特許第6404457号(P6404457)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ スイス リインシュランス カンパニー リミテッドの特許一覧

特許6404457災害リスク管理及び資金調達システム、並びにその対応する方法
<>
  • 特許6404457-災害リスク管理及び資金調達システム、並びにその対応する方法 図000006
  • 特許6404457-災害リスク管理及び資金調達システム、並びにその対応する方法 図000007
  • 特許6404457-災害リスク管理及び資金調達システム、並びにその対応する方法 図000008
  • 特許6404457-災害リスク管理及び資金調達システム、並びにその対応する方法 図000009
  • 特許6404457-災害リスク管理及び資金調達システム、並びにその対応する方法 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6404457
(24)【登録日】2018年9月21日
(45)【発行日】2018年10月17日
(54)【発明の名称】災害リスク管理及び資金調達システム、並びにその対応する方法
(51)【国際特許分類】
   G06Q 50/26 20120101AFI20181004BHJP
   G06Q 10/04 20120101ALI20181004BHJP
【FI】
   G06Q50/26
   G06Q10/04
【請求項の数】20
【全頁数】25
(21)【出願番号】特願2017-510665(P2017-510665)
(86)(22)【出願日】2014年8月26日
(65)【公表番号】特表2017-531248(P2017-531248A)
(43)【公表日】2017年10月19日
(86)【国際出願番号】EP2014068042
(87)【国際公開番号】WO2016029929
(87)【国際公開日】20160303
【審査請求日】2017年3月24日
(73)【特許権者】
【識別番号】505095992
【氏名又は名称】スイス リインシュランス カンパニー リミテッド
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【弁理士】
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】バウムガルトナー,ダーフィット
(72)【発明者】
【氏名】ロボ,ニクヒル,ダ ヴィクトリア
(72)【発明者】
【氏名】カール,ブリジット
【審査官】 貝塚 涼
(56)【参考文献】
【文献】 特表2013−517547(JP,A)
【文献】 特開2002−140515(JP,A)
【文献】 米国特許出願公開第2008/0154652(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 − 99/00
(57)【特許請求の範囲】
【請求項1】
場所に依存する自然災害影響予測に基づいた役に立つ、自動的に信号送信される災害軽減及び金融調達手段を備えるシステム(1)による自動化された電子的な自動調節できる管理及び信号送信方法であって、前記システム(1)によって、履歴災害事象の測定パラメータが自然災害事象の影響を決定するために捕捉され、次いで自然災害事象のパラメータの臨界値が、地理的地域(501、...、531)の中での災害事象の前記影響の予測を生成するためにトリガとして使用され、リスクにさらされた国(501、...531)の各国特有のパラメータ(1211、1212、1213)が、記憶されている所定の基準(1221、1222、1223)に関して捕捉され、
前記システム(1)によって、1つ又は複数の災害事象タイプ(101)が災害履歴表(10)に割り当てられ、各災害事象タイプ(101)が履歴自然災害事象の複数のタイプに特有の測定パラメータ、及び自然災害事象タイプ(101)ごとに対応する損害発生頻度関数(103)を提供する関連付けられたタイプに特有の損害発生頻度関数パラメータ(102)を備え、損失の予想超過頻度に対する規模が、国の前記リスクの評価によって提供され、多様な災害事象タイプ(101)のそれぞれによって国の脅威を定量化する前記損害発生頻度関数(103)によってパラメータ化され、前記予想超過頻度が、事象又は損失が任意の所与の時間枠で所与の規模を満たす又は超える年間確率の基準であり、
前記システム(1)が地理的リスクマップ(20)を捕捉し、記憶するためのマッピングパラメータ(201)を備え、前記自然災害事象タイプ(101)のそれぞれについて、特定の自然災害事象タイプ(101)の危険ゾーンを定める対応するマッピングパラメータ(21)が捕捉され、記憶され、前記地理的リスクマップ20)が異なる危難のための前記地理的リスクマップ20によって作り上げられ、
前記危難を捕捉する前記損害発生頻度関数(103)が、前記記憶されている自然災害事象タイプ(101)を備える各国特有災害履歴表(10)に基づいて前記地理的リスクマップ(20)の前記対応するマッピングパラメータ(2011、2012、2013、2014)とともに生成され、
前記システム(1)が災害軽減及び金融調達手段(30)の複数の災害金融調達手段を選択し、前記災害軽減及び金融調達手段(30)の選択可能な災害軽減手段のそれぞれが、前記災害金融調達手段の資本費用を災害軽減のためのその適用に関して捕捉する定義可能な原価要素(301、302、303)に割り当てられ、前記選択可能な災害金融調達手段のそれぞれについて、可変予算シェア係数(411、412、413)が、壊滅的な災害事象の場合に損失を埋め合わせる範囲を定めるカバレージ構造(401)を定義する割当てモジュール(40)によって割当て可能であり且つ適応可能であり、
前記システム(1)によって、予想大災害損失が前記損害発生頻度関数(103)によって決定され、発生する自然災害事象タイプ(101)の多様なシナリオ及びこれらの損失を埋め合わせるための前記災害金融調達手段の効果の予測のための前記地理的リスクマップ(20)は、(i)前記カバレージ構造(401)、前記割り当てられた原価要素(301)、及び前記決定された予想大災害損失に関連するデータ、及び(ii)地理的マップに関する第2のデータが前記システム(1)によって読み込まれ、前記システム(1)によって前記データ及び第2のデータが互いに関連付けられて生成され、
前記システム(1)によって、前記カバレージ構造(401)が、金銭的脆弱さ及びリスクを削減することに対する効果が評価された後に第2のデータに対して前記データを連続的に変更することによって適応され、モンテカルロモジュール(80)によって及び前記カバレージ構造(40)の前記割り当てられ、連続的に変更される可変予算シェア係数(410、411、412、413)に基づいて、変えられた予算シェア係数(410、411、412、413)を有するカバレージ構造401)を備える複数のデータレコードが生成され、前記カバレージ構造(401)における前記割り当てられた予算シェア係数(410、411、412、413)が、発生する自然災害事象タイプ(101)の多様なシナリオのための前記災害金融調達手段の効果に基づいて前記システムのコアエンジン(2)によって最適化され、
前記割当てモジュール(40)が信号送信装置(92)を備え、前記選択可能な災害金融調達手段が信号伝送によって前記割り当てられた予算シェア係数(410、411、412、413)に基づいて起動され、前記信号送信装置(92)が、最適化された割り当てられた予算シェア係数を有する最適化されたカバレージ構造(401)のトリガ時に、前記自動化された災害リスク管理を提供するために前記信号伝送によって前記割り当てられた予算シェア係数(410、411、412、413)に基づいて前記選択可能な災害金融調達手段を起動する、
方法。
【請求項2】
第1の災害軽減手段が、1に設定された割り当てられた原価要素を備える偶発損失積立金ユニット(311)に関連付けられ、第2の選択可能な災害軽減手段が、定義可能な信用状態パラメータに応じて割り当てられた原価要素を備える条件払い負債機能ユニット(312)に関連付けられ、第3の選択可能な災害軽減手段が現行市場ベンチマークに基づいた係数に設定される割り当てられた原価要素を備える保険機能ユニット(313)に関連付けられる、請求項1に記載の方法。
【請求項3】
前記記憶されている自然災害事象タイプ(101)を備える前記災害履歴表(10)に基づいて、ハリケーン(1031)、洪水(1032)、地震(1033)、及び干ばつ(1034)の危難を捕捉する少なくとも4つの損害発生頻度関数(103)が、前記地理的リスクマップ(20、2001、2002、2003、2004)の前記対応するマッピングパラメータ(2011、2012、2013、2014)とともに生成される、請求項1又は2に記載の方法。
【請求項4】
前記システム(1)が、人口(1221)及び/又は人口動態(1222)及び/又は国内総生産(1223)及び/又は主権予算(1224)及び/又はインフレ率(1225)及び/又は経済構造(1226)及び/又は輸出入額(1227)に関係する各国特有のパラメータ(122)のために少なくとも各国に特有の所定の基準(1211、1212、1213)を備える、請求項1から3の1項に記載の方法。
【請求項5】
前記予想大災害損失が、前記損害発生頻度関数(103)の数値積分法によって決定される、請求項1から4の1項に記載の方法。
【請求項6】
前記システム(1)が、特定の事前金融調達方式のための選ばれたカバレージ構造(401)の効果の最終試験として確率多年シミュレーションのために確率モンテカルロ損失シミュレーションを生成するためのMonteCarloモジュール(60)をさらに備える、請求項1から5の1項に記載の方法。
