【実施例】
【0059】
<実験例1>
まず、
図2(a)に示すように、成長用基板21として直径110mmの表面(C面)21aを有するサファイア基板を準備した。次に、
図2(b)に示すように、サファイア基板のC面上にプラズマCVD法によりSiO
2膜を0.1μmの厚さで成膜し、その後、フォトリソグラフィー法およびBHF(バッファードフッ酸)を用いたエッチングにより、SiO
2膜からなるパターニング層22を形成した。パターニング層22の形状は、直径50μmの円を800μmピッチで格子状に配置した形状とし、格子方向は、m軸およびa軸方向とそれぞれ一致させた。
【0060】
次に、
図2(c)に示すように、パターニング層22が形成された成長用基板21としてのサファイア基板のC面上にGaN結晶11を10時間で1200μm程度の厚さに成長させた。GaN結晶11は、Ga原料として金属Gaを用いるとともに、N原料としてNH
3ガスを用いたHVPE法により成長させた。
【0061】
HVPE法によるGaN結晶11の成長は以下のように行った。まず、ホットウォール型反応炉内の石英製の試料ホルダ上に成長用基板21としてのサファイア基板を設置し、上流側ボート内に設置した金属Ga(800℃に加熱)に水素(H
2)ガスをキャリアガスとして塩化水素(HCl)ガスを吹き付け、生成した塩化ガリウム(GaCl)ガスおよびNH
3ガスを500℃に加熱したサファイア基板上に30分間供給して厚さ50nm程度の低温GaNバッファ層を形成した。その後、サファイア基板を加熱してサファイア基板の中心温度を1000℃とし、GaClガス(3.06kPa)およびNH
3ガス(6.12kPa)をキャリアガスとしてのH
2ガスとともにサファイア基板に10時間供給することによって厚さ1200μm程度のGaN結晶11を成長させた。ここで、サファイア基板の径方向の温度差△T(中心温度と周縁(中心から半径55mmだけ離れた箇所)の温度差)は2℃であった。
【0062】
そして、上記のようにして成長させたGaN結晶11の裏面を研削してサファイア基板を除去した。次に、GaN結晶11の表面を研削により平坦化した後に研磨を行い、直径100mmの円形状のC面を表面として有するファセット構造の自立GaN基板である実験例1のGaN基板を作製した(仕上げ厚み500μm)。
【0063】
次に、以下のようにして顕微ラマンマッピング測定を行った。光源としてYAG(イットリウム・アルミニウム・ガーネット)の第2高調波のレーザ装置を用い、当該レーザ装置から出射された波長532nmのレーザ光を幅100μmのスリットに通した後、レンズで集光し、実験例1のGaN基板の表面側(サファイア基板の除去側とは反対側)から垂直に入射させた。
【0064】
ここで、レーザ光のスポット径は、GaN基板の表面において、直径約10μmとなるように設定した。また、レーザ光強度はGaN基板の表面で10mWとなるように設定した。そして、C軸方向後方散乱で散乱光を検知した顕微ラマン散乱マッピング測定を行うことによってラマンスペクトルを測定した。ラマンスペクトルの測定箇所は、
図3に示すGaN基板の中央の点A、ならびに周縁の点B、点C、点Dおよび点Eの各点を中心とする1辺が2mmの正方形の領域31a,31b,31c,31d,31eのそれぞれの領域について50μmピッチで測定した(各領域当たり1681点測定)。
【0065】
そして、実験例1のGaN基板の中央の点A、ならびに周縁の点B、点C、点Dおよび点Eの合計5点のそれぞれを中心とする1辺が2mmの正方形の領域31a,31b,31c,31d,31eのそれぞれの領域における顕微ラマン散乱マッピング測定により得られるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(2mm□))を算出するとともに、上記の領域31a,31b,31c,31d,31eの全測定点におけるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(全面))を算出した。その結果を表1に示す。なお、ラマンスペクトルの測定時の温度は20℃であった。また、波数校正に、Neランプの輝線スペクトルを基準線として使用し、各測定毎にNe輝線を測定して補正した。そして、上記のようにして得たラマンスペクトルにおいて、E
2Hフォノンモードに対応するピークの最大ピーク時の波数を特定した。また、表1において、E
