい応答をシミュレーションする。ER(電気抵抗):電気抵抗の単位はオーム―cm
2である。セパレータ抵抗は、完成した材料からセパレータの小さい部分を切り取り、2つのブロック電極の間に配置することによって特徴づけられる。セパレータは、EC/EMC溶媒中1.0のMのLiPF
6塩を体積比率3:7で有する電池電解液で飽和する。オーム(Ω)で表されるセパレータの抵抗、Rは、4―プローブACインピーダンス法で測定される。電極/セパレータ・インタフェース上の測定エラーを減らすために、より多くの層を加えることによって複数の測定結果が必要である。次いで、複数の層の測定値に基づいて、電解液で飽和したセパレータの電気抵抗、Rs(Ω)を式Rs=psl/Aによって算出する。ここで、psはセパレータのイオン抵抗力(Ω−cm)であり、Aは電極面積(cm
2)であり、lはセパレータの厚み(cm)である。比率ps/Aは、傾きps/A=ΔR/Δδによって与えられる複数の層(Δδ)を有するセパレータ抵抗(AR)の変化のために算出される傾きである。
【0064】
eTMA:拡張熱力学分析法は、温度の関数として、X(縦方向)およびY(横方向)方向のロード中で、セパレータ膜の寸法変化を判断する。長さ5〜10mmおよび幅5cmの試料の大きさが、恒常的な1グラムの引張応力の下で、試料をミニ―インストラクション型グリップで保持される。フィルムがその溶融破裂温度に達するまで、5℃/分で温度が上昇される。通常、温度を上げると、直ちに張力下で保たれるセパレータは収縮を示して、伸び始め、最後に破段する。セパレータの収縮は、曲線における急激な低下によって示される。寸法の増加は軟化温度を示し、セパレータが離れて破断する温度は破段温度である。
【0065】
Hot ER:熱電気抵抗(HotElectricalResistance)は温度が線形的に増加する間のセパレータ・フィルムの抵抗の測定値である。インピーダンスとして測定される抵抗の増加は、セパレータ膜の溶融またはシャットダウンのための孔構造の崩壊に対応する。抵抗の低下は、ポリマーの合体のためのセパレータの開口に対応する。すなわち、この現象は「完全性の溶解」中の損失と呼ばれる。セパレータ膜が200℃を超えて電気抵抗の支持された高水準を有するときに、これはセパレータ膜が電極が200℃を超える電池における短絡を防止できることを示している。
【0066】
本発明の少なくとも選択された実施例によれば、高温溶融完全性(HTMI)セパレータとして品質を有するかどうかを見るために、表1および2の上記の試験および/または特性を使用することができる。それが上記の試験にパスする場合、次いで、電池、セルまたはパック中のセパレータが確かに高温溶融完全性(HTMI)セパレータであり、それが好ましくは電極を少なくとも約160℃、好ましくは少なくとも180℃、より好ましくは少なくとも200℃、特に好ましくは少なくとも220℃、さらに好ましくは少なくとも250℃の温度で電極を少なくとも隔離して保つことができるかことを試験することができる。
【0067】
本発明の少なくとも選択された実施例によれば、高温セパレータが表1および2の上記の試験にパスする場合、これはセパレータが高温溶融完全性(HTMI)セパレータであるか、またはその品質を有する良好な指標である。
本発明の少なくとも選択された実施例によれば、セパレータが高温溶融完全性(HTMI)セパレータであるか、またはその品質を有するかを見る良好な指標または最初の試験方法は、次のステップを含む。
1)セパレータについて、上記厚さ、ガーリー、張力、穴強さ、収縮、ホット・チップ、ER、eTMAおよびHotER試験を行い、もしそれをパスする場合、
2)セパレータのセルまたは電池作動を確かめる。
【0068】
少なくとも本発明の選択された実施例によれば、高温セパレータ中に、または、高温溶融完全性(HTMI)被覆、層またはセパレータとしての品質を有するかを見るために、次の方法により、高温ポリマー、充填剤、被覆層、層またはセパレータを計測または試験することができる。
1)高温被覆、層または独立したセパレータのポリマーおよび充填材(充填材があれば)を点検して、それらが各々少なくとも約160℃、好ましくは少なくとも180℃、より好ましくは少なくとも200℃、さらに好ましくは220℃、最も好ましくは少なくとも250℃の融点または浸食温度を有するかどうかを確かめる。
