(58)【調査した分野】(Int.Cl.,DB名)
エンジンに吸気を導入する吸気通路に設けられ、前記吸気を冷媒で冷却する第1の冷却部と、前記第1の冷却部で生じる凝縮水と前記吸気に還流されるEGRガスとの熱交換により前記EGRガスを冷却する第2の冷却部と、を備えるインタークーラの制御装置であって、
前記EGRガスの供給先を、前記第2の冷却部での冷却を行った後に前記吸気に還流する第1の経路と、前記第2の冷却部での冷却を行わずに前記吸気に還流する第2の経路とに配分するEGR冷却制御部を備え、
前記EGR冷却制御部は、前記エンジンで燃料カットが行われる場合は、前記燃料カットが行われない場合よりも前記第2の経路に供給する前記EGRガスの量を増加させる、
ことを特徴とするインタークーラ制御装置。
前記EGR冷却制御部は、前記第2の冷却部における前記凝縮水の量が所定量以上となった場合は、前記凝縮水の量が所定量未満の場合よりも前記第1の経路に供給する前記EGRガスの流量を増加させる、
ことを特徴とする請求項1記載のインタークーラ制御装置。
前記インタークーラは、前記エンジンの排気ポートから排出される高圧EGRガスを前記エンジンに供給する吸気に還流する高圧EGRガス装置と、前記エンジンからの排気後に排気ガス浄化装置を通過した低圧EGRガスを前記吸気に還流する低圧EGRガス装置とを備える車両に設けられており、
前記吸気への前記高圧EGRガスの還流量と前記低圧EGRガスとの還流量とを配分するEGR供給制御部をさらに備え、
前記第2の冷却部では前記高圧EGRガスを冷却し、
前記EGR供給制御部は、前記燃料カットが行われる場合は、前記燃料カットが行われない場合よりも前記低圧EGRガスの前記吸気への還流量を減少させる、
ことを特徴とする請求項1または2記載のインタークーラ制御装置。
前記吸気冷却制御部は、前記混合気の温度が所定温度を超える場合には、前記混合気の温度が前記所定温度の場合よりも前記第1の冷却部の冷却効率を向上させ、前記混合気の温度が前記所定温度未満の場合には、前記混合気の温度が前記所定温度の場合よりも前記第1の冷却部の冷却効率を低下させる、
ことを特徴とする請求項4記載のインタークーラ制御装置。
【発明を実施するための形態】
【0008】
(実施の形態)
次に、本発明の実施の形態について図面を参照して説明する。
まず、本発明のインタークーラ制御装置が適用されたエンジンの構成について説明する。
本実施の形態では、エンジンがディーゼルエンジンである場合について説明する。なお、本発明はガソリンエンジンにも無論適用可能である。
【0009】
図1に示すように、エンジン10は、エンジン本体12と、吸気通路14と、排気通路16と、過給機18と、低圧EGR装置20と、高圧EGR装置22と、エンジン冷却装置23と、本発明に係るインタークーラ24とを含んで構成されている。
【0010】
エンジン本体12は、シリンダヘッド1202と、シリンダブロック1204とを含んで構成されている。
シリンダヘッド1202に燃焼室が形成され、シリンダブロック1204にピストンを収容する複数の気筒(シリンダ室)が形成されている。
【0011】
吸気通路14は、吸気管1402と、インテークマニホールド1404と、エンジン本体12の吸気ポートとを含んで構成されている。
吸気管1402には、吸気の上流側から下流側に向かって、エアクリーナ1410、低圧スロットル1412、コンプレッサ1802、高圧スロットル1414がこれらの順に設けられている。
排気通路16は、エンジン本体12の排気ポートと、エキゾーストマニホールド1604と、排気管1602とを含んで構成されている。
排気管1602には、排気の上流側から下流側に向かって、タービン1804、排気ガス浄化装置26がこれらの順に設けられている。
【0012】
過給機18は、コンプレッサ1802とタービン1804とで構成され、排気管1602を通る排気ガスのエネルギーによりタービン1804が回転されることでコンプレッサ1802を回転させ吸気管1402の吸気を圧縮して高圧の吸気としてエンジン本体12に供給するものである。
【0013】
低圧EGR装置20は、排気ガス浄化装置26から排出される排気ガスを低圧EGRガスとしてコンプレッサ1802の上流側の吸気管1402の箇所に還流するものである。
低圧EGR装置20は、低圧EGRガスを還流する低圧EGR通路2002を備え、低圧EGR通路2002には、低圧EGRガスに含まれる異物(排気系製造時の溶解スパッタやスラグ、触媒片、DPF片など)を除去するEGRフィルタ2004と、低圧EGRガスを冷却する低圧EGRクーラ2006と、低圧EGRガスの還流量を制御する低圧EGRバルブ2008とを含んで構成されている。
【0014】