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値はkp最大値と表記し、E
2Hフォノンモードに対応するピークの最大ピーク時の波数の最小値はkp最小値と表記している。
【0066】
<実験例2>
成長用基板21としてサファイア基板上にMOCVD法により厚さ2μmのGaN膜を形成した直径110mmの表面を有するC面GaNテンプレート基板を用い、実験例1と同様にしてSiO
2膜からなるパターニング層22を形成し、パターニング層22上に、低温GaNバッファ層を形成することなく、実験例1と同一の方法および同一の条件でGaN結晶を成長させ、直径100mmの円形状のC面を表面として有するファセット構造の自立GaN基板である実験例2のGaN基板を作製した(仕上げ厚み500μm)。
【0067】
そして、実験例1と同様にして、実験例2のGaN基板の中央の点A、ならびに周縁の点B、点C、点Dおよび点Eの合計5点のそれぞれを中心とする1辺が2mmの正方形の領域31a,31b,31c,31d,31eのそれぞれの領域における顕微ラマン散乱マッピング測定により得られるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(2mm□))を算出するとともに、上記の領域31a,31b,31c,31d,31eの全測定点におけるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(全面))を算出した。その結果を表1に示す。
【0068】
<実験例3>
成長用基板21として直径110mmの表面((111)A面)を有するGaAs基板上に、実験例1と同一の方法および同一の条件で、低温GaNバッファ層を形成するとともに、GaN結晶を成長させ、直径100mmの円形状のC面を表面として有するファセット構造の自立GaN基板である実験例3のGaN基板を作製した(仕上げ厚み500μm)。
【0069】
そして、実験例1と同様にして、実験例3のGaN基板の中央の点A、ならびに周縁の点B、点C、点Dおよび点Eの合計5点のそれぞれを中心とする1辺が2mmの正方形の領域31a,31b,31c,31d,31eのそれぞれの領域における顕微ラマン散乱マッピング測定により得られるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(2mm□))を算出するとともに、上記の領域31a,31b,31c,31d,31eの全測定点におけるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(全面))を算出した。その結果を表1に示す。
【0070】
<実験例4>
基板として、実験例1と同様に直径110mmのサファイア基板を使用し、実験例1と同様の方法および条件でGaN結晶を成長させ、直径100mmの円形状のC面を表面として有するファセット構造の自立GaN基板を作製した(仕上げ厚み500μm)。そして、実験例1と同様にして、△kp(2mm□)および△kp(全面)を算出した。その結果を表1に示す。
【0071】
ただし、GaN結晶の結晶成長初期、特に結晶成長開始後の10分間は結晶成長炉内の雰囲気に含まれる酸素量を100ppm以下にした。具体的には、GaN結晶の結晶成長開始前に、室温にて結晶成長炉内の雰囲気をN
2、H
2およびArなどのガスで10分間以上置換し、結晶成長炉内の酸素濃度を酸素濃度計でモニターして100ppm以下となるようにした。GaN結晶の結晶成長開始後も結晶成長炉内の酸素濃度が100ppm以下となるように計測および制御した。
【0072】
<実験例5>
基板として、実験例2と同様に直径110mmのC面GaNテンプレート基板を使用し、低温バッファ層を形成することなく、その他は実験例4と同様の方法および条件でGaN結晶を成長させ、直径100mmの円形状のC面を表面として有するファセット構造の自立GaN基板を作製した(仕上げ厚み500μm)。そして、実験例1と同様にして、△kp(2mm□)および△kp(全面)を算出した。その結果を表1に示す。
【0073】
<実験例6>
基板として、実験例3と同様に直径110mmの表面((111)A面)を有するGaAs基板を使用し、成長初期酸素濃度制御を行ったこと以外は実験例1と同様の方法および条件でGaN結晶を成長させ、直径100mmの円形状のC面を表面として有するファセット構造の自立GaN基板を作製した(仕上げ厚み500μm)。そして、実験例1と同様にして、△kp(2mm□)および△kp(全面)を算出した。その結果を表1に示す。