【請求項7】
前記MoteCarloモジュール(60)が確率30年シミュレーションのために前記確率モンテカルロ損失シミュレーションを生成する、請求項6に記載の方法。
【請求項8】
ユーザインタフェース(90)によって選択可能な第1のチャネル(901)で、第1の予算シェア係数(411)が決定され、前記対応する第1の災害軽減手段(301)に割り当てられ、ユーザインタフェース(90)によって選択可能な第2のチャネル(902)で、第2の予算シェア係数(412)が決定され、前記対応する第2の災害軽減手段(302)に割り当てられ、ユーザインタフェース(90)によって選択可能な第3のチャネル(903)で、第3の予算シェア係数(413)が決定され、前記対応する第3の災害軽減手段(303)に割り当てられる、請求項1から7の1項に記載の方法。
【請求項9】
前記カバレージ構造(401)の前記予算シェア係数(411、412、413)が、前記災害軽減手段の前記効果を最適化して考えられる損失を埋め合わせるために前記ユーザインタフェース(90)によって変えられる、請求項8に記載の方法。
【請求項10】
前記割当てモジュール(40)が起動装置(11)を備え、該起動装置によって、前記割り当てられた予算シェア係数(411、412、413)を有する前記生成されたカバレージ構造(401)に基づいて、対応する制御信号が監視装置(91)に送信される、請求項1から9の1項に記載の方法。
【請求項11】
場所に依存する自然災害影響予測に基づいた役に立つ、自動的に信号送信される災害軽減及び金融調達手段を備える自動化され、電子的な自動調節できる災害管理及び信号送信システム(1)であって、該システム(1)によって、履歴災害事象の測定パラメータが自然災害事象の影響を決定するために捕捉され、自然災害事象のパラメータの臨界値が地理的地域(501、...、531)の中での災害事象の前記影響の予測を生成するためのトリガとして使用され、リスクにさらされた国(501、...531)の各国特有のパラメータ(1211、1212、1213)が、記憶されている所定の基準(1221、1222、1223)に関して捕捉され、
前記システム(1)によって、1つ又は複数の災害事象タイプ(101)が災害履歴表(10)に割り当てられ、各災害事象タイプ(101)が履歴自然災害事象の複数のタイプに特有の測定パラメータ、及び自然災害事象タイプ(101)ごとに対応する損害発生頻度関数(103)を提供する関連付けられたタイプに特有の損害発生頻度関数パラメータ(102)を備え、損失の予想超過頻度に対する規模が、国の前記リスクの評価によって提供され、多様な災害事象タイプ(101)のそれぞれによって国の脅威を定量化する前記損害発生頻度関数(103)によってパラメータ化可能であり、前記予想超過頻度が、事象又は損失が任意の所与の時間枠で所与の規模を満たす又は超える年間確率の基準であり、
前記システム(1)が地理的リスクマップ(20)を捕捉し、記憶するためのマッピングパラメータ(201)を備え、前記自然災害事象タイプ(101)のそれぞれについて、特定の自然災害事象タイプ(101)の危険ゾーンを定める対応するマッピングパラメータ(21)が捕捉され、記憶され、前記地理的リスクマップ20)が異なる危難のための前記地理的リスクマップ20によって作り上げられ、
前記危難を捕捉する前記損害発生頻度関数(103)が、前記記憶されている自然災害事象タイプ(101)を備える各国特有災害履歴表(10)に基づいて前記地理的リスクマップ(20)の前記対応するマッピングパラメータ(2011、2012、2013、2014)とともに生成され、
前記システム(1)が災害軽減及び金融調達手段(30)の複数の災害金融調達手段を選択自在に備え、前記災害軽減及び金融調達手段(30)の選択可能な災害軽減手段のそれぞれが、前記災害金融調達手段の資本費用を、災害軽減のためのその適用に関して捕捉する定義可能な原価要素(301、302、303)に割り当てられ、前記選択可能な災害金融調達手段のそれぞれについて、可変予算シェア係数(411、412、413)が、壊滅的な災害事象の場合に損失を埋め合わせる範囲を定めるカバレージ構造(401)を定義する割当てモジュール(40)によって割当て可能であり且つ適応可能であり、
前記システム(1)によって、予想大災害損失が前記損害発生頻度関数(103)によって決定され、発生する自然災害事象タイプ(101)の多様なシナリオ及びこれらの損失を埋め合わせるための前記災害金融調達手段の効果の予測のための前記地理的リスクマップ(20)は、(i)前記カバレージ構造(401)、前記割り当てられた原価要素(301)、及び前記決定された予想大災害損失に関連するデータ、及び(ii)地理的マップに関する第2のデータが前記システム(1)によって読み込まれ、前記システム(1)によって前記データ及び第2のデータが互いに関連付けられて生成され、
前記システム(1)によって、前記カバレージ構造(401)が、金銭的脆弱さ及びリスクを削減することに対する影響が評価された後に第2のデータに対して前記データを連続的に変更することによって適応され、モンテカルロモジュール(80)によって及び前記カバレージ構造(40)の前記割り当てられ、連続的に変更される可変予算シェア係数(410、411、412、413)に基づいて、変えられた予算シェア係数(410、411、412、413)を有するカバレージ構造401)を備える複数のデータレコードが生成され、前記カバレージ構造(401)における前記割り当てられた予算シェア係数(410、411、412、413)が、発生する自然災害事象タイプ(101)の多様なシナリオのための前記災害金融調達手段の効果に基づいて前記システムのコアエンジンによって最適化され、
前記割当てモジュール(40)が信号送信装置(92)を備え、前記選択可能な災害金融調達手段が信号伝送によって前記割り当てられた予算シェア係数(410、411、412、413)に基づいて起動され、前記信号送信装置(92)が、最適化された割り当てられた予算シェア係数を有する最適化されたカバレージ構造(401)のトリガ時に、前記自動化された災害リスク管理を提供するために前記信号伝送によって前記割り当てられた予算シェア係数(410、411、412、413)に基づいて前記選択可能な災害金融調達手段を起動する、
システム(1)。
【請求項12】
第1の災害軽減手段が、1に設定された割り当てられた原価要素を備える偶発損失積立金ユニット(311)に関連付けられ、第2の選択可能な災害軽減手段が、定義可能な信用状態パラメータに応じて割り当てられた原価要素を備える条件払い負債機能ユニット(312)に関連付けられ、第3の選択可能な災害軽減手段が現行市場ベンチマークに基づいた係数に設定される割り当てられた原価要素を備える保険機能ユニット(313)に関連付けられる、請求項11に記載のシステム(1)。
【請求項13】
前記記憶されている自然災害事象タイプ(101)を備える前記災害履歴表(10)に基づいて、ハリケーン(1031)、洪水(1032)、地震(1033)、及び干ばつ(1034)の危難を捕捉する少なくとも4つの損害発生頻度関数(103)が、前記地理的リスクマップ(20、2001、2002、2003、2004)の前記対応するマッピングパラメータ(2011、2012、2013、2014)とともに生成される、請求項11又は12に記載のシステム(1)。
【請求項14】
前記システム(1)が、人口(1221)及び/又は人口動態(1222)及び/又は国内総生産(1223)及び/又は主権予算(1224)及び/又はインフレ率(1225)及び/又は経済構造(1226)及び/又は輸出入額(1227)に関係する各国特有のパラメータ(122)のために少なくとも各国に特有の所定の基準(1211、1212、1213)を備える、請求項11から13の1項に記載のシステム(1)。
【請求項15】
前記予想大災害損失が、前記損害発生頻度関数(103)の数値積分法によって決定される、請求項11から14の1項に記載のシステム(1)。
【請求項16】
前記システム(1)が、特定の事前金融調達方式のための選ばれたカバレージ構造(401)の効果の最終試験として確率多年シミュレーションのために確率モンテカルロ損失シミュレーションを生成するためのMonteCarloモジュール(60)をさらに備える、請求項11から15の1項に記載のシステム(1)。
【請求項17】
前記MonteCarloモジュール(60)が確率30年シミュレーションのために前記確率モンテカルロ損失シミュレーションを生成する、請求項16に記載のシステム(1)。
【請求項18】
ユーザインタフェース(90)によって選択可能な第1のチャネル(901)で、第1の予算シェア係数(411)が決定され、前記対応する第1の災害軽減手段(301)に割り当てられ、ユーザインタフェース(90)によって選択可能な第2のチャネル(902)で、第2の予算シェア係数(412)が決定され、前記対応する第2の災害軽減手段(302)に割り当てられ、ユーザインタフェース(90)によって選択可能な第3のチャネル(903)で、第3の予算シェア係数(413)が決定され、前記対応する第3の災害軽減手段(303)に割り当てられる、請求項11から17の1項に記載のシステム(1)。
【請求項19】
前記カバレージ構造(401)の前記予算シェア係数(411、412、413)が、前記災害軽減手段の前記効果を最適化して考えられる損失を埋め合わせるために前記ユーザインタフェース(90)によって変えられる、請求項18に記載のシステム(1)。
【請求項20】