高圧EGR装置22は、タービン1804の上流側の排気管1604の箇所から取り出した排気ガスをEGRガス(高圧EGRガス)としてコンプレッサ1802の下流側に位置するインタークーラ24に還流するものである。
なお、本実施の形態では、特に記載がない限り「EGRガス」とは高圧EGRガスを指すものとする。
高圧EGR装置22は、排気管1602とインタークーラ24とを接続してEGRガスを還流する高圧EGR通路2202と、後述する高圧EGRバルブ68(
図9参照)および切り換えバルブ70(
図9参照)とを含んで構成されている。
【0015】
エンジン冷却装置23は、エンジン本体12をエンジン冷却液で冷却するものである。
図1に示すように、エンジン冷却装置23には、エンジン冷却用ラジエータ2302とエンジン冷却用電動ウォーターポンプ2304とがエンジン冷却液通路2306を介して接続され、エンジン冷却用電動ウォーターポンプ2304によりエンジン冷却液がエンジン冷却用ラジエータ2302とエンジン本体12に設けられた不図示のウォータージャケットとの間で循環される。これにより、エンジン本体12を冷却することで加熱されたエンジン冷却液がエンジン冷却用ラジエータ2302で冷却される。
また、本実施の形態では、エンジン冷却液を低圧EGRクーラ2006にも循環させ、低圧EGRガスとエンジン冷却液との間の熱交換により低圧EGRガスを冷却するように構成している。
なお、低圧EGRクーラ2006を空冷式にするなど、エンジン冷却装置23と低圧EGRクーラ2006とを分離するようにしてもよい。
また、エンジン冷却液通路2306には、エンジン冷却液の温度を測定するエンジン冷却液温度計2308が設置されている。
図1にはエンジン冷却液温度計2308をエンジン冷却用ラジエータ2302の上流に設けているように図示しているが、これに限らず、例えばエンジン本体12の直前に設けてもよい。
【0016】
次に、インタークーラ24について詳細に説明する。
図2はインタークーラ24の斜視図であり、
図3は
図2のAA線断面図であり、
図4は
図2のBB線断面図であり、
図5は
図2のCC線断面図であり、
図6は
図2のDD線断面図である。また、
図7は
図2のEE線断面図であり、
図8は
図2のFF線断面図であり、
図9は
図8のGG線断面図である。
【0017】
インタークーラ24は、第1の冷却部48と、第2の冷却部50と、EGRガス流路52とを含んで構成されている。
第1の冷却部48は、吸気を冷媒で冷却するものである。
図1に示すように、第1の冷却部48には、ラジエータ28と電動ウォーターポンプ30とが冷却水通路32を介して接続され、電動ポンプにより冷却水がラジエータ28とインタークーラ24との間で循環される。これにより、吸気を冷却することで加熱された冷却水がラジエータ28で冷却される。
また、本実施の形態では、第1の冷却部48は、冷媒として冷却水を用いるが、冷媒として冷却水以外の従来公知の様々な冷媒ガス、冷却液を用いてもよいことは無論である。
【0018】
本実施の形態では、インタークーラ24は、インテークマニホールド1404に一体的に設けられており、吸気管1402からインテークマニホールド1404に導入された吸気を第1の冷却部48で冷却するように構成されている。
インタークーラ24は、ボデー34を有し、図中、符号Wは吸気入口部38およびボデー34の幅方向、符号Hは吸気入口部38およびボデー34の高さ方向、符号Lはボデー34の長さ方向を示す。
図2から
図7に示すように、第1の冷却部48は、吸気入口部38と、吸気入口部38に続く複数の冷却通路部36と、冷却通路部36の吸気出口部40とを備えている。
吸気入口部38および吸気出口部40は、ボデー34の延在方向の両端に設けられ、シリンダヘッド1202の端面に複数の気筒の吸気ポートの開口が直線状に並べられた方向の幅と、この幅よりも小さい寸法の高さとを有して横長状を呈している。
冷却通路部36は、冷媒により吸気が冷却される部分であり、複数の冷却通路部36は、吸気入口部38と吸気出口部40との間でボデー34の延在方向に沿って延在している。
【0019】
図6に示すように、冷却通路部36は、ボデー34の内部でボデー34の長さ方向Lに延在し吸気入口部38と吸気出口部40とを接続している。
図4から
図6に示すように、冷却通路部36は、横冷却通路部3602と、第1の縦冷却通路部3604と、第2の縦冷却通路部3606とを有している。
横冷却通路部3602は、高さ方向Hの中間部で幅方向Wに延在し、横冷却通路部3602の幅方向Wの両端は、ボデー34の幅方向W両端の面の近傍に位置している。
第1の縦冷却通路部3604は、横冷却通路部3602の延在方向に間隔をおいた複数箇所から高さ方向Hの一方に延在している。
