(58)【調査した分野】(Int.Cl.,DB名)
前記前群中のレンズであって、物体側に凸面を向けたメニスカス形状のレンズのうち、少なくとも一つのレンズは、以下の条件式を満足する非球面を有することを特徴とする請求項1から29のいずれか一項に記載のズームレンズ。
30°<ASPRθ<70°
ここで、
ASPRθは、前記少なくとも1つのレンズの像側の面の所定の位置における面の傾き、
前記所定の位置は、前記少なくとも1つのレンズにおいて有効口径が最大となる位置、
前記面の傾きは、前記所定の位置における面の接線と光軸とが交わる角度、
である。
【発明を実施するための形態】
【0015】
実施例の説明に先立ち、本発明のある態様に係る実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。
【0016】
本実施形態のズームレンズについて説明する。まず、基本構成について説明する。
【0017】
本実施形態のズームレンズの基本構成では、ズームレンズは、物体側から像側に順に、負の屈折力を有する前群と、開口絞りを含み正の屈折力を有する後群と、からなり、前群は、負の屈折力を有する第1のレンズと、正の屈折力を有する第3のレンズと、を含み、第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であり、後群は、物体側から像側に順に、正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有し、第2レンズ群又は第3レンズ群は、フォーカスレンズ群を有し、広角端から望遠端への変倍に際して、各レンズ群の間隔は変化し、かつ、前群と後群との間隔は狭くなる。
【0018】
基本構成では、ズームレンズは、物体側から像側に順に、負の屈折力を有する前群と、開口絞りを含み正の屈折力を有する後群と、からなる。これにより、光学系の構成を、レトロフォーカスタイプの構成にすることができる。その結果、超広画角でありながら、適度な長さのバックフォーカスを確保することが容易となる。ここで、超広画角とは、例えば105°以上の画角、より好ましくは、110°以上の画角のことである。
【0019】
また、基本構成では、前群は、負の屈折力を有する第1のレンズと、正の屈折力を有する第3のレンズと、を含み、第1のレンズは最も物体側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状である。
【0020】
上述のように、前群は負の屈折力を有している。そこで、前群の負の屈折力を大きくすると、光学系の径を小さくすることができる。ただし、像面湾曲と非点収差の発生量は、軸外主光線の高さが高くなるにつれて増加する傾向を示す。ここで、超広画角な光学系では、軸外主光線の高さは前群を通過するときに最も高くなる。そのため、前群の負の屈折力を大きくすると、画角を超広画角にした場合に、像面湾曲と非点収差の発生量が増加しやすくなる。
【0021】
そこで、前群に、負の屈折力を有する第1のレンズを配置している。そして、第1のレンズを前群の最も物体側に配置すると共に、第1のレンズの形状を物体側に凸面を向けたメニスカス形状にしている。
【0022】
これにより、軸外の主光線の高さが最も高くなる前群において、開口絞り側に凹面を向けたメニスカスレンズが少なくとも1つ配置されることになる。このようにすることで、前群における負の屈折力を大きくしつつ、軸外光線を徐々に屈折することができる。すなわち、急激な光線の屈折を抑制することができる。この結果、像面湾曲と非点収差の発生量を低減しつつ、画角を超広画角にすることができる。
【0023】
更に、前群に、正の屈折力を有する第3のレンズを配置している。このようにすることで、軸上色収差と倍率色収差の発生を抑制できる。また、望遠端付近における球面収差の発生量を軽減できる。
【0024】
また、広角端から望遠端への変倍に際して、前群と後群との間隔は狭くなる。このようにすることで、大きな変倍作用を得ることができる。なお、前群と後群との間隔は、近軸上の間隔である。
【0025】
また、後群は、物体側から像側に順に、正の屈折力を有し、開口絞りより物体側に位置する第2レンズ群と、第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する。そして、広角端から望遠端への変倍に際して、各レンズ群の間隔が変化する。なお、各レンズ群の間隔は、近軸上の間隔である。
【0026】
上述のように、基本構成では、光学系の構成がレトロフォーカスタイプの構成になっている。レトロフォーカスタイプの構成において、更に光学系を細径化するには、前群の負の屈折力を大きくする必要がある。特に、超広画角ズームレンズにおいて、例えば、1.9倍以上の変倍比を確保した上で、光学系の全長を短縮するには、前群のみならず、後群の屈折力を大きくする必要がある。
【0027】
ここで、前群の負の屈折力を大きくしすぎると、前群において大きな正の像面湾曲が発生し、かつ、変倍時に、軸外収差、特に非点収差が変動し易くなる。そこで、光学系の小型化を維持しつつ、収差の発生量の低減や収差の変動を抑制するために、後群内で収差を良好に補正しておく必要がある。
【0028】
上述のレンズ群構成により、広角端から望遠端への変倍に際して、前群で発生する負のディストーションを第2レンズ群および第3レンズ群で低減するとともに、第4レンズ群で、像面湾曲の発生を良好に低減することができる。
【0029】
また、正の屈折力を有する第2レンズ群によって、前群で発生する球面収差を低減することができると同時に、広角端から望遠端への変倍に際して、球面収差の変動を低減することができる。この結果、本ズームレンズによれば、高変倍化も容易にすることができる。
【0030】
なお、第2レンズ群と第3レンズ群の両方に正レンズを配置し、正レンズの屈折力を大きくすることが好ましい。このようにすることで、像面湾曲の発生量を低減することができる。
【0031】
また、第2レンズ群又は第3レンズ群は、フォーカスレンズ群を有する。
【0032】
第2レンズ群又は第3レンズ群において、フォーカスレンズ群を配置すると、広角端付近で、開口絞りの近傍にフォーカスレンズ群が位置することになる。ここで、開口絞りの近傍では光束径が小さくなる。よって、後群の中でレンズ径がより小さくなる場所に、フォーカスレンズ群を配置することができる。その結果、フォーカスレンズ群を小径化することができる。
【0033】