前記割当てモジュール(40)が起動装置(11)を備え、該起動装置によって、前記割り当てられた予算シェア係数(411、412、413)を有する前記生成されたカバレージ構造(401)に基づいて、監視装置(91)に対応する制御信号を送信できる、請求項11から19の1項に記載のシステム(1)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、災害軽減の効果を予測するための災害管理及び資金調達システム、並びに場所に依存する自然災害影響に基づいた、自動化された信号送信され、適用される災害資金調達及び軽減手段に関する。本発明は、特に、自動化されたコンピュータベースの災害リスク管理及び資金調達システムに関する。
【背景技術】
【0002】
この10年間の間に、自然災害はいわゆるBRIC諸国(ブラジル、ロシア、インド、及び中国)並びに新興市場国の最大の代表としてのMIKT諸国(メキシコ、インドネシア、韓国、及びトルコ)を含む、おもに発展途上国及び新興市場国の社会経済及び環境の状況に対して壊滅的な影響を与えてきた。例えば、カリブ海では、1970年と2006年の間に毎年平均して6つの自然災害がその地域で発生し、ハイチ及びドミニカ共和国において発生率はより高かった。2004年の活発なハリケーンシーズンには、カリブ海で総計31億米ドルになる損害が生じ、加盟国、特にグレナダの国内総生産(GDP)に壊滅的な影響を与えた(GNPの200パーセント)。同様に、2007年のハリケーンディーンは、ベリーズ、ジャマイカ、及びセントルシアの経済に大きな破壊的な影響を及ぼした。脆弱なコミュニティの47パーセントを含むセントルシアの人口の約14パーセントが影響を受け、ジャマイカの経済及びベリーズの経済にそれぞれ3億2,934万米ドル及び8,910万米ドルに達する損失を与えた。災害疫学研究センター(Centre for Research on the Epidemiology of Disasters)によると、2010年の自然災害による損害は過去の事象についてみられた分布とは異なる分布を示した(出典FAO(国際連合の食糧農業機関)、2013年2月、災害リスク管理のステータス)。世界的な損害(45.9パーセント)の主要な部分は、ハイチの2010年1月12日の地震に起因した。財政上の圧力及び外部圧力が経済危機及び貧困率の上昇に拍車をかける不均衡につながることがあるので、これらの衝撃がマクロ経済レベルでの波及を生じさせる可能性があることは周知である。(出典IMF(国際通貨基金)研究結果報告書WP/04/224)。
【発明の概要】
【発明が解決しようとする課題】
【0003】
係る壊滅的な事象は多くの場合より貧しい国々の経済及び社会生活により重大な害を及ぼすが、先進国でさえ国の経済に対するこれらの事象の破壊的な影響を免れない。総体的に、2013年には、308の主要な災害事象があり、内150は天災であり、158が人災であった(出典シグマ1/2014、SwissRe)。ほぼ26,000人が災害で命を失った、又は行方不明になった。2013年11月、世界中でいままでに記録された最強の台風の1つである台風ハイヤンがフィリピンを襲った。台風ハイヤンにより、約7,500人が死亡し、4百万人以上が家を失った。ハイヤンは2013年最大の人道的な大参事であった。人的損失の観点から次の極致は、約6,000人が死亡したインド、ウッタラーカンドのヒマラヤ山脈の州での6月の洪水であった。図2は、1970年から2013年までの被害者数を示す。参照番号1は1970年のバングラデシュの嵐を示す。2は1976年の中国での唐山地震を示し、3は1991年のバングラデシュのサイクロンゴーキーを示し、4は2004年のインド洋地震及び津波を示し、5は2008年のミャンマーでのサイクロンナルギスを示し、6は2010年のハイチ地震を示し、7は2013年のフィリピンの台風ハイヤンを示す。図2では尺度は対数である。つまり、被害者数は段階ごとに10倍増加する(出典スイス再保険会社)。天災及び人災による総経済的損失は、昨年約1,400億米ドルであった。それは2012年の1,960億米ドルから下がり、1,900億米ドルのインフレ調整後の10年平均をはるかに下回っていた。アジアは、大部分の経済的損失を生んだ太平洋のサイクロンに最も激しく襲われた。残りの大部分は北米及びヨーロッパでの天気事象によって引き起こされた。図1は、1970年から2013年の主要な大惨事の数を示す(出典スイス再保険会社)。2013年の大災害損失はGDPの0.19%に同等で、やはり0.30%の10年平均を下回っていた。天災に関係する損失は2013年には約1,310億米ドルであり、大部分はアジア、北米、及びヨーロッパでの洪水及び他の極端な天気事象が原因であった。人災は、2012年の80億米ドルから上昇し、2013年には1,400億米ドルの損失の内の90億米ドル以上を引き起こしたと推定されている。表1は、GDPのパーセンテージでの2013年の経済的損失を示す。
【表1】
【0004】
ただし、大陸の数は、ある国及びその政府に対して、その国のGDP(国内総生産)の複数の超過額により多大で厳しい影響を及ぼすことがある関係国の個々の負担を示していない。表2は、事象の年の関係国のGDPのパーセンテージでこの40年間の主要な災害を示す。
【表2】
【0005】
カリブ海の上述された例では、災害リスク管理及び資金調達に関係する問題は、農業部門によって容易に示すことができる。農業部門は、サイクロン、洪水、及び干ばつを含んだ異なるタイプのハザードにさらされることがある。この40年を振り返って、生命の損失、影響を受けた人の総数、及び経済的損失に関して上位10の自然災害を決定すると、サイクロンがしばしば人間の生活にとって最大の脅威を呈し、最高の経済的損失を引き起こすことが分かる。また、これは農業部門にも当てはまる。ただし、国によっては、他のハザードの方がより重要な可能性もある(アフリカにとっての干ばつ等)。カリブ海の例では、地域の農業部門は自然災害の結果激しく弱体化され続けている。2004年のハリケーンアイバンは、グレナダの農業部門を台無しにし、3,700万米ドルを超える損失を生じさせた。アイバンはバナナ産業全体及び国の熟したココアの木の約40パーセントを破壊した。ナツメグの木のほぼすべてが倒れ(90パーセント)、地元の田舎の経済に多大なマイナス影響を与えた(出典OECS、2004年、グレナダ‐ハリケーンアイバンにより引き起こされた損害のマクロ社会経済評価)。農業従事者が入手できる平均総年収は、2002年から2004年の間の1,870万米ドルから災害後(2005年から2009年)の190万米ドルに89.9パーセント減少した(出典ITC、2010年7月、欧州連合、全ACP商品計画、WTO(世界貿易機関))。同様に、2007年には、ハリケーンディーンがカリブ海の農業生産性を荒廃させた。ジャマイカは、約4,300万米ドルの損害を報告した。総じて、56,537の耕種農業事業者及び7,170の畜産農家が深刻な影響を受け、小さな農場の間で最大の影響が出た。ベリーズの農業部門は5,400万米ドルの損害及び損失を報告し、損失の大半は作付けの副部門で記録された(90.6パーセント)。セントルシアの農業部門はおおよそ1,000万米ドルの損失を報告し、バナナ産業が部門の全体的な負担の67パーセントを占めた(670万米ドル)。ラテンアメリカ・カリブ経済委員会(ECLAC)は、ハリケーンディーンがセントルシアの将来のバナナ生産に深刻な影響を与えると推測し、2008年の2月までの570万米ドルのバナナの輸出の削減を予測した。さらに、2010年9月にハイチで国際連合の食糧農業機関(FAO)によって実施された穀物及び食糧安保評価ミッションは、過年度に比較すると、穀類(9パーセント分)、豆(20パーセント分)、根菜作物(12パーセント分)、及び料理用バナナ(14パーセント分)の生産の減少を浮き彫りにした。地震はおもに都市の事象であるが、その影響は田舎の農業区域全体で知れ渡った(出典FAO(国際連合の食糧農業機関)、2013年2月、災害リスク管理のステータス)。
【0006】
2009年から2010年のエルニーニョによって誘発されたカリブ海干ばつの事例研究は、地域の農業部門に対する驚くべき影響を報告した(出典FAO(国際連合の食糧農業機関)、2013年2月、災害リスク管理のステータス)。干ばつの影響を軽減するために、膨大な量の財源が政府によって使われた。ガイアナでは、政府が2010年2月に最初の地域で農業従事者に救援物資を届けるために130万米ドルを拠出し、別の地域で日に16,000米ドルを使ってポンプを運転し、水の送達に欠かせない他の作業を実行した。ドミニカのバナナ産業は、2010年に過年度と比較して43パーセントの生産の削減を報告した。同様に、2010年のアンティグア島及びバービュダ島の玉ねぎ及びトマトの収穫高は、水に苦しんでいる状況のためにそれぞれ25パーセント及び30パーセント減少した。セントビンセント及びグレナディーン諸島は期間中の農業生産性の20パーセントの全体的な減少を記録した。また、干ばつの影響は物価にもある程度反映された。セントビンセント及びグレナディーン諸島のトマトの価格は干ばつのピーク時(2010年2月から3月)155パーセント上昇した。トリニダードトバコの中央銀行は、2010年3月の果物の価格の同年の2月に比較して20.1パーセントの上昇を報告した。報告書によると、干ばつによって誘発された野火が2島の共和国の柑橘類農場の多くのエーカーを破壊し、柑橘類の輸入の費用の、2008年の630万米ドルから2010年末までの830万米ドルへの上昇につながった。研究は、関係諸国が干ばつに対する予測システム及び警報システムを組み込むこと、及び関係諸国が干ばつ関係の影響に順応し、干ばつ関係の影響を軽減するための費用効果の高い方針を作成し、実施することが肝要であることを強調した。