第2の縦冷却通路部3606は、横冷却通路部3602の延在方向に間隔をおいた複数箇所から高さ方向Hの他方に延在している。
図4に示すように、第1の縦冷却通路部3604の幅W1と第2の縦冷却通路部3606の幅W2は横冷却通路部3602から離れるにつれて次第に小さくなるように設けられている。
横冷却通路部3602から離れた第1の縦冷却通路部3604の先部と第2の縦冷却通路部3606の先部は、ボデー34の高さ方向H両端の面の近傍に位置している。
【0020】
ボデー34の長さ方向Lの他端に冷媒入口部44が設けられ、ボデー34の長さ方向Lの一端に冷媒出口部46が設けられている。
図5に示すように、冷媒入口部44は、冷媒路42に冷媒として冷却水を供給する部分であり、ボデー34の長さ方向Lの他方の端部において、吸気排出部40の吸気上流側に隣接して設けられている。冷媒入口部44は、冷却通路部36の外側でボデー34の高さ方向H、幅方向Wの全域に広がる空間で形成されている。
冷媒出口部46は、冷媒路42から冷却水を排出する部分であり、ボデー34の長さ方向Lの一方の端部において、吸気供給部38の吸気下流側に隣接して設けられている。吸気排出部40は、吸気供給部38と同様に、冷却通路部36の外側でボデー34の高さ方向H、幅方向Wの全域に広がる空間で形成されている。
本実施の形態では、冷媒入口部44は電動ウォーターポンプ30の吐出口に接続され、冷媒出口部46はラジエータ28に接続される。
【0021】
冷媒路42は、冷却通路部36に沿ってボデー34の長さ方向Lに延在し冷媒入口部44と冷媒出口部46とを接続している。
図4、
図6に示すように、冷媒路42は、冷却水が流れる部分であり、冷媒路42は、一対の横冷媒路部4202と、複数の縦冷媒路部4204とを有している。
一対の横冷媒路部4202は、ボデー34の高さ方向Hの一端においてボデー34の幅方向Wに延在する第1の横冷媒路部4202Aと、ボデー34の高さ方向Hの他端においてボデー34の幅方向Wに延在する第2の横冷媒路部4202Bとを備えている。
第1の横冷媒路部4202Aと第2の横冷媒路部4202Bの延在方向の両端は、ボデー34の幅方向W両端の面の近傍に位置している。
複数の縦冷媒路部4204は、第1の横冷媒路部4202Aから隣り合う第1の縦冷却通路部3604の間で横冷却通路部36に向かって延在する複数の第1の縦冷媒路部4204Aと、第2の横冷媒路部4202Bから隣り合う第2の縦冷却通路部3606の間で横冷却通路部36に向かって延在する複数の第2の縦冷媒路部4204Bとを備えている。
第1の横冷媒路部4202Aから離れた第1の縦冷媒路部4204Aの先部と、第2の横冷媒路部4202Bから離れた第2の横冷媒路部4202Bの先部は、横冷却通路部36の近傍に位置している。
図4に示すように、第1の縦冷媒路部4204Aの幅W3は第1の横冷媒路部4202Aから離れるにつれて次第に小さくなるように設けられ、第2の縦冷媒路部4204Bの幅W4は第2の横冷媒路部4202Bから離れるにつれて次第に小さくなるように設けられている。
ここで、冷却通路部36を流れる吸気の向きと、冷媒路42を流れる冷却水の向きとを互いに反対向きとなる対向流とすることで冷却効率向上を図っている。
なお、冷却通路部36および冷媒路42の構造は、実施の形態に限定されるものではなく、例えば冷却通路部36が単一のものでもよく、本発明は従来公知の様々な冷却通路部36および冷媒路42の構造が採用可能である。
【0022】
吸気入口部38と吸気出口部40はボデー34に一体に成形されている。
図2、
図7に示すように、吸気入口部38の下部には、吸気管1402の上流端が接続されている。
吸気出口部40は、
図8に示すように、複数の冷却通路部36の下流端が位置するボデー34の壁面54と、壁面54を囲む壁部56との間の空間でボデー34の長さL方向に延在形成されている。
吸気出口部40は、上流出口部40Aと、複数の下流出口部40Bとを備えている。
上流出口部40Aは、壁面54の近傍においてボデー34の高さH方向および幅W方向の全域において延在し複数の冷却通路部36に連通し、壁面54から離れるにつれて高さが次第に小さくなるように形成されている。詳細に説明すると、壁面54を囲む壁部56のうち下方に位置する底壁5602は、最も下方に位置する冷却通路部36の底面と同一面上に位置し、壁面54を囲む壁部56のうち上方に位置する上壁5604が壁面54から離れるにつれて次第に下降している。
図9に示すように、複数の下流出口部40Bは、ボデー34の幅W方向に仕切られており、上流出口部40Aの下流端に連通し、複数の下流出口部40Bの下流端は、シリンダヘッド1202の端面に開口する各吸気ポートに接続される。