また、開口絞りよりも物体側に正の屈折力を有するフォーカスレンズ群を配置し、かつ、フォーカシングに際して、フォーカスレンズ群のみが、光軸に沿って移動することが好ましい。このようにすると、開口絞りよりも像側には、フォーカシングの際に移動するレンズ群が存在しない。そのため、開口絞りよりも像側に、所定のスペースを確保する必要がなくなる。その結果、開口絞りよりも像側に位置するレンズ群を小径化することができる。なお、所定のスペースとは、フォーカシングの際にレンズ群が移動するために必要なスペースである。
【0034】
また、超広画角な光学系では、より広い範囲を撮影することが可能である。このような光学系では、フォーカシングに際して発生する像面湾曲の変動が、結像性能を悪化させる場合がある。特に、メリディオナル面における像面湾曲の変動は、近距離物体合焦時における結像性能を悪化させる場合がある。
【0035】
前群は、メリディオナル面における像面湾曲を大きく発生させる場合がある。この場合、フォーカシングに際して、前群を通る周辺光線の高さが変動すると、メリディオナル面における像面湾曲の変動も大きくなる。特に、近距離物体合焦時では、前群を通る周辺光線の高さが大きく変動する。
【0036】
そこで、フォーカスレンズ群を、開口絞りより物体側に配置することが好ましい。このようにすると、フォーカスレンズ群は前群より像側に位置する。ここで、周辺光線の高さは、前群内に比べて前群よりも像側で低くなっている。よって、フォーカスレンズ群では、周辺光線の高さが低くなる。
【0037】
この場合、フォーカスレンズ群が移動しても、前群を通る周辺光線の高さの変動を小さく抑えることができる。これにより、メリディオナル面における像面湾曲の変動も抑えることができる。その結果、近距離物体へのフォーカシングに際しても、光学系の結像性能を高く維持することができる。
【0038】
また、フォーカスの感度は、フォーカスレンズ群の倍率と所定のレンズ群の倍率とに影響される。ここで、所定のレンズ群は、フォーカスレンズ群の像側面から像面までの間に位置するレンズ群である。そこで、開口絞りよりも物体側にフォーカスレンズ群を配置し、所定のレンズ群の倍率を適切に設定することによって、フォーカスの感度を高めることができる。その結果、フォーカスレンズ群の移動量を少なくすることができる。
【0039】
また、フォーカスレンズ群の移動量を少なくできるので、フォーカシングの際に、前群における周辺光線の高さの変動を少なくすることができる。そのため、メリディオナル面における像面湾曲の変動を抑えることができる。この結果、近距離物体合焦時においても、光学系の結像性能を高く維持することができる。
【0040】
その結果、近距離物体へのフォーカシングに際しても、良好な光学性能を維持することができる。また、フォーカスレンズ群の小型化と軽量化が実現できる。これにより、フォーカススピードの高速化と、フォーカスレンズ群の駆動機構の軽量化と少スペース化ができる。
【0041】
なお、開口絞りの近くでは、軸上光線と周辺光線との分離量が少ない。そこで、開口絞りの近くにフォーカスレンズ群を配置することが好ましい。この位置では、軸上光束の光束径が大きくなっている。軸上光束の光束径が大きいと、より効果的にフォーカスレンズ群の倍率を高めることができる。
【0042】
このように、開口絞りの近くにフォーカスレンズ群を配置すると、より効果的にフォーカスレンズ群の倍率を高められる箇所、すなわち、軸上光束が太い箇所でフォーカスできる。そのため、この位置でフォーカシングすることで、フォーカスの感度を高めつつ、前群における周辺光線の高さの変動を少なくすることができる。
【0043】
次に、本実施形態における好ましい態様について説明する。
【0044】
第1実施形態のズームレンズでは、上述の基本構成を備えると共に、以下の条件式(9−1)を満足することが好ましい。
1.65<SP
F1<9.0 (9−1)
ここで、
SP
F1=(r
F1o+r
F1i)/(r
F1o−r
F1i)
r
F1oは、第1のレンズの物体側面の近軸曲率半径、
r
F1iは、第1のレンズの像側面の近軸曲率半径、
である。
【0045】
条件式(9−1)の下限値を上回ることで、第1のレンズにおいて、物体側面と像側面との曲率差が大きくなりすぎることを抑制できる。その結果、非点収差の発生量を低減することができる。
【0046】
条件式(9−1)の上限値を下回ることで、第1のレンズにおいて、物体側面と像側面の曲率差が小さくなりすぎることを抑制できる。この場合、第1のレンズにおいて適切な大きさの屈折力を確保できるので、後群へ入射する光線の高さを低くできる。その結果、後群のレンズ径を小さくすることができる。また、前群の負の屈折力をある程度小さくできるので、物体側面の面頂が物体側に位置することを抑制できる。その結果、光学系の全長を短くするとともに、光学系を小径化することができる。
【0047】
第2実施形態のズームレンズは、上述の基本構成を備えると共に、以下の条件式(2)を満足することが好ましい。
−1.45<FB
w/f
F<−0.3 (2)
ここで、
FB
wは、広角端におけるバックフォーカス、
f
Fは、前群の焦点距離、
である。
【0048】
条件式(2)の下限値を上回ることで、広角端におけるバックフォーカスを短くすることができる。その結果、光学系を小型化することができる。また、前群の屈折力が大きくなりすぎることを抑制できるので、像面湾曲と非点収差の発生量を低減することができる。
【0049】
また、条件式(2)上限値を下回ることで、前群の屈折力を適切に設定することができる。その結果、光学系を小径化することができる。
【0050】
第3実施形態のズームレンズは、上述の基本構成を備えると共に、以下の条件式(1−3)を満足することが好ましい。
52<νd
Fnmax<110 (1−3)
ここで、
νd
Fnmaxは、前群に含まれる負の屈折力を有するレンズのアッベ数のうち、最大となるアッベ数、
である。
【0051】
条件式(1−3)の下限値を上回ることで、前群で発生する倍率色収差の発生量を低減することができる。また、条件式(1−3)上限値を下回ることで、硝材の選択の自由度を広く確保することができる。
【0052】
第4実施形態のズームレンズは、上述の基本構成を備えると共に、以下の条件式(4)を満足することが好ましい。
1.20<f
Rw/FB
w<5 (4)
ここで、
f
Rwは、広角端における後群の焦点距離、
FB
wは、広角端におけるバックフォーカス、
である。
【0053】
条件式(4)の下限値を上回ることで、広角端における後群の屈折力を適切に確保しつつ、球面収差と軸上色収差の発生量を低減することができる。また、広角端におけるバックフォーカスを短くできるため、光学系の全長を短くすることができる。更に、前群の屈折力を大きくすることができるため、光学系を小径化することができる。