【0007】
適切なシステムを通して政府のリスク管理に災害リスク管理(DRM)を統合し、自動化し、同期させ、制御可能で再現可能であり、容易に適用できる監視及びリスク転移/平衡を可能にする緊急の必要性がある。すでに述べたように、多くの国々での天災は穀物及びインフラに大きな損失を引き起こす多大な可能性、景気及びマクロ経済成果にマイナス影響を与える大きな可能性を有し、世界的な規模で経済を不安定化する可能性さえ有している。農業部門の場合、影響は、気候変動及びより小さい発展途上国での変動性の予測される影響、これらの国家固有の脆弱性、及び係る国家の大部分の中程度から高い貧困レベルを鑑みると、なお一層重大である(Baas,Sら、災害リスク管理システム分析2008年を参照)。実際に、多くの災害に関係する損失は、全体的な開発計画の中に軽減、備え、及び対応の仕組みを取り込みながらも、脆弱性の根本的原因に対応するために適切な方針及び軽減の手段が実施されるならば回避する、又は削減することができる。したがって、国家レベルでの農業部門及び他の部門のための部門DRM計画の作成は、天災に対する回復力を増加し、開発への持続可能な道を作るための強力な方針を表す。
【0008】
しかしながら、天災は通常は大きい数字の統計に依存しない稀な事象である。その発生は、長期的には予測が不可能である高い変動にさらされる。ハリケーン、サイクロン、及び台風は、しばしば最高の年間再発率を示す。多くの影響を受けた国々では、これは、20年の期間で毎年0.7事象を超える。ハリケーン、サイクロン、及び台風がすべて同じ気象現象であることに留意されたい。これらの嵐の異なる名称はその場所に特有である。大西洋及び北東太平洋では、用語「ハリケーン」が使用される。北西太平洋での同じタイプの騒乱は「台風」と呼ばれる。一方、「サイクロン」は南太平洋及びインド洋で発生する。本願の場合、該用語は同じ天災現象を説明する同義語として使用される。干ばつ及び洪水は通常あまり再発しない。制限された計画対象期間により、係る数字は多くの場合表示的にすぎず、確率的なリスク評価方式には使用できない、つまり、リスク評価のための先行技術のシステム及び方法は適用できない、又は大きな留保付きでのみ適用できることに留意することが重要である。さらに、壊滅的なリスク事象の結果を軽減するための、及びより回復力のあるガバナンスを提供するための役に立つ可能性があるステップ間の相互作用は、災害事象発生時にそれらが達成する結果から判断して、理解するのは困難である。さらに、可能性のある軽減手段を適用する責任者として詳細な経験を得ることはほぼ不可能である。したがって役に立つ可能性のある手段及びその効果のよりよい理解を提供するためには、国の国家危険担当官(CRO)の役割を引き継ぐ、災害リスク管理(DRM)及び災害リスク資金調達(DRF)のための自動化されたシステムを提供することが重要である。また、地震、ハリケーン、台風、干ばつ、及び/又は洪水等の異なる危難に対して作成された災害戦略を試験するためのシステムを提供することも重要である。システムは、特定の国の国家リスクプロファイルを改善すること、国の現在の基本的なデータに基づいたテストセットを拡大し、改善すること、シミュレーション効果に対する試行を自己分析すること、及び適切な電子自動システムを開発することを可能にする必要がある。
先行技術では、自然災害事象は設置されている計測ステーションによって測定されるのに対し、国際公開広報WO第2011/088891号は自然災害影響予測のための予測システムを開示する。自然災害に関連付けられた特定の地殻構造条件、地形学的条件、又は気象条件のための場所に依存する測定パラメータが決定され、測定パラメータの臨界値が、関心のある地域の中での災害事象の予測される影響のための専用の事象信号を生成するためにトリガされる。
【課題を解決するための手段】
【0009】
本発明の1つの目的は、役に立つ可能性がある手段に対する操作上の調整の影響及びその効果のより良い理解を可能にするための自動化された自動調整できるシステム及び方法を提供することである。本発明の別の目的は、国の国家危険担当官の役割を引き継ぐ災害リスク管理のための自動化されたシステムを提供することである。別の重要なタスクは、各国特有の状況で地震、ハリケーン、台風、干ばつ、及び/又は洪水等の異なる危難のために作成された災害戦略を試験するためのシステムを提供することである。システムは特定の国の国家リスクプロファイルを改善すること、国の現在の基本的なデータに基づいてテストセットを拡大し、改善すること、シミュレーション効果に対する試行を自己分析すること、及び適切な電子自動システムを開発することを可能にする必要がある。最後に、システムは、ある特定の国が実際にさらされる自然危機に対する災害リスク管理及びその戦略を生成し、国の時間的、位相的、地理的、社会的及び人口の構造を結びつける可能性を提供する必要がある。
【0010】
本発明に従って、これらの目的は、特に、独立請求項の特徴によって達成される。さらに、追加の有利な実施形態は従属請求項及び関係する説明から引き出すことができる。
【0011】
場所に依存する自然災害影響に基づいて災害軽減及び資金調達の手段の影響を予測するための災害リスク管理システム及び災害リスク資金調達システムに関係する上述された目的は、歴史的な災害事象の測定パラメータが、自然災害事象の影響を決定するために捕捉され、自然災害事象のパラメータの臨界値が地理的地域の中での災害事象の影響の予測を生成するためにトリガとして使用される点、リスクにさらされる国の各国特有のパラメータが、記憶されている所定の基準に関して捕捉され、各国特有のパラメータが少なくとも国家経済パラメータ及び国家予算パラメータを含む点、1つ又は複数の災害事象タイプが災害履歴表に割り当てられ、各災害事象タイプが、履歴自然災害事象の複数のタイプに特有の測定パラメータ、及び自然災害事象タイプごとに対応する損害発生頻度関数を提供する関連付けられたタイプに特有の損害発生頻度関数パラメータを含み、その予想される超過頻度に対する損失の大きさが損害発生頻度関数によってパラメータ化され、超過頻度が、事象又は損失が任意の所与の時間枠で所与の規模を満たす又は超える年間確率の基準である点、システムが地理的なリスクマップを捕捉し、記憶するためのマッピングパラメータを含み、自然災害事象タイプのそれぞれに、特定の自然災害事象タイプの危険ゾーンを定める、対応するマッピングパラメータが捕捉され、記憶される点、システムが複数の選択可能な災害資金調達手段を含み、選択可能な災害資金調達手段のそれぞれが、資金調達手段の資本費用を災害軽減のためのその適用に関して捕捉する定義可能な原価要素に割り当てられ、選択可能な災害資金調達手段のそれぞれに対して、可変予算シェア係数を、壊滅的な災害事象の場合にカバレージ構造を定義する割当てモジュールによって割り当て、適応できる点、並びに予想される大災害損失が、発生する自然災害事象タイプの多様なシナリオのための損害発生頻度関数及び地理的リスクマップによって決定され、これらの損失を埋め合わせるための災害金融調達手段の効果の予測がカバレージ構造、割り当てられた原価要素、及び決定された予想大災害損失に基づいて作成される点で特に本発明に従って達成される。第1の災害金融調達手段は、例えば、1に設定された割り当てられた原価要素を含む偶発損失積立金ユニットに関連付けることができ、第2の選択可能な災害金融調達手段は、定義可能な信用状態パラメータに応じて割り当てられた原価要素を含む条件払い負債機能ユニットに関連付けられ、第3の選択可能な災害金融調達手段は、例えば1.7に設定された割り当てられた原価要素、つまり例えば現行市場ベンチマークに基づいた係数を含む保険機能ユニットに関連付けられる。さらに、記憶されている自然災害事象タイプを含む災害履歴表に基づいて、ハリケーン、洪水、地震、及び干ばつの危難を捕捉する少なくとも4つの損害発生頻度曲線は、例えば地理的リスクマップの対応するマッピングパラメータとともに生成できる。システムは、例えば人口及び/又は人口動態及び/又は国内総生産及び/又は主権予算及び/又はインフレ率及び/又は経済構造及び/又は輸出入額に関係する少なくとも各国特有のパラメータを含むことがある。最後に、予想される壊滅的損失は、例えば損害発生頻度曲線の数値積分法を通して決定できる。有利なことに、本発明は、予想される壊滅的損失及びユーザがこれらの損失を埋め合わせるために選ぶ対応する金融調達ツールの効果を予測するためのシステムを提供する。また、本発明は、有利なことに各国に特有のニーズを満たすカバレージ構造をセットアップするため、及びリアルタイムで多様なシナリオのための災害軽減及び災害金融調達手段の特定の定められた方式の成果を試験するためのシステムも提供する。
【0012】
1つの実施形態変形では、システムは、特定の事前資金調達方式のために選ばれたカバレージ構造の効果の最終試験として確率的な多年シミュレーションのための確率的なモンテカルロ損失シミュレーションを生成するための第2のMonteCarloモジュールを含む。MonteCarloモジュールは、例えば確率的な30年シミュレーションのための確率的なモンテカルロ損失シミュレーションを生成できる。この実施される変形は、とりわけ、システムがリアルタイムで異なるシナリオの下で選ばれたカバレージ構造の影響の完全な監視及び評価を可能にするという優位点を有する。
【0013】