【0069】
2)高温被覆、層または独立したセパレータのポリマーおよび充填材を点検して、それらが各々セパレータ用の意図された電池の電解質に溶解しないことを確かめる。
3)独立したまたは完全なセパレータ(高温コーティングまたは層を含む)の収縮を測定することにより、それが150℃で約15%未満、150℃で好ましくは10%未満、150℃で好ましくは7.5%未満および150℃で最も好ましくは5%未満であることを確かめる。
【0070】
4)高温被覆、層、独立したセパレータおよび完全なセパレータが上記3つの試験をパスした場合、次に、電池、セルまたはパック中の独立したまたは完全セパレータを試験して、それが高融点セパレータまたは高温溶融完全性(HTMI)セパレータであり、それが少なくとも約160℃、好ましくは少なくとも180℃、より好ましくは少なくとも200℃、特に好ましくは少なくとも220℃および最も好ましくは少なくとも250℃の温度で少なくとも電極を隔離して保つことを確かめる。
【0071】
高温被覆、層、独立したセパレータおよび完全セパレータが上記3つの試験をパスする場合、これは独立したまたは完全なセパレータ(高温層を含む)が高融点セパレータまたは高温溶融完全性(HTMI)セパレータであるか、またはその品質を有するための良好な指標であるが、確証には、独立したまたは完全なセパレータは電池、セルまたはパックにおいて試験されなければならない。
【0072】
少なくとも本発明の選択された実施例によれば、高温被覆、層または独立した高温セパレータが使用できるかを見るための良好な指標または最初の試験は、高融点セパレータ、高温溶融完全性(HTMI)被覆、層またはセパレータとして使用できるか、またはその品質を有するとして使用できる。
1)高温被覆、層またはセパレータのポリマーおよび充填材を点検して、それらが各々少なくとも少なくとも180℃、より好ましくは少なくとも200℃、さらに好ましくは220℃、最も好ましくは少なくとも250℃の融点、浸食温度、溶融点、分解温度またはTgを有するかを見る。
【0073】
2)高温被覆、層または独立したセパレータのポリマーおよび充填材を点検して、それらが各々セパレータ用の意図された電池の電解質に溶解しないことを確かめる。
3)独立したまたは完全なセパレータ(高温コーティングまたは層を含む)の収縮を測定することにより、それが150℃で約15%未満、150℃で好ましくは10%未満、150℃で好ましくは7.5%未満および150℃で最も好ましくは5%未満であることを確かめる。
【0074】
高温被覆、層、独立したセパレータおよび完全なセパレータが上記3つの試験をパスした場合、これは独立したセパレータまたは完全なセパレータ(高温層を含む)が高融点セパレータ、あるいは高温溶融完全性(HTMI)被覆、層またはセパレータであり、このセパレータが少なくとも約160℃、好ましくは少なくとも180℃、より好ましくは少なくとも200℃、特に好ましくは少なくとも220℃および最も好ましくは少なくとも250℃の温度で少なくとも電極を隔離して保つことができることの良好な指標または初期試験となる。
【0075】
高温ポリマー被覆または層に充填材または粒子を添加することにより、充填材または粒子との間のすきま又は孔を形成するのを容易にし、コスト等を減らすことができる。しかしながら、高温ポリマー被覆材またはバッチに充填材または粒子を添加することはポリマー処理をより困難にする。このように、処理をより単純にするために、孔を形成するために、充填材または粒子を加えずに、浴槽(
図1を参照)を使用することは、多分に好ましい。
【0076】
HTMIセパレータが電極を短い時間だけ隔離するように保つ必要があるので、本発明の少なくとも特定の実施例によれば、電池制御回路が電池をシャットオフするのに十分長く電極を隔離する、高Tgポリマー、溶解しないポリマーまたは材料、溶解するかまたはゆっくり途切れずに流出するポリマーまたは材料、架橋ポリマーまたは材料、または他の材料、を使用することができる。
【0077】