【0074】
<実験例7>
成長用基板21として実験例5のGaN基板と同一の方法および同一の条件で作製した直径110mmの表面(C面)を有するGaN基板上に、実験例5と同一の方法および同一の条件で、低温GaNバッファ層を形成することなく、GaN結晶を成長させ、直径100mmの円形状のC面を表面として有するファセット構造の自立GaN基板である実験例7のGaN基板を作製した(仕上げ厚み500μm)。そして、実験例1と同様にして、△kp(2mm□)および△kp(全面)をを算出した。その結果を表1に示す。
【0075】
<エピタキシャル成長評価>
上記のようにして作製した実験例1〜7のGaN基板上に、MOVPE法により、ショットキーバリアダイオード(SBD)構造をエピタキシャル成長させた。SBD構造は、キャリアストップ層であるキャリア濃度が2×10
18cm
-3で厚さ1μmのn
+GaN層、およびキャリアドリフト層であるキャリア濃度が1×10
16cm
-3で厚さ5μmのn
-GaN層をこの順にエピタキシャル成長させた。これらの層のエピタキシャル成長条件は、成長温度は1050℃であり、GaNの原料としてTMG(トリメチルガリウム)およびNH
3ガスを用い、シリコン(Si)ドーパントの原料としてシラン(SiH
4)ガスを用いた。そして、上記のエピタキシャル成長後の実験例1〜7のGaN基板の表面の外観を観察した。その結果を表1に示す。
【0076】
表1に示すように、実験例1〜4のGaN基板においては、上記のエピタキシャル成長後にGaN基板の表面にクラックが発生した。しかしながら、実験例5〜7のGaN基板においては、クラックおよび割れの発生は見られず、外観は良好であった。なお、クラックは、ノマルスキ顕微鏡(倍率50倍)で認識することができる長さ0.1mm長以上のものをクラックとした。
【0077】
<実験例8>
成長用基板として実験例1と同様にして形成したGaNテンプレート基板を用い、SiO
2膜からなるパターニング層22および低温バッファ層を形成することなく、GaN結晶11が鏡面成長するようにGaNテンプレート基板の中心の温度が1100℃となるように加熱して、GaClガス(2.40kPa)およびNH
3ガス(2.40kPa)をキャリアガスとしてのN
2ガスとともにGaNテンプレート基板に供給することによって厚さ1mm程度のGaN結晶11を成長させ、実験例1と同様な加工により、直径100mmの円形状のC面を表面として有するコアレス構造(コア部とファセットとからなる窪みを有しない構造)の自立GaN基板である実験例8のGaN基板を作製した(仕上げ厚み500μm)。
【0078】
そして、実験例1と同様にして、実験例8のGaN基板の中央の点A、ならびに周縁の点B、点C、点Dおよび点Eの合計5点のそれぞれを中心とする1辺が2mmの正方形の領域31a,31b,31c,31d,31eのそれぞれの領域における顕微ラマン散乱マッピング測定により得られるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(2mm□))を算出するとともに、上記の領域31a,31b,31c,31d,31eの全測定点におけるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(全面))を算出した。その結果を表1に示す。
【0079】
実験例8のGaN基板上に、実験例1と同様にして、SBD構造をエピタキシャル成長させた。しかしながら、エピタキシャル成長後に、実験例8のGaN基板を取り出してみると、実験例8のGaN基板がバラバラに割れていた。これはSBD構造のエピタキシャル成長中またはSBD構造のエピタキシャル成長後の冷却時に発生する応力のために破壊したものと考えられる。なお、実験例5〜7は実施例であり、実験例1〜4および8は比較例である。また、表2に、実験例1〜8のGaN基板の製造方法の製造条件を示す。
【0080】
【表1】
【0081】
【表2】
【0082】
<実験例1〜8のGaN基板の評価>
図8に、実験例6のGaN基板の顕微ラマン分光分析結果を示す。