他の実施された変形では、システムは3つの選択可能な入力チャネルを含み、ユーザインタフェースによって選択可能な第1のチャネルでは、第1の予算シェア係数が決定され、対応する第1の災害金融調達手段に割り当てられ、ユーザインタフェースによって選択可能な第2のチャネルでは、第2の予算シェア係数が決定され、対応する第2の災害金融調達手段に割り当てられ、ユーザインタフェースによって選択可能な第3のチャネルでは、第3の予算シェア係数が決定され、対応する第3の災害金融調達手段に割り当てられる。カバレージ構造の予算シェア係数は、災害金融調達手段の効果を最適化して考えられる損失を埋め合わせるためにユーザインタフェースによって変えられる。さらに、割当てモジュールは例えば起動装置を含むことがあり、該起動装置によって、割り当てられた予算シェア係数を用いて生成されたカバレージ構造に基づいて、監視装置に対応する制御信号を送信することが可能にする。この実施された変形は、とりわけ、システムが、国家のリスクプロファイルを見て、現実的なシナリオを通して試験される適切なリスク管理計画を作成することによって国家危険担当官(CRO)の経験をユーザに提供できる優位点を有する。
【0014】
追加の実施された変形では、割当てモジュールは第2のモンテカルロモジュールを含み、第2のモンテカルロモジュールによって及びカバレージ構造の割り当てられた可変予算シェア係数に基づいて、変えられた予算シェア係数を有するカバレージ構造を含む複数のデータレコードが生成され、割り当てられた予算シェア係数を有するカバレージ構造は、発生する自然災害事象タイプの多様なシナリオのための災害金融調達手段の効果に基づいてシステムによって最適化される。この実施された変形は、とりわけ、自動化されたシステムが最適化された割り当てられた予算シェア係数を有する最適化されたカバレージ構造を生成する優位点を有する。
【0015】
さらに別の実施された変形では、割当てモジュールは信号送信装置を含み、選択可能な災害金融調達手段は信号伝送によって割り当てられた予算シェア係数に基づいて起動される。さらに、割当てモジュールは、例えば信号送信装置を含むことがあり、最適化されたカバレージ構造のトリガ時、選択可能な災害金融調達手段は、信号伝送によって割り当てられた予算シェア係数に基づいて起動される。この実施された変形は、とりわけ、システムを完全に自動化できる、つまりシステムが最適化された割り当てられた予算シェア係数を有するカバレージ構造を自動的に生成し、最適化し、災害リスク管理を提供するために適切な災害金融調達手段を自動的に起動する優位点を有する。さらに、システムは、現実的なシナリオを使用することによっておそらく提案されているリスク管理計画の試験で国家危険担当官の作業の効率的且つ完全に自動化された監視及び制御を可能にする。
【0016】
最後に、上述されたシステム及び対応する方法に加えて、本発明は、制御システムが提案されている方法を実行するように制御システムの1つ又は複数のプロセッサを制御するためのコンピュータプログラムコード手段を含むコンピュータプログラム製品にも関する。また、本発明は、特に、その中にプロセッサ用のコンピュータプログラムコード手段を含むコンピュータ可読媒体を含むコンピュータプログラム製品に関する。
【0017】
本発明は、図面を参照して例としてより詳細に説明される。
【図面の簡単な説明】
【0018】
図1】1970年から2013年の主要な大惨事の数を概略で示す図である。
図2】1970年から2013年の犠牲者数を概略で示す図である。参照番号1は、1970年のバングラデシュの嵐を示し、2は1976年の中国の唐山地震を示し、3は1991年のバングラデシュのサイクロンゴーキーを示し、4は2004年のインド洋地震及び津波を示し、5は2008年のミャンマーのサイクロンナルギスを示し、6は2010年のハイチ地震を示し、7は2013年のフィリピンの台風ハイヤンを示す。
図3】場所に依存する自然災害影響に基づいて、災害軽減及び金融調達手段30の効果を予測するための自動化された災害管理及び金融調達システム1の実施形態の考えられる実装のためのアーキテクチャを概略で示すブロック図である。
図4】架空の国の災害履歴に基づいて、及びそれぞれ災害履歴表10に基づいて生成された4つの災害事象タイプ101、つまり、ハリケーン1031、洪水1032、地震1033、及び干ばつ1034について架空の国の損害発生頻度関数103の例を示す図である。
図5】4つの災害事象タイプ101について架空の国の上述された例示的な数字によって提供される4つの例示的なリスクマップ20、つまりハリケーンリスクマップ2001、洪水リスクマップ2002、地震リスクマップ2003、及び干ばつリスクマップ2004を示す図である。
【発明を実施するための形態】
【0019】
図3は、場所に依存する自然災害の影響に基づいて災害軽減及び資金調達手段の効果を予測するための自動化された災害管理及び管理予測システム1の実施形態の考えられる実装のためのアーキテクチャを概略で示す。コンピュータベースの災害管理及び管理予測システム1の場合、履歴災害事象の測定パラメータが自然災害事象の影響を決定するために捕捉され、次いで自然災害事象のパラメータの臨界値が、地理的地域501、511、521、531...の中での災害事象の影響の予測を生成するためにトリガとして使用される。
【0020】
リスクにさらされる国501、...、531の国の各国特有のパラメータ1211、1212、1213が、記憶されている所定の基準1221、1222、1223に関して捕捉される。各国特有のパラメータ1211、1212、1213は、少なくとも国家経済パラメータ及び国家予算パラメータを含むことがある。リスクにさらされる国501、...、531の各国特有のパラメータ1211、1212、1213は、各国特有のリスク及び構造方式を示す国家リスクプロファイル121を提供する。システム1は、例えば、人口1221及び/又は人口動態1222及び/又は国内総生産1223及び/又は主権予算1224及び/又はインフレ率1225及び/又は経済構造1226及び/又は輸出入額1227に関係する各国特有のパラメータ122のための少なくとも各国特有の所定の基準1211、1212、1213を含むことがある。リスクにさらされる国501、...、531の各国特有のパラメータ1211、1212、1213は、例えばユーザインタフェース90によって捕捉できる。ユーザインタフェース90は、例えばユーザインタフェース90によって選択可能な第1のチャネル901を含むことがあり、第1のチャネル901では、第1の予算シェア係数411を決定し、ユーザによって又は接続された入力装置によって対応する第1の災害金融調達手段301に割り当てることができる。ユーザインタフェース90によって選択可能な第2のチャネル902では、第2の予算シェア係数412を、例えば決定し、対応する第2の災害金融調達手段302に割り当てることができる。最後に、ユーザインタフェース90によって選択可能な第3のチャネル903では、第3の予算シェア係数413を決定し、対応する第3の災害資金調達手段303に割り当てる。以下の表3は、パラメータ基準(基準)1221、1222、1223に基づいて隠される又は定められる、各国特有のパラメータ1211、1212、1213の値を有する国家プロファイル121の例を示す。
【表3】
【0021】
1つ又は複数の災害事象タイプ101は災害履歴表10に割り当てられる。各災害事象タイプ101は、履歴自然災害事象の複数のタイプに特有の測定パラメータ、及び自然災害事象タイプ101ごとに対応する損害発生頻度関数103を提供する関連付けられたタイプに特有の損害発生頻度関数パラメータ102を含む。損失のその予想される超過頻度に対する規模は、損害発生頻度関数103によってパラメータ化され、超過頻度は、事象又は損失が任意の所与の時間枠で所与の規模を満たす又は超える年間確率の基準である。例えば、ハリケーン1031、洪水1032、地震1033、及び干ばつ1034の危難を捕捉する少なくとも4つの損害発生頻度関数103は、記憶されている自然災害事象タイプ101を含んだ災害履歴表10に基づいて地理リスクマップ20の対応するマッピングパラメータ2011、2012、2013、2014とともに生成できる。予想大災害損失は、例えば損害発生頻度関数103の数値積分法を通して決定できる。各国は、通常各国特有の災害履歴を有する。例えば、架空の国は毎年いくつかの自然災害に直面することがあり、経済的な損害及び影響を受ける人口の観点から最も極端な事象は、例えば、地震、ハリケーン、洪水、及び干ばつである。上述された4つの主要な危難の係る架空の国の1950年から2011年の災害履歴は、例えば以下の表4のように見えるだろう。
【表4】
【0022】
国が多様な災害事象タイプ101、つまり危難(上記の架空の国の場合、地震、ハリケーン、洪水、及び干ばつ)のそれぞれによってどれほど多くの脅威を受けているのかを定量化するために、国のリスクの実施された評価は、災害履歴に基づいて適切な損害発生頻度曲線103を提供する。損害発生頻度曲線103は、損失の規模をその予想超過頻度に対して関連付け、超過頻度は、事象又は損失が任意の所与の年に所与の規模を満たす又は超える年間確率である。図4は、4つの災害事象タイプ101の架空の国の損害発生頻度関数103、つまり架空の国の災害履歴に基づいて、及びそれぞれ災害履歴表10に基づいて生成されるハリケーン損害発生頻度関数1031、洪水損害発生頻度関数1032、地震損害発生頻度関数1033、及び干ばつ損害発生頻度関数1034の例を示す。
【0023】