少なくとも1つの実施例によれば、電池が高い温度に一定時間維持されるとき、高温、好ましくは>160℃、より好ましくは>180℃、陽極および陰極との接触を防止するに必要な寸法および/または構造完全性の高い水準を有する、高融点、好ましくは>160℃、より好ましくは>180℃の融点を有するセパレータが提供される。この実施例において、寸法および/または構造完全性の高い水準を有するセパレータが大きく望まれる。このようなセパレータは高温溶解完全性(HTMI)セパレータと呼ばれる。このセパレータは、高ガラス遷移温度(Tg)ポリマーで被覆された多孔質膜、フィルムまたは基部を含む高融点電池セパレータである。
【0078】
少なくとも1つの実施態様によれば、高Tgを使用して製造される独立した多孔質膜が提供される。この高温、好ましくは>160℃、より好ましくは>180℃、セパレータは、一定時間高温に保持されるとき陽極および陰極との接触を防止するに必要な寸法および/または構造完全性の高い水準を有し、一定時間高温に保持されるとき陽極および陰極との間のシャットダウン、またはイオンの流れを許容する。この実施態様において、寸法および/または構造完全性の高い水準を有することが望ましい。このようなセパレータはシャットダウンを伴うか、伴わない高温溶解完全性(HTMI)セパレータと呼ばれる。このセパレータは、好ましくは溶融または融化せず、高温で部分的または完全に機能する。
【0079】
少なくとも1つの選択された実施態様は、次のものに関する。
電池が高温度に一定時間維持されるときに、陽極および陰極との接触を好ましくは防止する、高融点微多孔質リチウム―イオン再充電可能電池セパレータ、セパレータ膜など。
電池が高温度に一定時間維持されるときに、陽極および陰極との接触を好ましくは防止する、高融点微多孔質リチウム―イオン再充電可能電池セパレータ、セパレータ膜などの1以上の製造または使用方法。
【0080】
電池が高温度に一定時間維持されるときに、陽極および陰極との接触を好ましくは防止する、高融点微多孔質リチウム―イオン再充電可能電池セパレータ、セパレータ膜を有するリチウム−イオン再充電可能電池。
電池が高温度に一定時間維持されるときに、陽極および陰極との接触を好ましくは防止する、シャットダウン高融点微多孔質リチウム―イオン再充電可能電池セパレータ。
【0081】
電池が高温度の一定時間維持されるときに、陽極および陰極との接触を防止する1以上の高融点セパレータ、セパレータ膜などを含む、リチウム―イオン再充電可能電池、セル、パック、アキュムレータ、コンデンサなどであって、この電池、セル、パック、アキュムレータ、コンデンサなどは円筒状、平坦な、大規模な電気自動車(EV)、プリズム、ボタン、封筒、箱などいかなる形、大きさおよび/構成であってもよい。
【0082】
高温で、例えば、約160℃以上、または約180℃以上で、少なくとも短い時間、すくなくとも部分的に機能するリチウム−イオン再充電可能な電池用のセパレータ、セパレータ膜またはその類似であって、そのような部分的に機能することは、少なくとも短い時間高温で物理的に隔離された電極(陽極および陰極)を維持することである。
高融点セパレータは約130℃でシャットダウンするが、約160℃において電極(陽極および陰極)を物理的に隔離する。
【0083】
高融点を有する少なくとも1つの層または構成要素を含む微多孔質電池セパレータ。
高温、好ましくは>160℃、より好ましくは>180℃の高融点を有し、電池が高い温度に一定時間維持されるとき、陽極および陰極との接触を防止するに必要な寸法および/または構造完全性の高い水準を有する、高融点、好ましくは>160℃、より好ましくは>180℃の融点を有するセパレータ。
【0084】
寸法または構造完全性の高水準を有する高温溶融完全性(HTMI)セパレータ。
少なくとも一面に高ガラス転移温度(Tg)ポリマーまたは混合(結合剤とも呼ばれる)で被覆されている多孔質膜を含んでいる高融点電池セパレータ。
高Tgポリマーまたは混合を使用して製造される独立した(単一または複数)多孔質膜。
【0085】
リチウム―イオン再充電可能電池(細胞、パック、電池、アキュムレータ、コンデンサ、等)において250℃まで物理的構造を保持することができる高融点微多孔質構造リチウム―イオン再充電可能電池セパレータ。