図8に示す顕微ラマン分光分析結果は、実験例6のGaN基板の表面の中央の点Aを対角線の交点とする1辺が2mmの正方形の領域における転位集中領域であるコア部を含む直線とコア部を含まない直線とのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の分布を示している。
図8に示すように、実験例6のGaN基板においては、コア近傍では歪が大きく変化し、コアから離れた領域ではあまり変化しない分布となった。
【0083】
図8に示すように、コア部では波数が小さくなる変化となっているので、引張歪が生じていることになる。コア部において引張歪が生じる原因は明らかではないが、コア部における転位の集中に起因した歪、あるいは、ファセット面成長領域とC面成長領域との取り込み不純物の種類および量の違いに起因する歪などが原因と考えられる。
【0084】
また、実験例6のGaN基板の表面の周縁の点B、点C、点Dおよび点Eについても顕微ラマン散乱マッピング測定を行ったところ、中央の点Aと同様の傾向を示すことが確認された。
【0085】
以上の結果から、転位集中領域となるコア部と、その周囲の転位集中領域とはならないファセットとからなるファセット構造のGaN結晶から作製したGaN基板においては、ミクロな歪分布がマクロな歪分布よりも支配的であると考えられる。
【0086】
なお、上記のエピタキシャル成長後の実験例1〜4のGaN基板の表面にはクラックが多数発生していたが、これは、実験例1〜4のGaN基板においては、領域31a,31b,31c,31d,31eの△kp(2mm□)のすべて、あるいは一部が2cm
-1よりも大きかったために、ファセット構造に起因した残留歪と、エピタキシャル成長工程に起因する熱歪とが相俟って、クラックが発生したものと考えられる。実験例5〜7のGaN基板においては、△kp(2mm□)が比較的小さかったことから、クラックの発生は見られなかったと考えられる。
【0087】
実験例4〜6のGaN基板の△kp(2mm□)が同様の基板を使用した実験例1〜3のGaN基板よりも比較的小さくなった原因は、結晶成長初期の結晶成長炉内の酸素濃度を100ppm以下に低く制御したことによるものと考えられる。酸素濃度を低くすることにより、結晶成長初期のGaN結晶の結晶性が向上し、ミクロ歪の分布の小さいファセット構造を実現することができたものと考えられる。
【0088】
また、実験例7のGaN基板の△kp(2mm□)がさらに小さくなったのは、初期酸素濃度の制御に加え、成長用基板をGaN基板としたこと、すなわちホモエピタキシャル成長することによって、さらに欠陥が低減したことによるものと考えられる。
【0089】
また、コアレス構造を有する実験例8のGaN基板のミクロな歪は小さかったが(△kp(2mm□)=0.07〜0.18cm
-1)、マクロな歪は大きかった(△kp(全面)=3.73cm
-1)ため、GaN基板に割れが発生したものと考えられる。実験例8のGaN基板においては、マクロに生じていた大きな圧縮歪のために、昇温、エピタキシャル成長および降温の一連のエピタキシャル成長工程のいずれかの工程における残留歪および熱歪が加わったトータルの歪が、実験例8のGaN基板の降伏歪を越えるために割れてしまったものと考えられる。
【0090】
実験例8のGaN基板のミクロな歪分布が比較的均一(△kp(2mm□)≦0.2cm
-1)なのは、転位集中領域が存在しないために、転位の存在領域がより均一にばらけていることが原因しているものと考えられる。また、実験例5のGaN基板のマクロな歪が大きい原因としては、ヘテロエピタキシャル成長における熱膨張率不整合による応力および格子定数不整合に起因して発生したマクロな歪に起因するものと考えられる。
【0091】
以上のように、ミクロな歪とマクロな歪の両方を考えることが、エピタキシャル成長中の不良に対する指標となり、定量的には、上記の領域31a,31b,31c,31d,31eの△kp(2mm□)が0.1cm
-1以上2cm
-1以下であり、△kp(全面)が2cm
-1以下であることがエピタキシャル成長中のクラックおよび割れの発生を抑制することができるものと考えられる。
【0092】
<実験例9>
成長用基板21として直径160mmの表面((111)A面)を有するGaAs基板を用い、実験例6と同一の方法および同一の条件により、直径150mmの円形状のC面を表面として有するファセット構造の自立GaN基板である実験例9のGaN基板を作製した(仕上げ厚み600μm)。径方向の温度差△T(中心温度と周縁(中心から半径75mmだけ離れた箇所)の温度差)は6℃であった。