システム1は地理的リスクマップ20を捕捉し、記憶するためのマッピングパラメータ201を含む。自然災害事象タイプ101のそれぞれについて、特定の自然災害事象タイプ101の危険ゾーンを定める対応するマッピングパラメータ201が捕捉され、記憶される。地理的リスクマップ20のマッピングパラメータ201は、異なる災害事象タイプ101の危険ゾーンを定める地理的リスクマップとして表示できる。図5は、4つの災害事象タイプ101の架空の国の上記の例示的な数字によって提供される4つの例示的な地理的リスクマップ20、つまり地理的ハリケーンリスクマップ2001、地理的洪水リスクマップ2002、地震リスクマップ2003、及び干ばつリスクマップ2004を示す。地理的リスクマップ(複数の場合がある)20は、例えば、言及された地理的ハリケーンリスクマップ2001、地理的洪水リスクマップ2002、地震リスクマップ2003、及び干ばつリスクマップ2004として、異なる危難のリスクマップ20を含むことがある、又は異なる危難のリスクマップ20によって作り上げることができる。
【0024】
システム1は、複数の選択可能な災害金融調達手段30を含む。選択可能な災害金融調達手段30のそれぞれは、災害金融調達手段30の資本費用を捕捉する定義可能な原価要素301、302、303に、災害軽減に対するその適用との関連で割り当てられる。選択可能な災害金融調達手段30のそれぞれについて、壊滅的な災害事象の場合、カバレージ構造401を定義する割当てモジュール40によって可変予算シェア係数410、411、12、413を割り当て、適応することができる。例えば、第1の災害金融調達手段30は、1に設定された割り当てられた原価要素を含む偶発損失積立金ユニット311に関連付けることができ、第2の選択可能な災害金融調達手段30は、定義可能な信用状態パラメータに応じて割り当てられた原価要素を含む条件払い負債機能ユニット312に関連付けることができ、第3の選択可能な災害金融調達手段30は、例えば現行市場ベンチマークに基づくことがある、例えば1.7に設定された割り当てられた原価要素を含む保険機能ユニット313に関連付けることができる。例えば、偶発損失積立金ユニット311は、例えばシステム1又はシステム1のユーザが偶発信用機能にアクセスできるようにする地域開発銀行システムとして等、外部の機能アクセス可能ユニットとして実現できる。さらに、開発銀行システムは国及び/又はシステム1のための主権大災害保険解決策を確立するための手段を提供できる。資金調達手段のそれぞれは、原価要素によって測定される資本費用を有する。原価要素は損失に対する原価の率である。さらに、システム1は偶発損失積立金にアクセスするための手段を含むことがある。したがって、システム1は自律的に、又はシステム1によってユーザは、この例で以下の災害金融調達手段30を選択できる。つまり(i)偶発損失積立金ユニット311は、システム1又はユーザに準備金としての国の年間予算の一部分を割り当てさせ、偶発損失積立金ユニット311によって、システム1は、壊滅的な損失/再建作業に対して現金でただちに支払うことができるようになる。直接費用はこの災害資金調達手段30に適用しない。ただし、準備金パラメータをセットアップすることによって、システム1は他のユニット若しくは予算項目に該予算部分を使用する、又はそれを投資する(機会費用)オプションを見送る。さらに、例えば予算制限としての適切に設定された境界パラメータは、システム1が準備金パラメータとして予算の大きすぎるシェアを割り当てることを防いでよい。別の予算パラメータとして、時間係数が最適化で重要である場合がある。大きな事象が発生し、必要とされる額まで引当金が蓄積されていない場合、差額は事後資金調達されなければならない。割り当てられた原価要素は、偶発損失積立金ユニット311のために1.00に設定できる。(ii)条件払い負債機能ユニット312は、システム1又はユーザに、消耗が自然災害の発生に依存する所定の信用供与限度額として国の年間予算の一部分を割り当てさせる。国際金融システム又は開発銀行システムによって提供され、それらは、他の資金調達源にアクセスできるまで影響を受けた国々に対して当面の流動性資産を提供する。引き出された振込額は最終的には利息とともに返済されなければならない。原価要素は、信用状態(利率及び/又は返済期間)としての境界条件に応じて、システム1によって又はシステム1に対して可変設定できる。(iii)保険機能ユニット313は、システム1又はユーザに保険掛け金係数として国の年間予算の一部分を割り当てさせる。いったん保険機能ユニット313が(所定の事象特性によって)トリガされると、保険機構ユニット313はカバーの上限値に達するまですべての損失を埋め合わせる。偶発損失積立金ユニット311とは対照的に、保険の価格は埋め合わされる損失の100%ではない。年間掛け金は、例えば保険機能ユニット313の費用を賄うために、負担率を加算した、保険機能ユニット313が埋め合わせなければならない予想される損失によって定義でき、提供される総限度の一部である。保険機能ユニット313の送金される支払いは返済される必要はない。上述されたように、割り当てられた原価要素は、例えば保険機能ユニット313の予想される損失の1.70に設定することができ、該係数は例えば現行市場ベンチマークに基づくことがある。1.7は、例えば現行市場ベンチマークに基づくことがある、又は例えばそれ以外の場合、仮定できる又は決定できる平均である。ただし、他の値も可能であり、実際の値は保険パラメータ定義の状況に基づいて変わることがある。実現された原価要素(つまりシステム1及び/又は国による損失に対する送金された掛け金の実際の率)は実際上発生している損失に依存する。
【0025】
予想大災害損失は、発生する自然災害事象タイプ101の多様なシナリオのための損害発生頻度関数103及び地理的リスクマップ20によって決定され、これらの損失を埋め合わせるための災害金融調達手段30の効果の予測はカバレージ構造401、割り当てられた原価要素301、及び決定された予想大災害損失に基づいて作成される。
【0026】
カバレージ構造401の予算シェア係数410、411、412、413は、災害金融調達手段30の効果を最適化して考えられる損失を埋め合わせるためにユーザ又は自動入力装置によってユーザインタフェース90を用いて変えられる。
【0027】
システム1は、予算シェア係数410、411、412、413ごとに所定の閾値パラメータ又はそれ以外の場合固定された閾値パラメータを含み、対応する予算シェア係数410、411、412、413の変動の可能性を制限することがある。対応する閾値パラメータを設定すると、一定の予算シェア係数410、411、412、413は、最高で割り当てられた閾値までだけ変えることができ、このようにして考えられるユーザ又はシステム1がこの予算シェア係数410、411、412、413により多くの予算値を割り当てるのを防ぐ。実施形態変形として、システム1は、例えば特定の事前金融調達方式のための選ばれたカバレージ構造401の効果の最終試験として確率的な多年シミュレーションのために確率的なモンテカルロ損失シミュレーションを生成するためのMonteCarloモジュール60を含むことがある。モンテカルロモジュール60は、例えば確率的な30年シミュレーションのために確率的なモンテカルロ損失シミュレーションを生成できる。このようにして、本発明はユーザに、国家リスクプロファイル121を見て、現実的なシナリオを通して試験される適切なリスク管理計画を作成することによって国家危険担当官(CRO)の経験及び経験に対する識見を与えることができる。その意味では、本発明は架空諸国プロファイル121及びそれぞれ各国特有のパラメータ1211、1212、1213に基づいて自動訓練装置として役立つこともある。例えば、ユーザは、架空の国、例えばコスタアズール(Costa Azul)の架空の国家リスク管理官の役割に任命できる。システム1によって、ユーザは、架空の国家コスタアズールの政府のための災害リスク管理戦略を完成する担当に据えることができる。架空国家プロファイル121は、各国特有のパラメータ1211、1212、1213によって任意の適切な方法でモデル化できる。例えば、コスタアズールは熱帯気候に位置する新興市場国としてモデル化できる。コスタアズールの場合、経済拡張は、例えば地球の気候変動に関係するより強烈な天災の予想と組み合わせることができ、コスタアズールの自然災害の人的損失及び経済コストの総額は将来上昇する可能性がある。訓練の例の場合、ユーザはリスク軽減に対して包括的な処置がすでに講じられていると仮定できる。しかしながら、事前災害リスク金融調達は依然としてCRO、つまりユーザによって詳説される構成要素である。利用可能な予算は、定義される国家プロファイル121に依存する。訓練生としてのユーザは効率的な金融調達方式をセットアップしなければならない。この例では、CROとしてのユーザは、例えば、ユーザの責任が以下を含むと仮定できる。(i)出現するリスクを識別すること、(ii)頻度/重大度リスク状況を確立すること、(iii)最大のリスク(頻度又は重大度)に向かって軽減努力を誘導すること、及び(vi)完全に防止又は軽減できないリスクにリスク金融調達計画を作成すること。システム1によって訓練されるために、ユーザは、例えばすべての新しい建築のための厳しい建築基準法を保証するために多大な軽減努力がすでになされている、又は地震及び洪水への露呈を軽減するために役立つためにインフラの回りに障壁が構築されている、若しくは橋が強風に耐えるために構築されている、若しくは早期通知のための公共警報システムがすでに実施されている等々と仮定できる。したがって、ユーザは、利用可能な災害金融調達手段30を適用するための効率的な方式をセットアップするだけでよい。言い換えると、訓練のためにシステムを使用するために、ユーザは、リスク金融調達方式の作成を除き、上述された責任がすべて今日までに満たされていると仮定できる。ユーザはここで国のリスクの一部分を政府のバランスシートから離して移動するための最も効率的な方法を提供することに集中する必要がある。
【0028】