すなわち、下流出口部40Bでは、第1の冷却部48で冷却された吸気と開口72から導入されたEGRガスとの混合気が通過し、エンジン本体12へと導入されていく。
この混合気の温度を測定する混合気温度計53が吸気出口部40の上壁5604に設けられている。
【0023】
図8、
図9に示すように、第2の冷却部50は、第1の冷却部48で生じる凝縮水と、EGRガスとを熱交換するものであり、第2の冷却部50は、貯留部58を含んで構成されている。
貯留部58は、吸気出口部40の下部に設けられ第1の冷却部48で生じる凝縮水2を貯留するものである。
貯留部58は、下流出口部40Bの上流側の底壁5602でボデー34の長さL方向に間隔をおいた箇所からそれぞれ下方に延在する一対の第1縦壁部5802と、ボデー34の幅W方向におけるそれら一対の第1縦壁部5802の両端を接続する一対の第2縦壁部5804と、それら第1縦壁部5802と第2縦壁部5804の下端を接続する底壁5806とでボデー34の幅W方向に横長に形成されている。貯留部58の上部の幅W方向に間隔をおいた箇所は、それぞれ複数の下流出口部40Bに連通している。
また、貯留部58には、凝縮水2の水位を測定する凝縮水位センサ51が設けられている。なお、凝縮水位センサ51は、凝縮水2の具体的な水位を測定するものではなく、貯留部58内の凝縮水2が所定量以上(または所定量未満)か否かを測定できるものであればよい。
また、凝縮水2の貯留量を把握する方法としては、凝縮水位センサ51に限らず、例えば基準水位の位置に温度センサを設けたり、第1の冷却部48における凝縮水生成量、捕集量、蒸発量、飛散量を積算して凝縮水量を算出するなど、従来公知の様々な方法を適用可能である。
【0024】
EGRガス流路52は、高圧EGR通路2202からEGRガスがボデー34の内部に導入される部分である。
図8、
図9に示すように、EGRガス流路52は、EGRガス導入口60、第1流路部62、第2流路部64、第3流路部66、第4流路部76、高圧EGRバルブ68と、切り換えバルブ70とを含んで構成されている。
EGRガス導入口60は、ボデー34の延在方向の他端でボデー34の幅W方向の一端である右側面に形成され、EGRガス導入口60には高圧EGR通路2202が接続されている。
第1流路部62と、第2流路部64と、第3流路部66、第4流路部76とはボデー34の内部に設けられている。
第1流路部62はEGRガス導入口60に接続され、ボデー34の右側面から左側面に向かって延在している。
第2流路部64は、第1流路部62の下流端から底壁5806の下方でボデー34の幅W方向に延在している。第2流路部64は、底壁5806の下方で延在するEGRガス流路52の下流部を構成している。
第3流路部66は、第1流路部62の下流端から複数の下流出口部40Bの上流側の上壁5604上をボデー34の幅W方向に延在し、上壁5604には第3流路部66と複数の下流出口部40Bとを接続する開口72が形成されている。
第4流路部76は、第2流路部64の下流端からボデー34の左側面において上方に延在し第3流路部66の端部に連通している。
第2流路部64、第3流路部66、第4流路部76により貯留部58の側方、貯留部58の底壁5806の下方、貯留部58の側方を通って吸気出口部40の上部に連通する熱交換路(第1の経路)が構成されている。
図8に示すように、貯留部58の底壁5806は、ボデー34の長さL方向に間隔をおいてボデー34の幅W方向に延在する複数の上方に突出する凸部5820と、下方に窪む凹部5822とが交互に形成されることで底壁5806の表面積が増大され、これによりEGRガスと凝縮水2との熱交換効率の向上が図られている。
【0025】
高圧EGRバルブ68は、第1流路部62に配設され、第1流路部62に導入されるEGRガスの還流量を制御するものであり、後述するインタークーラ制御装置25(
図10参照)の制御により開度が制御される。
切り換えバルブ70は、第2流路部64と第3流路部66とに配設された弁体7002、7004を備え、後述するインタークーラ制御装置25の制御により、第1流路部62を、第2流路部64と第3流路部66とに選択的に連通させる。
すなわち、第2の冷却部50での冷却を行った後のEGRガスをエンジン10内に導入する場合、切り換えバルブ70は、第1流路部62を第2流路部64に連通させる。これにより、EGRガスは、第2流路部64、第4流路部76、第3流路部66を経て、吸気出口部40の上部に連通する下流出口部40Bに到達する。この経路を第1の経路という。
また、第2の冷却部50での冷却を行わずにEGRガスをエンジン10内に導入する場合、切り換えバルブ70は、第1流路部62を第3流路部66に連通させる。これにより、EGRガスは、第3流路部66から直接吸気出口部40の上部に連通する下流出口部40Bに到達する。この経路を第2の経路という。