【0054】
また、条件式(4)の上限値を下回ることで、後群の屈折力を適切に確保しつつ、光学系の全長を短くすることができる。更に、後群の正の屈折力を大きくすることで、像面湾曲の発生量を低減することができる。
【0055】
第1〜第4実施形態のズームレンズにおける好ましい態様について説明する。以下の説明では、第1〜第4実施形態のズームレンズを、単に「本実施形態のズームレンズ」という。
【0056】
本実施形態のズームレンズでは、以下の条件式(3−1)を満足することが好ましい。
−2.7<f
w×Fno
wmin/f
F<−0.5 (3−3)
ここで、
f
wは、広角端におけるズームレンズ全系の焦点距離、
Fno
wminは、広角端におけるFナンバーのうち、最小となるFナンバー、
f
Fは、前群の焦点距離、
である。
【0057】
条件式(3−3)の下限値を上回ることで、小径かつFナンバーが小さいズームレンズでありながら、画角を超広画角にすることが可能となる。また、条件式(3−3)の上限値を下回ることで、前群を小径化することができる。
【0058】
また、前群は、負の屈折力を有する第2のレンズを有し、第2のレンズは第1のレンズよりも像側に配置され、かつ、その形状は物体側に凸面を向けたメニスカス形状であることが好ましい。
【0059】
このようにすることで、前群における負の屈折力を大きくしつつ、軸外光線を徐々に屈折することができる。すなわち、急激な光線の屈折を抑制することができる。この結果、像面湾曲と非点収差の発生量を低減しつつ、画角を超広画角にすることができる。
【0060】
本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含むことが好ましい。
【0061】
このようにすることで、前群内での球面収差を良好に補正でき、また、変倍時の球面収差の変動を抑えることができる。その結果、変倍域の全域で良好な光学性能が得られる。また、像面湾曲、非点収差及び倍率色収差の発生を抑制しながら、前群の屈折力を大きくすることができる。この結果、入射瞳がより物体側に位置するため、前群を小径化することができる。なお、前群は、更に、負の屈折力を有するレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
【0062】
また、負の屈折力を有するレンズは、正の屈折力を有するレンズの近傍に配置されることが好ましい。例えば、第4のレンズは第3のレンズの近傍に配置されることが好ましい。このようにすることで、上述の効果をより大きくすることができる。
【0063】
また、本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含み、第4のレンズの形状はメニスカス形状であることが好ましい。
【0064】
このようにすることで、前群には、メニスカスレンズが3つ配置されることになる。この場合、超広画角で前群に入射してくる光線を、3枚のメニスカスレンズにより、徐々に光線を屈折させることができる。また、各メニスカスレンズでは、レンズへ入射する光線の角度を小さく抑えながら、徐々に光線を屈折させることができる。このため、各メニスカスレンズにおいて、像面湾曲、非点収差及び倍率色収差の発生を抑制することができる。なお、前群は、更に、負メニスカスレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
【0065】
また、本実施形態のズームレンズでは、前群は、更に、負の屈折力を有する第4のレンズを含み、第4のレンズの形状は、物体側に凸面を向けたメニスカス形状であることが好ましい。
【0066】
このようにすることで、前群には、第1のレンズと第2のレンズ以外に、負メニスカスレンズが配置されることになる。ここで、3つの負メニスカスレンズは、いずれも、物体側に凸面を、すなわち、像側に凹面を向けている。この場合、更に前群の負屈折力を大きくしつつ、急激な光線の屈折を抑制することができる。そのため、像面湾曲と非点収差の発生量を軽減できる。その結果、更なる超広画角化と光学系の小径化が容易になる。なお、前群は、更に、物体側に凸面を向けた負メニスカスレンズを含んでいても良い。このようにすることで、上述の効果をより大きくすることができる。
【0067】
また、本実施形態のズームレンズでは、第4のレンズは、第2のレンズよりも像側に配置されていることが好ましい。
【0068】
これにより、像面湾曲、非点収差及び倍率色収差の発生量を低減しながら、前群の屈折力を大きくすることができる。また、入射瞳がより物体側に位置するため、前群を小径化することができる。
【0069】
また、本実施形態のズームレンズでは、以下の条件式(5)を満足することが好ましい。
1.1<|r
F1i/f
F|<3 (5)
ここで、
r
F1iは、第1のレンズの像側面の近軸曲率半径、
f
Fは、前群の焦点距離、
である。
【0070】
条件式(5)の下限値を上回ることで、第1のレンズの屈折力が大きくなりすぎることを抑制できる。その結果、像面湾曲、非点収差及び歪曲収差の発生量を低減することができる。また、前群の総厚みを薄くできるので、光学系の全長を短縮することができる。
【0071】
条件式(5)の上限値を下回ることで、第1のレンズの屈折力が大きくなる。この場合、前群におけるレンズ径が小さくなるので、光学系を小型化することができる。また、像面湾曲と非点収差の発生量を低減しつつ、前群の屈折力を大きくすることができる。
【0072】
また、本実施形態のズームレンズでは、以下の条件式(6)を満足することが好ましい。
0.53<θgF
Fn<0.55 (6)
ここで、
θgF
Fnは、前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgF
Fn=(ng−nF)/(nF−nc)で表され、
ng、nF、ncは、それぞれ、アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
である。
【0073】
条件式(6)を満足することで、前群に用いる硝材の選択の自由度を広く確保しつつ、前群内での倍率色収差の発生を抑制することができる。
【0074】
また、本実施形態のズームレンズでは、以下の条件式(7)を満足することが好ましい。
0.01<θgF
Fn+0.0016×νd−0.6415<0.054 (7)
ここで、
θgF
Fnは、前群に含まれる負の屈折力を有するレンズのうち、アッベ数の値が最も大きいレンズにおける部分分散比であって、θgF