【0093】
そして、実験例1と同様にして、実験例9のGaN基板の中央の点A、ならびに周縁の点B、点C、点Dおよび点Eの合計5点のそれぞれを中心とする1辺が2mmの正方形の領域31a,31b,31c,31d,31eのそれぞれの領域における顕微ラマン散乱マッピング測定により得られるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(2mm□))を算出するとともに、上記の領域31a,31b,31c,31d,31eの全測定点におけるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(全面))を算出した。その結果を表3に示す。なお、実験例9のGaN基板の周縁の点B、点C、点Dおよび点Eは、実験例9のGaN基板の表面の外周を構成する円の外周から5mmの箇所とした。
【0094】
実験例9のGaN基板の上記の領域31a,31b,31c,31d,31eにおける△kp(2mm□)はすべて2cm
-1以下であったが、△kp(全面)は2.89cm
-1と2cm
-1を超える値となっていたため、マクロな歪が大きくなっていた。そのため、実験例9のGaN基板について、実験例1〜8と同様のエピタキシャル成長評価を行ったところ、実験例9のGaN基板には割れが確認された。これは、GaN基板の大口径化に起因して、GaN基板に生じていた歪の最大値が増大していたことによるものと考えられる。
【0095】
<実験例10>
実験例9のGaN基板においてマクロな歪が増大した要因として、GaN結晶成長時の成長用基板の径方向の温度分布に大きなばらつきが生じていたと考えられていた。そのため、試料ホルダの材質を石英から熱伝導率の高い炭化珪素(SiC)コートしたグラファイトに変更し、上記の温度差△Tを3℃としたこと以外は実験例9と同一の方法および同一の条件により、直径150mmの円形状のC面を表面として有するファセット構造の自立GaN基板である実験例10のGaN基板を作製した(仕上げ厚み600μm)。
【0096】
そして、実験例9と同様にして、実験例10のGaN基板の中央の点A、ならびに周縁の点B、点C、点Dおよび点Eの合計5点のそれぞれを中心とする1辺が2mmの正方形の領域31a,31b,31c,31d,31eのそれぞれの領域における顕微ラマン散乱マッピング測定により得られるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(2mm□))を算出するとともに、上記の領域31a,31b,31c,31d,31eの全測定点におけるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(全面))を算出した。その結果を表3に示す。
【0097】
実験例10のGaN基板においては、実験例9のGaN基板と比べて、ミクロな歪とともにマクロな歪も小さくなっており、実験例10のGaN基板の△kp(全面)は1.5cm
-1であった。なお、ミクロな歪の低下は、径方向の温度分布の低減により、GaN結晶が受ける熱歪が低下したことによるものと推測される。
【0098】
実験例10のGaN基板についても、実験例1〜8と同様のエピタキシャル成長評価を行ったところ、実験例10のGaN基板に割れは生じなかったが、特に周縁部にクラックが発生した。
【0099】
<実験例11>
成長用基板21として実験例10と同一の方法および同一の条件で作製した実験例10のGaN基板を用い、低温バッファ層を形成しなかったこと以外は、実験例10と同一の方法および同一の条件で直径150mmの円形状のC面を表面として有するファセット構造の自立GaN基板である実験例11のGaN基板を作製した(仕上げ厚み600μm)。
【0100】
そして、実験例10と同様にして、実験例11のGaN基板の中央の点A、ならびに周縁の点B、点C、点Dおよび点Eの合計5点のそれぞれを中心とする1辺が2mmの正方形の領域31a,31b,31c,31d,31eのそれぞれの領域における顕微ラマン散乱マッピング測定により得られるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(2mm□))を算出するとともに、上記の領域31a,31b,31c,31d,31eの全測定点におけるラマンスペクトルのE