このように、切り換えバルブ70は、EGRガスの供給先を、第2の冷却部50での冷却を行った後にエンジン10内に導入する第1の経路と、第2の冷却部50での冷却を行わずにエンジン10内に導入する第2の経路との間で切り換える際の切り換え手段として機能する。
このような切り換え手段を設けることによって、エンジン10の運転状態に応じてクールドEGRガスとホットEGRガスとをエンジン本体12に供給する上で有利となり、例えば冷態時にホットEGRガスを供給した場合において、HCやCOの発生を抑制する上で有利となる。また、例えば温態時にクールドEGRガスあるいはホットEGRガスを供給した場合において、NOxの発生を抑制する上で有利となる。
【0026】
次にインタークーラ24の基本的な動作について説明する。
エンジンの運転中、吸気は、インタークーラ24の吸気入口部38から第1の冷却部48に導入される。
第1の冷却部48の冷却通路部36を通ることによって冷却された吸気は、吸気出口部40から各吸気ポートへ導入される。
この際、冷却通路部36で生成された凝縮水2は、吸気と共に冷却通路部36の下流端へ流され、吸気出口部40に排出される。吸気出口部40に排出された凝縮水2は、重力により貯留部58に流れ落ち、貯留部58に貯留される。
ここで、高圧EGRバルブ68が開となり、切り換えバルブ70が第1流路部62を第2流路部64に連通させる状態に切り換えられると、EGRガス導入口60から導入されたEGRガスは、第1流路部62、第2流路部64、第4流路部76、第3流路部66をこれらの順番に通る(第1の経路)。
EGRガスは、第2流路部64を通ることで貯留部58の底壁5806を介して貯留部58に貯留された凝縮水2と熱交換が行なわれ冷却される。また、凝縮水2はEGRガスと熱交換が行なわれることで温度が上昇し蒸発する。
冷却されたEGRガスと蒸発した凝縮水2は、吸気とともに各下流出口部40Bを介してエンジンの各吸気ポートに導入される。
すなわち、この場合は、クールドEGRガスが吸気に還流されることになる。
【0027】
一方、高圧EGRバルブ68が開となり、切り換えバルブ70が第1流路部62を第3流路部66に連通させる状態に切り換えられると、EGRガス導入口60から導入されたEGRガスは、第1流路部62から第3流路部66に導かれる(第2の経路)。
第3流路部66に導かれたEGRガスは、第2の冷却部50による冷却がなされることなく、第3流路部66の開口72から吸気とともに各下流出口部40Bを介してエンジンの各吸気ポートに導入される。
すなわち、この場合は、ホットEGRガスが吸気に還流されることになる。
【0028】
このように、インタークーラ24には、第1の冷却部48で生じる凝縮水2とEGRガスとを熱交換してEGRガスを冷却する第2の冷却部50が設けられている。
そのため、凝縮水2が発生するものの凝縮水2をEGRガスによって蒸発させることができる。
したがって、従来のように凝縮水2の発生を抑制するためにインタークーラ24の冷却性能を低下させる必要がなく、インタークーラ24の冷却性能を維持しつつ発生した凝縮水2の量の増加を抑制する上で有利となり、エンジンの出力低下を抑制する上で有利となる。
【0029】
つづいて、インタークーラ24を制御するインタークーラ制御装置25について説明する。
図10は、インタークーラ制御装置25の構成を示すブロック図である。
インタークーラ制御装置25は、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成され、上記CPUが上記制御プログラムを実行することによって、インタークーラ制御装置25として機能する。
なお、
図10ではインタークーラ制御装置25とECU(Engine Control Unit)69とを別体として図示しているが、インタークーラ制御装置25とECU69の一機能として実現してもよい。
【0030】
インタークーラ制御装置25は、吸気冷却制御部2502、EGR冷却制御部2504、EGR供給制御部2506を含んで構成される。
吸気冷却制御部2502は、第1の冷却部48における吸気の冷却効率を制御する。
後述のように、吸気冷却制御部2502は、第2の冷却部50内の凝縮水の量や下流出口部40Bを通過する吸気とEGRガスの混合気の温度に基づいて、第1の冷却部48の冷却効率を変化させる。
本実施の形態では、吸気冷却制御部2502は、第1の冷却部48の電動ウォーターポンプ30における冷媒の吐出量(ポンプ回転数)を変更することにより第1の冷却部48における吸気の冷却効率を制御する。