Fn=(ng−nF)/(nF−nc)で表され、
ng、nF、ncは、それぞれ、アッベ数の値が最も大きいレンズのg線、F線、C線での屈折率、
νdは、アッベ数の値が最も大きいレンズのアッベ数、
である。
【0075】
前群には、主に像面湾曲と非点収差の発生を抑制するために、負の屈折力を有するレンズが複数枚用いられている。ただし、負の屈折力を有するレンズによって、主に軸上色収差、倍率色収差及び球面収差が発生する場合がある。そこで、前群に正の屈折力を有するレンズを配置することで、これらの収差の発生量を低減することが容易になる。その結果、高い光学性能の確保が容易となる。
【0076】
ここで、前群の負の屈折力を大きくしつつ、色収差を良好に補正するには、正の屈折力を有するレンズの分散が、高分散であることが好ましい。しかしながら、正の屈折力を有するレンズの分散が高分散であると、2次スペクトルが大きく発生する場合がある。そのため、前群の負の屈折力を有するレンズには、2次スペクトルの発生量を低減できる特性を持つ硝材を使うことが、色収差の補正に対して有効となる。
【0077】
条件式(7)の下限値を上回ることで、前群内で発生する2次スペクトルの量を低減することができる。その結果、軸上色収差と倍率色収差の発生量を低減することができる。
【0078】
条件式(7)の上限値を下回ることで、前群内で発生する2次スペクトルの量が、補正過剰となることを抑制することができる。その結果、軸上色収差と倍率色収差のバランスをとることが可能となる。
【0079】
また、本実施形態のズームレンズでは、以下の条件式(8)を満足することが好ましい。
0.06<FB
w/LTL
w<0.20 (8)
ここで、
FB
wは、広角端におけるバックフォーカス、
LTL
wは、広角端におけるズームレンズの最も物体側の面から像面までの軸上距離、である。
【0080】
条件式(8)の下限値を上回ることで、広角端において、バックフォーカスに対して光学系の全長を短くすることができる。その結果、光学系の全長を短縮することができる。なお、軸上距離は、近軸上の距離である。
【0081】
条件式(8)の上限値を下回ることで、広角端において、光学系の全長に対してバックフォーカスを短くすることができる。その結果、光学系の全長を短縮することができる。また、光学系内に光学素子を配置する場合に、光学素子を配置するスペースを十分に確保することが可能となる。そのため、変倍域の全域で、高い光学性能を確保し易くなる。
【0082】
また、本実施形態のズームレンズでは、前群中のレンズであって、物体側に凸面を向けたメニスカス形状のレンズのうち、少なくとも一つのレンズは、以下の条件式(10)を満足する非球面を有することが好ましい。
30°<ASP
Rθ<70° (10)
ここで、
ASP
Rθは、少なくとも1つのレンズの像側の面の所定の位置における面の傾き、
所定の位置は、少なくとも1つのレンズにおいて有効口径が最大となる位置、
面の傾きは、所定の位置における面の接線と光軸とが交わる角度、
である。
【0083】
条件式(10)の下限値を上回ることで、非点収差と歪曲収差の発生量を低減することができる。条件式(10)の上限値を下回ることで、倍率色収差の発生量を低減することができる。
【0084】
また、本実施形態のズームレンズでは、変倍に際して、前群は移動することが好ましい。
【0085】
これにより、像面湾曲の発生量を変倍域の全域で低減することができる。
【0086】
また、本実施形態のズームレンズでは、第2レンズ群、又は、第3レンズ群は、手ぶれ低減レンズユニットを有し、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
【0087】
手ぶれによって、像ぶれが生じる。そこで、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることで、像ぶれの補正を行う。このようにすることで、手ぶれ低減レンズユニットの倍率を高めることができる。すなわち、手ぶれ低減レンズユニットの移動量に対して、像の移動量をより大きくすることができる。この結果、手ぶれ低減の感度を高めることができる。
【0088】
また、第2レンズ群は、手ぶれ低減レンズユニットを有し、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
【0089】
上述のように、前群が負の屈折力を有している。そこで、前群の像側に手ぶれ低減ユニットを配置し、手ぶれ低減レンズユニットを有する第2群に正の屈折力を持たせている。この結果、よりいっそう手ぶれ低減の感度を高めることができる。
【0090】
また、第2レンズ群は、手ぶれ低減レンズユニットであり、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
【0091】
これにより、手ぶれ低減レンズユニット内でのチルト誤差の発生を低減し、より安定した性能を確保することができる。
【0092】
また、第3レンズ群は、手ぶれ低減レンズユニットを有し、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
【0093】
また、第3レンズ群は、手ぶれ低減レンズユニットであり、手ぶれ低減レンズユニットを光軸と垂直な方向に移動させることにより、手ぶれによる像のぶれを低減することが好ましい。
【0094】
これにより、手ぶれ低減レンズユニット内でのチルト誤差の発生を低減し、より安定した性能を確保することができる。
【0095】
また、本実施形態のズームレンズでは、手ぶれ低減レンズユニットは、フォーカスレンズ群よりも像側に配置されていることが好ましい。
【0096】
手ぶれ低減レンズユニットは、より高速で移動できる方が好ましい。また、移動範囲も狭いほうが好ましい。そのためには、手ぶれ低減レンズユニットの径は、できるだけ小さいことが望ましい。すなわち、光束がより細くなっている位置にあるレンズ(レンズユニット)を、手ぶれ低減レンズユニットとすることが望ましい。
【0097】
フォーカスレンズ群から出射した光束は、開口絞りを通過する。よって、フォーカスレンズ群よりも像側では、光束径が小さくなっている。そこで、ここに手ぶれ低減レンズユニットを配置することで、手ぶれ低減レンズユニットの径を小さくすることができる。その結果、より良好に像ぶれの低減が行える。
【0098】
また、本実施形態のズームレンズでは、手ぶれ低減レンズユニットは、負の屈折力を有することが好ましい。
【0099】