165℃を超え、好ましくは180℃を超え、より好ましくは、少なくとも250℃を超えるガラス転移温度(Tg)を有し、少なくとも一つの適度に揮発性の溶媒に溶解する一つ以上のポリマーから成る上記のセパレータまたは膜。
【0086】
上のセパレータまたは膜は、片面または両面に高Tgポリマーが塗布された微多孔質孔構造膜、または、独立の高Tgポリマー微多孔質セパレータまたは膜。熱可塑性ポリマーからなる微多孔質基部膜にTgポリマーが塗布された上記のセパレータまたは膜であり、熱可塑性ポリマーとして、これに限定されないが、ポリエチレン、ポリプロピレン、ポリメチルペンテンおよび混合のようなポリオレフィン、混合物またはそれらの組み合わせが挙げられる。
【0087】
微多孔質基部膜は、乾燥延伸プロセス(登録商標Celgard乾燥延伸プロセスとして公知の)、湿式プロセス(位相分離または抽出プロセスともいわれる)、粒子延伸プロセス等によって製造される上記セパレータまたは膜。
基部膜が、ポリプロピレン/ポリエチレン/ポリプロピレン(PP/PE/PP)またはポリエチレン/ポリプロピレン/ポリエチレン(PE/PP/PE)、二層膜(PP/PEまたはPE/PP)等のような単一層(一以上の層)または層膜(例えば三層膜例えば)である上記セパレータまたは膜。
【0088】
ポリプロピレンのような基部膜またはフィルムは膜の表面特質を変えるため、および基部膜への高Tgポリマーの密着性を改良するために選択的に前処理されている上記セパレータまたは膜。
前処理としては、これに限定されないが、片面または両面への、印刷、延伸、コロナ処理、プラズマ処理、および/または界面活性剤被覆のような被覆である上記セパレータまたは膜。
【0089】
高Tgポリマーが被覆工程、次いで浸漬工程によって塗布され、高Tg被覆膜はゼラチン浴に浸漬されて高Tgポリマーを沈着させ、高Tg多孔質被覆または層を形成するために高Tgポリマーの溶媒を除去する上記セパレータまたは膜。
高Tgポリマーがポリベンゾイミダゾール(PBI)である上記セパレータまたは膜。
高温被覆または層はポリベンゾイミダゾール(PBI)およびアルミナ蒸気から構成される上記セパレータまたは膜。
【0090】
被覆は、被覆溶液またはPBIスラリー、アルミナ粒子およびDMAcとして塗布される上記セパレータまたは膜。
電池が高温度に一定時間維持されるときに、陽極および陰極との接触を好ましくは防止する、高融点電界紡糸被覆微多孔質リチウム―イオン再充電可能電池セパレータ、セパレータ膜およびその類似物。
【0091】
電池が高温度に一定時間維持されるときに、陽極および陰極との接触を好ましくは防止する、高融点電界紡糸被覆微多孔質リチウム―イオン再充電可能電池セパレータ、セパレータ膜およびその類似物の1またはそれ以上の製造または使用方法。
電池が高温度に一定時間維持されるときに、陽極および陰極との接触を好ましくは防止する、高融点電界紡糸被覆微多孔質リチウム―イオン再充電可能電池セパレータ、セパレータ膜およびその類似物を1またはそれ以上含むリチウム−イオン再充電可能電池。
【0092】
好ましくは高温度で機能する、電界紡糸被覆微多孔質電池セパレータまたはセパレータ膜のような構成要素を好ましくは含むリチウム―イオン再充電可能電池。
電池が高温度に一定時間維持されるときに、陽極および陰極との接触を好ましくは防止する、少なくとも特定の高音の用途、高溶融点電界紡糸被覆微多孔質リチウム―イオン再充電電池セパレータ、セパレータ膜、など、そのようなセパレータ、膜などの製造、試験および/または使用、および/またはそのようなセパレータ、セパレータ膜などを含むリチウムイオン再充電可能電池。
【0093】
高融点電界紡糸被覆微多孔質リチウム―イオン再充電電池セパレータ、セパレータ膜およびその類似物の1またはそれ以上含むリチウムイオン再充電電池、電池、セル、パック、アキュムレータ、コンデンサであり、このようなリチウム−イオン再充電可能電池、セル、パックまたはその類似品は、円筒状、平坦な、角形、大規模な電気自動車(EV)、プリズム、ボタン、封筒、箱および/またはその類似物であってよい。
【0094】
高温で、例えば、約160℃以上、または約180℃以上で、少なくとも短い時間、部分的に機能するリチウム−イオン再充電可能な電池用のセパレータ、セパレータ膜またはその類似であって、そのような部分的に機能することは、少なくとも短い時間高温で物理的に隔離された電極(陽極および陰極)を維持し、前記電極間のイオンの流れを許容すること、または両者である。