より詳細には、電動ウォーターポンプ30の吐出量(回転数)を増大させると、冷媒の循環量が多くなり、吸気から奪うことができる熱量が多くなるため第1の冷却部48における冷却効率が向上する。また、電動ウォーターポンプ30の吐出量(回転数)を減少させると、冷媒の循環量が少なくなり、吸気から奪うことができる熱量が少なくなるため第1の冷却部48における冷却効率が低下する。
【0031】
EGR冷却制御部2504は、第2の冷却部50におけるEGRガスの冷却の有無を制御する。
本実施の形態では、EGR冷却制御部2504は、切り換えバルブ70の状態を変更することにより、EGRガスの供給先を、第2の冷却部50での冷却を行った後に吸気に還流する第1の経路と、第2の冷却部50での冷却を行わずに吸気に還流する第2の経路とに配分する。
すなわち、EGR冷却制御部2504は、EGRガスの冷却を行ってクールドEGRガスを吸気に還流してエンジン10に導入する場合には、第1流路部62を第2流路部64に連通させる状態に切り換えバルブ70を切り換える。
また、EGR冷却制御部2504は、EGRガスの冷却を行わずにホットEGRガスを吸気に還流してエンジン10に導入する場合には、第1流路部62を第3流路部66に連通させる状態に切り換えバルブ70を切り換える。
また、切り換えバルブ70は、第2流路部64へのEGRガス流量と第3流路部66へのEGRガス流量とを連続的に切り換えることができる。すなわち、EGR冷却制御部2504は、切り換えバルブ70の状態を制御することにより、第1の経路を経たクールドEGRガス量と、第2の経路を経たホットEGRガス量とを任意に調整することができる。
【0032】
EGR供給制御部2506は、吸気へのEGRガスの還流量および還流するEGRガスの種類(高圧EGRガスおよび低圧EGRガス)を制御する。
本実施の形態では、EGR供給制御部2506は、高圧EGRバルブ68および低圧EGRバルブ2008の開閉量を変更することにより、吸気への高圧EGRガスの還流量と低圧EGRガスとの還流量とを配分する。
すなわち、EGR供給制御部2506は、高圧EGRガスを吸気に還流する場合には高圧EGRバルブ68を開状態とし、高圧EGRガスを吸気に還流しない場合には高圧EGRバルブ68を閉状態とする。また、EGR供給制御部2506は、低圧EGRガスを吸気に還流する場合には低圧EGRバルブ2008を開状態とし、低圧EGRガスを吸気に還流しない場合には低圧EGRバルブ2008を閉状態とする。また、各バルブの開閉量の大きさにより、各EGRガスの還流量が変更可能である。
【0033】
ここで、吸気に還流するEGRガスの種類について説明する。
本実施の形態では、吸気に対してクールドEGRガス、ホットEGRガス、低圧EGRガスの3種類のEGRガスを還流可能である。
これら3種類のEGRガスのいずれを吸気に還流するかは、車両の状態、具体的にはエンジン冷却液温、エンジン回転数および出力トルクによって切り換える。
図11は、吸気に還流するEGRガスの種類を示すマップである。
図11A〜
図11Cは、それぞれエンジン冷却液の温度別のマップとなっており、
図11Aはエンジン冷却液温度<40℃の低温状態、
図11Bは40℃≦エンジン冷却液温度<60℃の加温状態、
図11Cはエンジン冷却液温度≧60℃の適温状態である。車両の走行中は、エンジン本体12が冷えるのを防ぐため、エンジン冷却液温度≧60℃とするのが好ましい。
また、
図11A〜
図11Cの縦軸はエンジン出力トルク、横軸はエンジン回転数である。
なお、出力トルクおよびエンジン回転数は、例えば車両のECU69(
図10参照)から出力される情報に基づいて判定する。
【0034】
図11Aに示すエンジン冷却液温度<40℃の低温状態では、エンジン回転数および出力トルクが低〜中程度の領域でホットEGRガス(図中「高圧EGR(H)」と表記)のみが還流される。これは、ホットEGRガスの導入によりエンジン冷却液温度およびエンジン本体12の暖機を促進するためである。
なお、エンジン回転数および出力トルクが高くなると、排出ガスと吸気との圧力差が小さくなり、EGRガスが吸気に還流できなくなるため、EGRガスの還流は行われない。
【0035】
図11Bに示す40℃≦エンジン冷却液温度<60℃の加温状態では、EGRガスが還流される領域は
図11Aに示すエンジン冷却液温度<40℃の低温状態と同じであるが、その種類が異なる。
図11Bでは、エンジン回転数が低〜中程度かつ出力トルクが低い領域では、ホットEGRガスが還流されるが、出力トルクが上がるにつれ、ホットEGRガスに加えてクールドEGRガス(図中「高圧EGR(C)」と表記)が還流される。還流されるクールドEGRガスの量は出力トルクが上がるにつれて増大し、最終的にはクールドEGRガスのみが還流される。