2Hフォノンモードに対応するピークの最大ピーク時の波数の最大値と最小値との差(△kp(全面))を算出した。その結果を表3に示す。
【0101】
実験例11のGaN基板においては、実験例10のGaN基板と比べてさらに、マクロな歪が改善されており、実験例11のGaN基板の△kp(全面)は0.93cm
-1であった。なお、マクロな歪の改善は、成長用基板との熱膨張率不整合に関係した実験例11のGaN基板中の機械歪が低減できたことによるものと推測される。
【0102】
実験例11のGaN基板についても、同様のエピタキシャル成長評価を行ったところ、実験例11のGaN基板にクラックも割れも生じず、良好な結果が得られた。
【0103】
なお、実験例11は実施例であり、実験例9〜10は比較例である。また、表4に、実験例9〜11のGaN基板の製造方法の製造条件を示す。
【0104】
【表3】
【0105】
【表4】
【0106】
<実験例9〜11のGaN基板の評価>
直径が100mmの表面を有するGaN基板では、△kp(全面)が2cm
-1以下である場合(実験例5〜7)に良好な結果が得られていたが、直径が150mmの表面を有するGaN基板においては、△kp(全面)が1.5cm
-1である場合(実験例10)でもクラックが生じており、0.93cm
-1である場合(実験例11)にクラックも割れも生じない良好な結果が得られていた。このように、直径が100mmである場合と150mmである場合とで、クラックおよび割れが生じない指標となる△kp(全面)の値が異なるのは、GaN基板上に他の半導体層をエピタキシャル成長させる間の熱応力は、GaN基板の温度分布(温度差)に起因することによるものであると考えられる。GaN基板の表面の直径が大きくなるほどGaN基板の表面の温度差を小さくしてGaN基板に生じる熱応力を小さくするのは極めて困難である(一般に、GaN基板に生じる熱応力は、GaN基板の表面の直径の約2乗に比例する。直径150mmのGaN基板は、直径100mmのGaN基板の2倍以上の熱応力を有する)。
【0107】
したがって、GaN基板の表面の直径が大きくなるほどGaN基板の残留歪を小さくした方がGaN基板上への他の半導体層のエピタキシャル成長時にGaN基板にクラックが生じにくく、エピタキシャル成長中のクラックおよび割れの発生を低減する観点からは、直径150mmのGaN基板においては、△kp(全面)は1cm
-1以下であることが好ましいと考えられる。
【0108】
<実験例12>
実験例5と同様にして作製したGaN基板の貫通転位密度をエッチピットで評価した。H
2SO
4:H
3PO
3=1:1の溶液を250℃に加熱し、GaN基板を約30分間浸漬させて、光学顕微鏡でエッチピット密度を測定した。GaN基板の中心部でのエッチピットはコア近傍で高密度であり、コアから離れた領域では低密度であった。コアを中心とした半径50μm領域ではエッチピット密度が1×10
7cm
-2以上(ピットが重なって分解できない)コアを中心とした半径50μm領域を除く、半径400μm領域では3×10
5cm
-2であった。実験例6、7および11と同様にして作製したGaN基板のエッチピット密度も同様の分布となっており、コアを中心とした半径50μmの領域ではエッチピット密度が1×10
6cm
-2以上であり、コアを中心とした半径50μmの領域を除く半径400μmの領域では1×10
6cm
-2未満であった。
【0109】
<実験例13>
実験例5と同様の条件で作製したGaN基板の酸素濃度分布を二次イオン質量分析法(SIMS)により評価した。コア近傍のファセット成長領域では酸素濃度2×10
18cm
-3、コアから離れたC面成長領域(800μm□の4隅コア対角線交差部)では3×10
16cm
-3であった。実験例6、7および11と同様にして作製したGaN基板の酸素濃度もファセット成長領域では5×10
17cm
-3以上、C面成長領域では5×10
17cm
-3未満であった。
【0110】
以上のように本発明の実施形態および実験例について説明を行なったが、上述の各実施形態および各実験例の構成を適宜組み合わせることも当初から予定している。
【0111】
今回開示された実施形態および実験例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施形態および実験例ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。