リスク金融調達方式で対応する予算シェア係数410、411、412、413を調整することによって最も最適化された配分を提供するために、システム1によって訓練されるユーザは、国家リスクプロファイル121、各国特有のパラメータ1211、1212、1213、自然災害の各国特有の発生、リスクマップ20及び/又はリスクマップ2001、2002、2003、2004、発生のそれらのパラメータ2011、2012、2013、2014、並びに損害発生頻度関数103及び/又は損害発生頻度関数1031、1032、1033、1034に基づいて自分の知識を適用する。したがって、システム1は、ユーザに、政府がどのようにしてサイクロンによる損失を評価し、削減できるのか、及び政府が災害時にどのようにして救援物資及び再構築の提供に最善に備えることができるのかに体系的に対応させる。つまりユーザに適切な戦略パターンを体系的に構築させる。完全自動化システム1の実施形態変形では、上述されたように適切な係数及びパラメータ値が、システム1の測定手段及び/又は捕捉手段及び/又はフィルタリング手段によって捕捉されることに留意されたい。地理的リスクマップ20によって、システムは、ユーザが自国の又は地域の直接的な資産リスク及び災害シナリオの(間接的な)金融、会計、及び経済の影響への露呈を相互作用的に見ることができるようにする。災害リスクを削減するための結果はシステム1によって評価し、予算の立場、負債、及び経済成長等のユーザにとって関心のあるインジケータで表すことができる。その国の又は地域の脆弱性及びリスクの評価に基づいて、システム1の目的の1つは、リスク転移手段(つまり、準備金、保険、及び大災害保証金等の災害金融調達手段30)及びそれぞれ予算シェア係数410、411、412、413等のそのパラメータのバランスを取り、割り当てることを含む金融リスク管理に関係する方針のオプションを評価するための体系的な自動化されたシステム1を提供することである。システム1は、グラフィックユーザインタフェースを含むことがあり、(スタンドアロンアプリケーションを含む)対話型である。つまり、ユーザは、異なる好み及びパラメータの不確実性を考えて、モデルパラメータを変更でき、変更すべきである。例えば、ユーザは、リスクの量、及び国が引き受ける用意がある負債を調整でき、システム1は、これが国の災害に対する脆弱性をどのようにして変更するのか、及びそれが異なる方針経路にどのように影響を及ぼすのかを示す。システム1の目的の1つは、「資源/金融調達のギャップ」を経験することの国のリスク、又は公共インフラの修復、及び民間部門への必要とされる救援物資の提供の観点からその事後災害義務を果たすことができないことを削減するための自動化された手段を提供することである。この目的のため、ユーザは金融及びマクロ経済のリスク及び脆弱性についての上述された情報を使用する必要がある。また、ユーザは、人的損失及び経済的損失をどのようにして削減又は軽減するのかも考慮しなければならず、最終的には、ユーザは国の適切なリスク管理フレームワークを作成しなければならない(図を参照)。完全自動化システム1(つまり、人
的交流なしに完全に操作すること)の実施形態変形は別として、システム1の上述された適用は異なる用途を可能にする。例えば、ユーザは上述されたインタフェースモジュールを使用して、例えば可変予算シェア係数410、411、412、413のための開始パラメータを提案することができ、システム1はパラメータの全体の最大又は極大を達成するために開始パラメータを最適化する。他の変形では、システム1は開始パラメータ、つまり予算シェア係数410、411、412、413を提案し、これらのパラメータはユーザによって以下で変えられ、ユーザがリスク転移の結果に対する異なる変動の影響を理解できるようにする。上記の実施形態は、ユーザが、最適化動作が繰り返し見る極大値又は極小値を克服するために、システム1によって最適化中にパラメータを変えることを可能にする。
【0029】
ユーザが上記の係数を適応させることによって適切なリスク管理戦略の作成を実行する場合、最初に、ユーザは自然災害によって引き起こされた損失と政府の相互作用、つまり資産損失及び家庭と企業を支援するための救援物資支出の金融リスク、並びに政府によって吸収される金銭的損失の割合を考慮する。したがって、国家危険担当官は第1に国の公共部門の資産に対するリスクを決定又は評価しなければならない。例えば、上記のリスクは、損害発生頻度係数1031、1032、1033によって捕捉される、自然災害の頻度及び強度、自然災害にさらされる資産、及び特定のタイプの自然災害に対するそれらの物理的な脆弱性に依存する。第2に、例えば国の国内総生産(GDP)等のパラメータによって表される人的損失及び経済的損失を削減するための限られた国の資源に基づいて、パラメータは、国が可能な限り早く財政的に回復する、又は公共インフラの再建に金融調達するため、並びに家庭及び民間部門に救援物資を提供するための十分な資金を提供するように変えられる必要がある。他方、財政上の回復力は、自然災害が国の一般的な経済状況に与える影響がより少ないように天災のリスクをどれほど多く削減できるのかにかかっている。したがって、国家危険担当官は、リスクに又は達成されたリスク削減に基づいて国の公共部門の回復力の均衡を保たなければならない。次に、国家危険担当官が、国又はその政府の、インフラを修復し、民間部門に救援物資を提供するための偶発的な事後災害負債と、政府が利用できる資金調達源との間の差である、いわゆる「資源ギャップ」を決定又は推定しようと慎重に試みることが重要である。システム1は、公有資産のリスクをシミュレーションし、これらのリスクをカバーし、民間部門に支援を提供する政府の能力を推定することによってこれを自動的に評価できる。評価は、とりわけ各国特有のパラメータ1211、1212、1213に基づいている。パラメータを適応させると、国家危険担当官は、例えば国のマクロ経済予測に金融災害リスク及び金融調達の考えられる損失の潜在的な資金調達ギャップを取り込むことによって自然開発計画と災害リスクを同期させようとする必要もある。システム1の場合、結果は、例えば経済成長又は国の対外債務状況等の変数に関連付けることができる。
【0030】
これらのインジケータは、金融資産リスク推定によって対応される株式に対する影響に照らして経済の流れに対する影響を表す。通常、国家危険担当官はおもに自然災害による生命の損失について、及びおもに国の公的部門資産に直接的に又は間接的に影響を及ぼす生活資産及び生産的資産の損失についても懸念するべきである。したがって、多くの場合、人的損失及び経済的損失を削減する上で適用されたパラメータ方式401の費用対効果を検討することは、リスク管理方式又はカバレージ構造401にとって重要である。最後に、効果的な災害リスク計画の場合、国家危険担当官は、割当てモジュール40及び可変予算シェア係数410、411、412、413を有する適用されたカバレージ構造401を使用して、保険、大災害保証金、及び準備金又は偶発信用協定を含む、資源ギャップのリスクを削減するための利用可能なオプションの中で予算を割り当てる。資源ギャップリスクを削減する上で利用可能な災害金融調達手段30、つまり、災害金融調達手段の原価要素301、3011、3012、3013の費用対効果に対してリスク最適化の均衡を保つことが重要である。システム1は戦略を作成するために使用できる。一方、システム1は、提案されている方式401が実際に災害のリスクを削減し、国の財政上の回復力を強化するかどうかを評価する。効率的なリスク金融調達方式、つまりカバレージ構造401のシステム1による作成は、処置が、金融脆弱性の削減に対するその影響が評価された後に連続的に訂正される適応プロセスとして理解されなければならない。
【0031】
国家危険担当官を訓練するためにシステム1を使用する上記例では、システム1のユーザは、最も緊急の事前金融調達ニーズ(上記例では:地震、ハリケーン、洪水、及び干ばつ)で災害リスクを識別するために国家リスクプロファイル121、災害履歴表10、及び/又は地理的リスクマップ20によって提供される情報を使用してよい。しかしながら、頻度及び重大度の両方の組合せによって、国に影響を及ぼす最も危険且つ高価な自然災害は、システム1又はシステム1のコアエンジン2によって決定することもできる。訓練システムとしてシステム1を使用するとき、ユーザは、例えば、災害金融調達手段30とは異なる他の軽減手段がすでに考慮に入れられていると再度仮定できる。したがって、災害金融調達手段30に対してカバレージ構造40の可変予算シェア係数410、411、412、413を定義するユーザは、自然災害事象に対する国の準備について心配する必要はない。例えば、ユーザは、確立されたリスクマップ20が潜在的に影響を受ける家及びインフラのためのより厳しい建築基準法の導入のために使用される、ハリケーンと地震の両方のための早期警戒システムが定位置にある、学校及び公共機関が定期的な避難訓練等を実施するよう期待される等、単に仮定できる。したがって、可変予算シェア係数410、411、412、413を定義するユーザは、国のリスク状況の全体的な実態を理解するために提供される情報のすべてを使用し、災害金融調達手段30のためにカバレージ構造40の可変予算シェア係数410、411、412、413を使用して災害事象タイプ101ごとに適切なカバレージ及び軽減方式を作成する方法を決定してよい。
【0032】
別の実施形態変形では、割当てモジュール40は、例えば第2のモンテカルロモジュール80を含むことがある。第2のモンテカルロモジュール80によって、及びカバレージ構造40の割り当てられた可変予算シェア係数410、411、412、413に基づいて、変えられた予算シェア係数410、411、412、413を有するカバレージ構造40を含む複数のデータレコードを例えば生成することができ、割り当てられた予算シェア係数410、411、412、413を有するカバレージ構造40は、発生する自然災害事象タイプ101の多様なシナリオのための災害金融調達手段30の効果に基づいてシステム1のコアエンジン2によって最適化される。