このように出力が増加するにつれてクールドEGRガスを還流するのは、クールドEGRガスの密度がホットEGRガスよりも大きく、NOxの低減効果が大きいためである。一方で、出力が低い状態でホットEGRガスを還流するのは、エンジン冷却液等の暖機を促進するためである。
【0036】
図11Cに示すエンジン冷却液温度≧60℃の適温状態では、エンジン回転数および出力トルクが高い領域で低圧EGRガス(図中「低圧EGR」と表記)が還流される。これは、低圧EGRガスは吸気とともにコンプレッサ1802で圧縮されてエンジン本体12に供給されるので、上述した圧力差の問題が生じないためである。一方で、他の温度領域で低圧EGRガスを還流しないのは、低圧EGRガスを冷却する低圧EGRクーラ2006の冷媒としてエンジン冷却液を使用しており、エンジン冷却液の温度が低いうちに低圧EGRクーラ2006を稼働させると、低圧EGRクーラ2006内に凝縮水が発生する可能性があるためである。
図11Cでも、エンジン回転数が低〜中程度、かつ出力トルクが低い領域でホットEGRガスが還流される。また、出力トルクが上がるにつれ、ホットEGRガスに加えて低圧EGRガスが還流される。さらに出力トルクが上がった場合には、クールドEGRガスに加えて低圧EGRガスが還流される。
【0037】
次に、エンジン10の燃料カット時の制御について説明する。
車両の走行時、エンジン回転数が所定値以上の状態でアクセルペダルを離した場合など、走行状態に応じて燃料カットが行われる場合がある。一方で、燃料カット中は燃料の燃焼が行われていないため、通常時と同様に吸気の冷却を行うとエンジン温度が低下してエンジン10の出力効率が低下するなどの課題がある。
このため、インタークーラ制御装置25は、以下のような処理を行ってエンジン温度を適切に保っている。
【0038】
図12は、燃料カット時におけるインタークーラ制御装置25の処理を示すフローチャートである。
図12のフローチャートにおいて、インタークーラ制御装置25は、まず、エンジン10で燃料カットが行わるか否かを判断する(ステップS1202)。
燃料カットの実施の有無は、例えばECU69から出力される車両状態情報に基づいて判断する。
燃料カットが行われない場合には(ステップS1202:Noのループ)、そのまま待機する。
燃料カットが行われる場合(ステップS1202:Yes)、インタークーラ制御装置25は、低圧EGRガスの導入を停止(または導入量を減少)する(ステップS1204)。
すなわち、燃料カットが行われる場合は、インタークーラ制御装置25のEGR供給制御部2506が低圧EGRバルブ2008の開度を小さくして、燃料カットが行われない場合よりも低圧EGRガスの吸気への還流量を減少させる。
これは、エンジン本体12や排気ガス浄化装置26の温度が低下するのを防ぐためである。
なお、車両の走行状態が低圧EGRガスが導入されない領域である場合(例えば
図11Aおよび
図11Bのようにエンジン冷却液温度が上がり切っていない状態など)には、ステップS1204は省略する。
【0039】
次に、インタークーラ制御装置25は、貯留部58に設置された凝縮水位センサ51の測定結果を参照して、凝縮水2の量が上限値(所定量)以上か否かを判断する(ステップS1206)。
凝縮水2の量が上限値以上でない場合は(ステップS1206:No)、貯留されている凝縮水2の量が適当であると判断し、クールドEGRガス(高圧EGR(C))の導入を停止、または導入量を減らすとともに(ステップS1208)、ホットEGRガス(高圧EGR(H))の導入を開始または増量する(ステップS1210)。
すなわち、エンジン10で燃料カットが行われる場合は、インタークーラ制御装置25はEGR冷却制御部2504によって切り換えバルブ70の状態を切り換えることにより、エンジン10で燃料カットが行われない場合よりも第2の経路に供給するEGRガスの量を増加させる。
これは、燃料の燃焼が行われていないエンジン本体12に高温のホットEGRガスを導入することによって、エンジン本体12の温度を保つためである。
【0040】
一方、凝縮水2の量が上限値以上である場合は(ステップS1206:Yes)、貯留されている凝縮水2の量が多すぎると判断し、クールドEGRガス(高圧EGR(C))の導入を開始または増量するとともに(ステップS1212)、ホットEGRガス(高圧EGR(H))の導入を停止、または導入量を減らす(ステップS1214)。
すなわち、第2の冷却部50における凝縮水2の量が所定量以上の場合には、インタークーラ制御装置25はEGR冷却制御部2504によって切り換えバルブ70の状態を切り換えることにより、凝縮水2の量が所定量未満の場合よりも第1の経路に配分するEGRガスの量を増加させる。