これにより、手ぶれ低減レンズユニットが、より光束が細くなった部分に位置することとなる。その結果、手ぶれ低減レンズユニットの径や移動範囲を少なくできる。
【0100】
また、本実施形態のズームレンズでは、以下の条件式(11)を満足することが好ましい。
−25<DTL
w<7 (11)
ここで、
DTL
wは、広角端における最大画角でのディストーションであって、DTL
w=(IH
w1−IH
w2)/IH
w2×100(%)で表され、
IH
w1は、無限物点からの広角端での最大画角が像面に結像する実像高、
IH
w2は、無限物点からの広角端での最大画角が像面の結像する近軸像高、
である。
【0101】
ディストーションの発生量を適切に設定することで、前群の屈折力を大きくして超広画角化と光学系の全長の短縮を図りつつ、光学系を小径化することができる。
【0102】
条件式(11)の下限値を上回ることで、樽型ディストーションの発生量を低減することができる。その結果、パースペクティブ効果を強めることができる。また、電気的にディストーションを補正した場合、画像周辺部の画像が大きく引き伸ばされることにより画像が劣化することがあるが、この劣化を抑制することができる。
【0103】
条件式(11)の上限値を下回ることで、前群を小径化することができる。その結果、光学系を小型化することができる。
【0104】
また、本実施形態のズームレンズは、所定のレンズ群を有し、所定のレンズ群は、フォーカスレンズ群の像側面から像面までの間に位置するレンズ群であって、以下の条件式(12)を満足することが好ましい。
0.10<|MG
fob2×(MG
fo2−1)|<3.0 (12)
ここで、
MG
foは、任意の位置でのフォーカスレンズ群の横倍率、
MG
fobは、任意の位置と同位置での、所定のレンズ群の横倍率、
である。
【0105】
条件式(12)の下限値を上回ることで、フォーカスレンズ群の移動量を少なくすることができる。その結果、光学系の全長を短縮することができる。条件式(12)の上限値を下回ることで、フォーカスレンズ群の位置制御が容易にできる。その結果、正確な合焦をすることができる。
【0106】
また、本実施形態のズームレンズでは、以下の条件式(13)を満足することが好ましい。
−2.0<f
F/(f
w×f
t)
1/2<−1.0 (13)
f
Fは、前群の焦点距離、
f
wは、広角端におけるズームレンズ全系の焦点距離、
f
tは、望遠端におけるズームレンズ全系の焦点距離、
である。
【0107】
条件式(13)は、前群の焦点距離と広角端および望遠端の焦点距離の積との比に関するものである。
【0108】
条件式(13)の下限値を上回ることで、前群の屈折力が大きくなりすぎることを抑制することができる。その結果、広角端における非点収差と倍率色収差の発生量を低減することができる。
【0109】
条件式(13)の上限値を下回ることで、前群の屈折力を適度に大きくすることができるので、入射瞳をより物体側に位置させることができる。その結果、前群を小径化することができる。
【0110】
また、本実施形態のズームレンズでは、以下の条件式(14)を満足することが好ましい。
1.6<SP
F2<6 (14)
ここで、
SP
F2=(r
F2o+r
F2i)/(r
F2o−r
F2i)
r
F2oは、第2のレンズの物体側面の近軸曲率半径、
r
F2iは、第2のレンズの像側面の近軸曲率半径、
である。
【0111】
条件式(14)の下限値を上回ることで、広角端において、バックフォーカスに対して光学系の全長を短くすることができる。その結果、光学系の全長を短縮することができる。
【0112】
条件式(14)の上限値を下回ることで、広角端において、光学系の全長に対してバックフォーカスを短くすることができる。その結果、光学系の全長を短縮することができる。また、光学系内に光学素子を配置する場合に、光学素子を配置するスペースを十分に確保することが容易になる。そのため、変倍域全域における光学性能を良好にすることができる。
【0113】
第2レンズ群は、フォーカスレンズ群を有することが好ましい。
【0114】
第3レンズ群は、フォーカスレンズ群を有することが好ましい。
【0115】
また、本実施形態のズームレンズでは、以下の条件式(15−1)を満足することが好ましい。
0.3<SP
F4<4.5 (15−1)
ここで、
SP
F4=(r
F4o+r
F4i)/(r
F4o-r
F4i)
r
F4oは、第4のレンズの物体側面の近軸曲率半径、
r
F4iは、第4のレンズの像側面の近軸曲率半径、
である。
【0116】
条件式(15−1)の下限値を上回ることで、広角端において、バックフォーカスに対して光学系の全長を短くすることができる。その結果、光学系の全長を更に短縮することができる。
【0117】
条件式(15−1)の上限値を下回ることで、広角端において、光学系の全長に対してバックフォーカスを短くすることができる。その結果、光学系の全長を更に短縮することができる。また、光学系内に光学素子を配置する場合に、光学素子を配置するスペースを十分に確保することが容易になる。そのため、変倍域全域における光学性能を良好にすることができる。
【0118】
また、本実施形態のズームレンズでは、フォーカスレンズ群は、後群の最も物体側に配置されていることが好ましい。
【0119】
後群は開口絞りを有しているので、周辺光線の高さは、前群内に比べて開口絞りの位置で低くなっている。そこで、フォーカスレンズ群を後群の最も物体側に配置することで、フォーカスレンズ群では、周辺光線の高さが低くなる。
【0120】
この場合、フォーカスレンズ群が移動しても、前群を通る周辺光線の高さの変動を小さく抑えることができる。これにより、メリディオナル面における像面湾曲の変動も抑えることができる。その結果、近距離物体へのフォーカシングに際しても、光学系の結像性能を高く維持することができる。
【0121】
また、本実施形態のズームレンズでは、最も像側に位置するレンズ群は正の屈折力を有することが好ましい。
【0122】
超広画角化、光学系の小型化及び光学系の小径化のためには、前群の屈折力を大きくすることが必要であるが、前群の屈折力を大きくすると、前群で大きな正の像面湾曲が生じる。そこで、最も像側に正の屈折力を有するレンズ群を配置することで、前群で発生する大きな正の像面湾曲を、容易に補正することができる。その結果、変倍域の全域で像面湾曲が良好に補正された状態を確保できる。
【0123】
また、本実施形態のズームレンズでは、前群は、第1レンズ群からなり、広角端から望遠端への変倍に際して、第1レンズ群は、一体となって移動することが好ましい。
【0124】