【0095】
約130℃でシャットダウンするが、約160℃で物理的に隔離された電極(陽極および陰極)を維持し、約160℃で電極間のイオンの流れを許容する(130℃ではシャットダウンしない)、または両者である。
高温で機能し、高温で溶融せず、高融点を有し、高融点および/またはその類似物を有する電界紡糸被覆微多孔質電池セパレータ。
【0096】
好ましくは>160℃、より好ましくは>180℃の高融点を有し、電池が高い温度に一定時間維持されるとき、陽極および陰極との接触を防止するに必要な寸法および/または構造完全性の高い水準を有する電界紡糸被覆高温セパレータ。
寸法または構造完全性の高水準を有する高温溶融完全性(HTMI)セパレータ。
少なくとも片面にPBIが電界紡糸被覆された高融点微多孔質リチウム−イオン再充電可能電池セパレータまたは膜。
【0097】
単層または二重のPBI電界紡糸被覆された微多孔質基部膜からなる上記電界紡糸被覆セパレータまたは膜。
PBIまたはPBIとポリアラミド、ポリイミド、ポリアミドイミド、フッ化ポリビニリデンおよびフッ化ポリビニリデンのコポリマー、混合、混合物および/またはこれらの組み合わせのようなポリマーとの混合物からなる上記電界紡糸被覆。
【0098】
PBIから構成される上記の電界紡糸被覆は、少なくとも4μmの厚さであり、好ましくは5μmの厚さであり、より好ましくは6μmの厚さであり、最も好ましくは7μmの厚さである。
少なくとも4μmの厚さであり、好ましくは5μmの厚さであり、より好ましくは6μmの厚さであり、最も好ましくは7μmの厚さである、PBIまたはPBIとポリアラミド、ポリイミド、ポリアミドイミド、フッ化ポリビニリデンおよびフッ化ポリビニリデンのコポリマー、混合、混合物および/またはこれらの組み合わせのようなポリマーとの混合物からなる上記電界紡糸被覆。
【0099】
少なくとも2.0〜6.0g/m
2、より好ましくは2.2〜5.0g/m
2、最も好ましくは2.5〜5.0g/m
2を有する、PBIまたはPBIとポリアラミド、ポリイミド、ポリアミドイミド、フッ化ポリビニリデンおよびフッ化ポリビニリデンのコポリマー、混合、混合物および/またはこれらの組み合わせのようなポリマーとの混合物からなる上記電界紡糸被覆。
【0100】
限定はされないが、ポリエチレン、ポリプロピレン、ポリメチルペンテンおよび混合、混合物またはそれらの組み合わせのようなポリオレフィンを含む熱可塑性ポリマーからなる微多孔質基部膜にPBIが電界紡糸被覆された上記セパレータまたは膜。
乾燥延伸プロセス(登録商標Celgard乾燥延伸プロセスとして公知の)、湿式プロセス(位相分離または抽出プロセスともいわれる)、粒子延伸プロセス等によって製造される上記セパレータまたは膜を有する微多孔質基部膜。
【0101】
基部膜が、ポリプロピレン/ポリエチレン/ポリプロピレン(PP/PE/PP)またはポリエチレン/ポリプロピレン/ポリエチレン(PE/PP/PE)のような三層膜、二層膜(PP/PEまたはPE/PP)等のようなポリプロピレンまたはポリエチレン(1以上の層)または多層膜である上記セパレータまたは膜。
ポリプロピレンのような基部膜またはフィルムは膜の表面特質を変えるため、および基部膜への高Tgポリマーの密着性を改良するために選択的に前処理されている上記セパレータまたは膜。
【0102】
前処理としては、これに限定されないが、片面または両面への、印刷、延伸、コロナ処理、プラズマ処理、および/または界面活性剤被覆のような被覆である上記セパレータまたは膜。
本明細書で開示され、提供されるのは、電池が高温度の一定時間維持されるときに、陽極および陰極との接触を防止する高融点微多孔質リチウム−イオン再充電可能電池セパレータ、高溶融点電池セパレータ、電池セパレータ、膜、複合材料、構成要素など、そのようなセパレータ、膜、複合材料、構成要素などの製造、試験および/または使用する方法、および/またはそのようなセパレータ、膜、複合材料などの1つ以上を含むリチウム−イオン再充電可能電池などに関するものである。
【0103】
本発明は、上記の記載または実施例に限定されるものではない。