これにより、第1の経路(貯留部58の底壁5806の)において凝縮水2とEGRガスとの熱交換が行われて、凝縮水2の温度が上昇する。その結果、凝縮水2が蒸発し、貯留部58における凝縮水量が減少する。よって、例えば過剰な凝縮水12がエンジン本体12に導入されエンジン出力が低下するなどの不具合を防止することができる。
【0041】
続いて、インタークーラ制御装置25は、各EGRガスの導入量を変更した後に下流出口部40Bを通過する吸気とEGRガスの混合気の温度が所定の目標温度(所定温度)であるか否かを判断する(ステップS1216)。なお、目標温度は所定の幅を有する温度帯であってもよい。
混合気の温度が目標温度である場合には(ステップS1216:Yes)、混合気の温度が適切に保たれているためステップS1202に戻り以降の処理をくり返す。
また、混合気の温度が目標温度でない場合は(ステップS1216:No)、混合気の温度が目標温度を超えているか(ステップS1218:Yes)、目標温度未満か(ステップS1218:No)を判断する。
混合気の温度が目標温度を超えている場合(ステップS1218:Yes)、インタークーラ制御装置25は吸気冷却制御部2502によって電動ウォーターポンプ30の吐出量を増加させる(ステップS1220)。すなわち、第1の冷却部48における冷却効率を向上させる。
この結果、第1の冷却部48での吸気の冷却が促進されて、吸気の温度が低下する。よって、下流出口部40Bを通過する吸気とEGRガスの混合気の温度が低下し、エンジン本体12の過度な加熱を防止することができる。
また、混合気の温度が目標温度未満である場合には(ステップS1218:No)、インタークーラ制御装置25は吸気冷却制御部2502によって電動ウォーターポンプ30の吐出量を減少させる(ステップS1222)。すなわち、第1の冷却部48における冷却効率を低下させる。
この結果、第1の冷却部48での吸気の冷却が穏やかになり、吸気の温度が上昇する。よって、下流出口部40Bを通過する吸気とEGRガスの混合気の温度が上昇し、エンジン本体12の過度な冷却を防止することができる。
すなわち、吸気冷却制御部2502は、混合気の温度が所定温度を超える場合には、混合気の温度が所定温度の場合よりも第1の冷却部48の冷却効率を向上させ、混合気の温度が所定温度未満の場合には、混合気の温度が所定温度の場合よりも第1の冷却部48の冷却効率を低下させる。
このような制御により、エンジン本体12に導入される混合気の温度を適切に保ち、燃焼効率を向上させることができる。
その後は、ステップS1202に戻り、以降の処理をくり返す。
【0042】
以上説明したように、実施の形態にかかるインタークーラ制御装置25は、エンジン10で燃料カットが行われる場合は燃料カットが行われない場合よりも第2の経路に供給するEGRガスの量を増加させ、冷却していないホットEGRガスをエンジンに還流するので、燃料の燃焼が行われていないエンジン本体12の温度が過度に低下するのを防止する上で有利となる。
また、インタークーラ制御装置25は、第2の冷却部50内の凝縮水2が所定量以上の場合には第1の経路に配分するEGRガスの量を増加させるので、第2の冷却部50における凝縮水2とEGRガスとの熱交換が促進され、凝縮水温度が上がり、凝縮水の蒸発(減少)を促す上で有利となる。
また、インタークーラ制御装置25は、高圧EGRガスと低圧EGRガスとをエンジン10に還流可能な場合において、燃料カットが行われる場合には低圧EGRガスの還流量を減少させるので、エンジン本体12の温度や排気ガス浄化装置26の温度が過度に低下するのを防止する上で有利となる。
また、インタークーラ制御装置25は、エンジン10に導入される吸気とEGRガスとの混合気の温度に基づいて第1の冷却部48の冷却効率を変更するので、混合気の温度を適切に保ち、エンジン10の燃焼効率を向上させる上で有利となる。
【0043】
なお、本実施の形態では、インタークーラ24において、吸気に対してクールドEGRガス、ホットEGRガス、低圧EGRガスの3種類のEGRガスを還流可能であるものとしたが、これに限らず、本発明は吸気を冷却した際に生じる凝縮水でEGRガスを冷却するインタークーラにおいて、EGRガスの冷却の有無を切り換え可能な機構を有していれば適用可能である。すなわち、本発明は、吸気に還流するEGRガスをホットEGRガスとクールドEGRガスとに切り換え(配分)できるインタークーラであれば適用可能であり、例えば低圧EGR装置20を備えていなくてもよい。
【0044】
また、実施の形態では、インタークーラ24がインテークマニホールド1404と一体的に構成されている場合について説明したが、インタークーラ24は、インテークマニホールド1404と別体に構成され、インテークマニホールド1404の上流側に配置されていてもよい。