このようにすることで、前群内に、変倍に必要なスペースを設ける必要がない。そのため、前群を小型化することができる。
【0125】
移動方向や移動量が各レンズで異なると、場合によっては、レンズの移動に必要なスペースを余分に設ける必要が生じる。その結果、前群の全長が変化することがある。これに対して、前群が一体となって移動すると、前群内の全てのレンズが、同じ方向に、同じ量だけ移動する。この場合、前群の全長は変化しない。よって、このようにすることで、前群を小型化することができる。
【0126】
また、本実施形態のズームレンズでは、前群は、第1レンズ群からなり、後群は、第2レンズ群と、第3レンズ群と、第4レンズ群と、第5レンズ群と、からなるか、又は、後群は、第2レンズ群と、第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群と、からなり、広角端から望遠端への変倍に際して、各レンズ群の間隔は変化することが好ましい。
【0127】
このようにすることで、少ないレンズ群で、光学系の小型化と軽量化が十分になされ、かつ、Fナンバーに比べて十分に広い画角を持ちながらも諸収差が十分に低減されたズームレンズを実現することができる。
【0128】
また、本実施形態のズームレンズでは、以下のようにすることが好ましい。
【0129】
前群は、負の屈折力を有する4枚のレンズと、正の屈折力を有する1枚のレンズからなることが好ましい。
【0130】
前群は、物体側から像側に順に、負の屈折力を有し、かつ、物体側に凸面を向けたメニスカス形状の2枚のレンズと、負の屈折力を有する1枚のレンズと、2枚のレンズと、からなることが好ましい。
【0131】
前群は、物体側から像側に順に、負の屈折力を有し、かつ、物体側に凸面を向けたメニスカス形状の3枚のレンズと、両凹負レンズと、正の屈折力を有し、かつ、物体側面が物体側に凸面を向けたレンズと、からなることが好ましい。
【0132】
第4レンズ群は、両凹負レンズのみからなることが好ましい。
【0133】
広角端から望遠端への変倍に際して、前群は、像側に移動することが好ましい。
【0134】
広角端から望遠端への変倍に際して、第2レンズ群は、物体側に移動することが好ましい。
【0135】
広角端から望遠端への変倍に際して、第3レンズ群は、物体側に移動することが好ましい。
【0136】
広角端から望遠端への変倍に際して、第4レンズ群は、物体側に移動することが好ましい。
【0137】
また、本実施形態の撮像装置は、上述のズームレンズと、撮像面を持ち且つズームレンズにより撮像面上に形成された像を電気信号に変換する撮像素子と、を有することを特徴とする。
【0138】
このようにすることで、超広画角、小型でありながら、画質を劣化させずに高解像の画像を得るのに有利な撮像装置とすることが可能となる。
【0139】
また、上述の構成は相互に複数を同時に満足することがより好ましい。また、一部の構成を同時に満足するようにしてもよい。例えば、上述のズームレンズや撮像装置の何れかにて上述のズームレンズの何れかを用いるようにしてもよい。
【0140】
また、条件式については、それぞれの条件式を個別に満足させるようにしても良い。このようにすると、それぞれの効果を得やすくなるので好ましい。
【0141】
また、各条件式について、以下のように下限値、または上限値を変更しても良い、このようにすることで、各条件式の効果を一層確実にできるので好ましい。
【0142】
条件式(1−3)については、以下のようにすることが好ましい。
74<νd
Fnmax<110
80<νd
Fnmax<100
条件式(2)については、以下のようにすることが好ましい。
−1.40<FB
w/f
F<−0.4
−1.35<FB
w/f
F<−0.6
条件式(2−1)については、以下のようにすることが好ましい。
−1.50<FB
w/f
F<−0.5
−1.40<FB
w/f
F<−0.6
条件式(3−3)については、以下のようにすることが好ましい。
−2.30<f
w×Fno
wmin/f
F<−0.6
−1.80<f
w×Fno
wmin/f
F<−0.7
−2.00<f
w×Fno
wmin/f<−1.0
−1.80<f
w×Fno
wmin/f<−1.2
条件式(4)については、以下のようにすることが好ましい。
1.35<f
Rw/FB
w<3.5
1.45<f
Rw/FB
w<3.0
条件式(5)については、以下のようにすることが好ましい。
1.2<|r
F1i/f
F|<2.5
1.3<|r
F1i/f
F|<2.4
条件式(7)については、以下のようにすることが好ましい。
0.015<θgF
Fn+0.0016×νd−0.6415<0.048
0.025<θgF
Fn+0.0016×νd−0.6415<0.046
条件式(8)については、以下のようにすることが好ましい。
0.07<FB
w/LTL
w<0.18
0.08<FB
w/LTL
w<0.16
条件式(9−1)については、以下のようにすることが好ましい。
2.0<SP
F1<6.5
2.5<SP
F1<5.3
条件式(10)については、以下のようにすることが好ましい。
33°<ASP
Rθ<60°
35°<ASP
Rθ<58°
条件式(11)については、以下のようにすることが好ましい。
−23<DTL
w<6
−20<DTL
w<5
条件式(12)については、以下のようにすることが好ましい。
0.11<|MG
fob2×(MG
fo2−1)|<2.0
0.15<|MG
fob2×(MG
fo2−1)|<1.5
条件式(13)については、以下のようにすることが好ましい。
−1.9<f
F/(f
w×f
t)
1/2<−1.1
−1.8<f
F/(f
w×f
t)
1/2<−1.2
−1.7<f
F/(f
w×f
t)
1/2<−1.2
条件式(14)については、以下のようにすることが好ましい。
1.7<SP
F2<5.5
1.9<SP
F2<5.5
条件式(15−1)については、以下のようにすることが好ましい。
0.9<SP
F4<5.0
1.0<SP
F4<4.0
【0143】
以下に、本発明に係る撮像装置に用いられるズームレンズの実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
【0144】
各実施例では、広角側で発生する樽型の歪曲収差を電気的に補正したうえで画像の記録や表示を行っている。本実施例のズームレンズでは、矩形の光電変換面上に像が形成される。ここで、広角端では、樽型の歪曲収差が発生する。一方、中間焦点距離状態付近や望遠端では、歪曲収差の発生が抑えられている。
【0145】