【0033】
また、割当てモジュール40は、例えば起動装置93を含むこともあり、該起動装置93によって、割り当てられた予算シェア係数410、411、412、413を有する生成されたカバレージ構造401に基づいて、監視装置91に対応する制御信号を送信することが可能である。また、割当てモジュール40は信号送信装置92を含むこともあり、選択可能な災害金融調達手段30は信号伝送によって割り当てられた予算シェア係数410、411、412、413に基づいて起動される。実施形態変形として、信号送信装置92は、最適化されたカバレージ構造401のトリガ時、信号伝送によって割り当てられた予算シェア係数410、411、412、413に基づいて選択可能な災害金融調達手段30を起動できる。
【0034】
天災の場合に備えて国のリスク、つまり国の資産及び経済の実現可能性に関するリスクを評価するために、システム1は、例えばハリケーン、洪水、干ばつ、又は地震等の多様な考えられるハザード専用のハザード評価を実行するための手段を含むことがある。評価は、例えば履歴事象の履歴データ及び特定の天災の対応する損失に基づいて実行できる。天災の損害可能性を決定するために、例えば露呈される資産の物理的な脆弱性を決定するための確率論的な手法又は工学手法等、異なる技法を適用できる。ただし、履歴損失は直接的なリスク評価にも使用できる。大災害リスク評価は、例えば大災害モジュール、露呈モジュール、脆弱性モジュール、及び損失モジュール等の異なる専用のモジュールによって捕捉でき、後者はリスク測定基準又は損失分布によって先の3つのモジュールの結果を統合する。損失分布は、x軸が例えば金銭的損失パラメータ、GNPに関する年間損失パラメータ、又は資本株式損失パラメータによって表される損失を表す累積分布関数である。y軸は、損失が所定の閾値を超えない確率を表す。例えば、y軸の0.6の値は、60%の確率で、損失が損害の所定の閾値を超えないことを意味する。言い換えると、40%の確率で、損失は損害のこのレベルを超える。しかしながら、40%の確率は、事象が2.5年おきに平均一回(1/0.4=2.5)起こることを意味する。つまり、再現期間が長いほど、事象の確率は低くなるが、損失は多くなる。損失分布関数は、それから引き出すことができる多様なリスク処置を含む。例えば、(i)平均年間損失(損失分布を超える統合された領域)、(ii)VaR(p)=F−1(1−p)として定義される想定最大損失額(VaR)であり、上式では、F−1は損失分布関数の逆数として定義される分位関数、又は(iii)所与の超過確率と関連付けられる最大可能損失(PML)。
【0035】
システム1の場合、例えばリスク転移関数の決定を実施するために2つの考えられる手法、つまり(i)大災害モデルを介して又は(ii)履歴データ、つまり履歴事象の使用を選ぶことができる。しかしながら、リスク転移関数を引き出すために他の方法も使用できる。上述されたように、例えばすべて異なる機能を実行する大災害モジュール、露呈モジュール、脆弱性モジュール、及び損失モジュール等の専用モジュールが大災害評価を実行するために使用できる。大災害モジュールは、例えばハザードのソースパラメータに関する少なくとも3つの変数、つまり将来の事象の場所、それらの発生頻度、及びそれらの重大度を含む。これらのパラメータは、例えば観察数を増加するために潜在的なハリケーン進路をシミュレーションすることによって、履歴データ及び/又は工学データをフィルタリングすることに基づくことがある。所与の事象の確率は、時系列分析によって、又は適切な確率論的モデル、例えばハリケーン事象の確率の非同次ポワゾン分布によってのどちらかで決定されなければならない。さらに、強度が決定される。露呈モジュールは、さらされる資産の空間的分布を捕捉する。建設施行及び建築基準法の地域相違点を反映する可変パラメータを含む適切なハッシュ表を作成し、モジュールに含むことができる。リスク評価の場合、嵐、地震、洪水、干ばつ、及び人災等の任意の順序に従って露呈データの空間分解能を使用できる。在庫開発のプロセスは困難且つ多大な時間を要するタスクである場合がある。しかしながら、それはリスク評価プロセスの重要な部分である。プロセスの場合、システム1は、衛星画像及び非対称マッピングを有する段階分類を使用できる。さらに、脆弱性モジュールはさらされている要素に対する天災の物理的な影響を定量化する。例えば、脆弱性モジュールは天災の強度と、例えば、損害率パラメータ等の損害を受けた家のパーセンテージとの関係を表す。強度基準及び損害のレベルは通常1つの正確な値によって捕捉できないため、損害は正確な量として表すことはできないが、誤差又は不確実性の範囲内でのみ表すことができる。各損害関数の根底にあるのは頻度成分及び重大度成分である。損害が発生したと仮定し、第1が、さらされる要素が損害を受ける確率を決定し、第2が損害を受ける財産のパーセンテージを決定する。例えば、損害と風速との関係性は建物の構造、建物の年齢、建物の地形学的な露呈及び環境上の露呈等に依存する。最後に、損失モジュールは、金銭的損失パラメータ等の必要とされる基準に損害を統合し、変換する。多様なリスク測定基準方式が適用できる。例えば、想定最大損失額、超過可能性、ハザードマップ、又は損失分布関数等の多様なリスク測定基準方式が適用できる。したがって、再び、損失モジュールは例えば金銭を基準にして総損害の考えられる関数を捕捉し、技術的に実装する。上記のモジュール化された構造によって、システム1は適切な地理的リスクマップ20だけではなく適切な損失分布関数及び損害発生頻度関数103も自動的に提供できる。例えば、適切な専門家ユニット又はシステム1によって動的に適応できる4つのモジュールの中に動的設定を取り入れることによって将来の変更を捕捉することもできる。係る将来の変更は、例えば天災の強度及び/又は頻度の変更、経済開発及び社会開発に起因する脆弱性の変更、又はリスク露呈の変更を含むことがある。
【0036】
システム1が履歴データモジュールに基づいて実装される場合、システムは極値理論と組み合わせて天災の履歴データを使用できる。総年間天災損失に基づいて、一般化されたパレート分布だけではなく極値分布の仮定の下で最良適合を選択するための最適化アルゴリズムも使用できる。例えば、パラメータ適合のシーケンスは、以後にプロセスを通して反復して次の開始点として使用できる、予測される再現期間の間のそれらのデータ点の荷重平均関数に基づいて入手できる。このようにして、システム1は、例えばGEV適合とGP適合(一般極値に基づいた損失分布及びパレート分布に基づいた損失分布)の両方に最終的な結果を提供できる。また、説明されている履歴データモジュールによって、システム1は、適切な地理的リスクマップ20だけではなく、適切な損失分布関数及び損害発生頻度関数103も自動的に提供するために実装できる。システム1の演算のロバスト性パラメータを決定するために、2つの実施形態変形は例えば並列で操作できる。上記システムの実施形態の変形及び方法、つまり上述された大災害モジュール、露呈モジュール、脆弱性モジュール、及び損失モジュールのような専用のモジュールによる実装、並びに説明されている履歴データモジュールによる実装の両方とも同様の結果を示し、次いで結果のなんらかのロバスト性が予想できる。
【符号の説明】
【0037】
1 災害管理システム
2 コアエンジン
10 災害履歴表
101 災害事象タイプ
102 損害発生頻度関数パラメータ
103 損害発生頻度関数
1031 ハリケーン損害発生頻度関数
1032 洪水損害発生頻度関数
1033 地震損害発生頻度関数
1034 干ばつ損害発生頻度関数
121 国家リスクプロファイル
1211、1212、1213 各国特有のパラメータ
122 各国特有のパラメータの所定の基準
1221 人口基準
1222 人口動態基準
1223 国内総生産(GDP)基準
1224 主権予算
1225 インフレ率
1226 経済構造
1227 輸出入額
20 地理的リスクマップ
2001 地理的ハリケーンリスクマップ
2002 地理的洪水リスクマップ
2003 地理的地震リスクマップ
2004 地理的干ばつリスクマップ
201 リスクマッピングパラメータ
2011 ハリケーンリスクマッピングパラメータ
2012 洪水リスクマッピングパラメータ
2013 地震リスクマッピングパラメータ
2014 干ばつリスクマッピングパラメータ
30 災害金融調達手段
301 災害金融調達手段の原価要素
3011 偶発損失積立金ユニットの原価要素
3012 条件払い負債機能ユニットの原価要素
3013 保険機構ユニットの原価要素
311 偶発損失積立金ユニット
312 条件払い負債機構ユニット
313 保険機構ユニット
40 割当てモジュール
401 カバレージ構造
410 可変予算シェア係数
411 第1の可変予算シェア係数
412 第2の可変予算シェア係数
413 第3の可変予算シェア係数
501、511、521、531、...リスクにさらされた地理的地域
60 確率モンテカルロ損失シミュレーションのモンテカルロモジュール
70 ネットワーク
80 第2のモンテカルロモジュール
90 ユーザインタフェース
901 第1の予算シェア係数の第1の選択可能入力チャネル
902 第2の予算シェア係数の第2の選択可能入力チャネル
903 第3の予算シェア係数の第3の選択可能入力チャネル
91 監視装置
92 信号送信装置
93 起動装置
図1
図2
図3
図4