この歪曲収差を電気的に補正するために、広角端では樽型形状となり、中間焦点距離状態や望遠端では矩形の形状となるように、有効撮像領域を設定している。そして、あらかじめ設定した有効撮像領域内の画像情報を画像処理により画像変換し、歪みを低減させた矩形の画像情報に変換する。
【0146】
本実施例のズームレンズでは、広角端での最大像高は、中間焦点距離状態での最大像や望遠端での最大像高よりも小さくなるようにしている。
【0147】
以下、ズームレンズの実施例1〜6について説明する。実施例1〜6のレンズ断面図を、それぞれ
図1〜
図6に示す。図中、(a)は、広角端におけるレンズ断面図、(b)は、中間焦点距離状態におけるレンズ断面図、(c)は、望遠端におけるレンズ断面図である。なお、(a)〜(c)は、いずれも、無限遠物体合焦時のレンズ断面図である。
【0148】
また、第1レンズ群はG1、第2レンズ群はG2、第3レンズ群はG3、第4レンズ群はG4、第5レンズ群はG5、第6レンズ群はG6、フォーカスレンズ群はGfo、開口絞り(明るさ絞り)はS、像面(撮像面)はIで示してある。また、フォーカスの際に移動するレンズ群をF、手ぶれ補正の際に移動するレンズをWで示している。
【0149】
なお、最も像側に位置するレンズ群と像面Iとの間に、ローパスフィルタを構成する平行平板や、電子撮像素子のカバーガラスを配置しても良い。この場合、平行平板の表面に、赤外光を制限する波長域制限コートを施しても良い。また、カバーガラスの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスにローパスフィルタ作用を持たせるようにしてもよい。
実施例1のズームレンズは、
図1に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
【0150】
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
【0151】
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、で構成されている。ここで、両凹負レンズL4と正メニスカスレンズL5とが接合されている。
【0152】
第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL6で構成されている。
【0153】
第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、両凹負レンズL9と、両凸正レンズL10と、両凸正レンズL11と、両凸正レンズL12とで構成されている。ここで、負メニスカスレンズL7と両凸正レンズL8とが接合されている。また、両凹負レンズL9と両凸正レンズL10とが接合されている。
【0154】
第4レンズ群G4は、両凹負レンズL13で構成されている。
【0155】
第5レンズ群G5は、両凸正レンズL14で構成されている。
【0156】
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は固定である。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
【0157】
フォーカシング時、第2レンズ群G2が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動する。手ぶれ補正時、第3レンズ群G3の負メニスカスレンズL7と両凸正レンズL8とが光軸と直交する方向に移動する。
【0158】
非球面は、負メニスカスレンズL3の両面と、正メニスカスレンズL6の両面と、両凸正レンズL12の両面と、両凸正レンズL14の両面との、合計8面に設けられている。
【0159】
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
【0160】
実施例2のズームレンズは、
図2に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
【0161】
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、負屈折力の第6レンズ群G6と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
【0162】
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、両凸正レンズL5と、で構成されている。
【0163】
第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。ここで、負メニスカスレンズL6と両凸正レンズL7とが接合されている。
【0164】
第3レンズ群G3は、両凸正レンズL8で構成されている。
【0165】
第4レンズ群G4は、両凸正レンズL9と、両凹負レンズL10と、で構成されている。
【0166】
第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、両凸正レンズL14と、で構成されている。ここで、負メニスカスレンズL12と正メニスカスレンズL13とが接合されている。
【0167】
第6レンズ群G6は、両凹負レンズL15と、両凸正レンズL16と、で構成されている。ここで、両凹負レンズL15と両凸正レンズL16とが接合されている。
【0168】
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は物体側に移動する。第6レンズ群G6は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
【0169】
フォーカシング時、第2レンズ群G2が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動する。手ぶれ補正時、第3レンズ群G3が光軸と直交する方向に移動する。
【0170】
非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL3の像側面と、両凸正レンズL16の像側面との、合計4面に設けられている。
【0171】
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、第5レンズ群G5及び第6レンズ群G6で構成されている。第1のレンズユニットLU1は、第2レンズ群G2と、第3レンズ群G3と、で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
【0172】
実施例3のズームレンズは、
図3に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
【0173】
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
【0174】
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凹負レンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、で構成されている。
【0175】
第2レンズ群G2は、両凸正レンズL5で構成されている。
【0176】
第3レンズ群G3は、両凹負レンズL6と、両凸正レンズL7と、で構成されている。
【0177】
第4レンズ群G4は、両凹負レンズL8で構成されている。
【0178】
第5レンズ群G5は、両凸正レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、物体側に凸面を向けた正メニスカスレンズL11と、両凸正レンズL12と、両凹負レンズL13と、両凸正レンズL14と、像側に凸面を向けた負メニスカスレンズL15と、で構成されている。ここで、負メニスカスレンズL10と正メニスカスレンズL11とが接合されている。また、両凹負レンズL13、両凸正レンズL14及び負メニスカスレンズL15が接合されている。
【0179】
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は像側に移動した後、物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は物体側に移動する。開口絞りSは固定である。
【0180】
フォーカシング時、第2レンズ群G2が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動する。手ぶれ補正時、第3レンズ群G3の負メニスカスレンズL6が光軸と直交する方向に移動する。
【0181】
非球面は、負メニスカスレンズL2の両面と、両凸正レンズL5の両面と、両凸正レンズL9の両面と、負メニスカスレンズL15の像側面との、合計7面に設けられている。
【0182】
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
【0183】
実施例4のズームレンズは、
図4に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
【0184】
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
【0185】
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、で構成されている。
【0186】
第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL6で構成されている。
【0187】
第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、両凹負レンズL9と、物体側に凸面を向けた正メニスカスレンズL10と、両凸正レンズL11と、像側に凸面を向けた正メニスカスレンズL12とで構成されている。ここで、負メニスカスレンズL7と両凸正レンズL8とが接合されている。また、両凹負レンズL9と正メニスカスレンズL10とが接合されている。
【0188】
第4レンズ群G4は、両凸正レンズL13と、両凹負レンズL14と、で構成されている。ここで、両凸正レンズL13と両凹負レンズL14とが接合されている。
【0189】
第5レンズ群G5は、両凸正レンズL15で構成されている。
【0190】
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は固定である。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
【0191】
フォーカシング時、第2レンズ群G2が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動する。手ぶれ補正時、第3レンズ群G3の負メニスカスレンズL7と両凸正レンズL8とが光軸と直交する方向に移動する。
【0192】
非球面は、負メニスカスレンズL3の両面と、正メニスカスレンズL6の両面と、両凸正レンズL11の両面と、両凸正レンズL15の両面との、合計8面に設けられている。
【0193】
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
【0194】
実施例5のズームレンズは、
図5に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも物体側に位置している。
【0195】
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
【0196】
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、で構成されている。ここで、両凹負レンズL4と正メニスカスレンズL5とが接合されている。
【0197】
第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL6で構成されている。
【0198】
第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、両凹負レンズL9と、物体側に凸面を向けた正メニスカスレンズL10と、両凸正レンズL11と、両凸正レンズL12とで構成されている。ここで、負メニスカスレンズL7と両凸正レンズL8とが接合されている。また、両凹負レンズL9と正メニスカスレンズL10とが接合されている。
【0199】
第4レンズ群G4は、両凹負レンズL13で構成されている。
【0200】
第5レンズ群G5は、両凸正レンズL14で構成されている。
【0201】
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
【0202】
フォーカシング時、第2レンズ群G2が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第2レンズ群G2が像側に移動する。
【0203】
非球面は、負メニスカスレンズL3の両面と、正メニスカスレンズL6の両面と、両凸正レンズL12の両面と、両凸正レンズL14の両面との、合計8面に設けられている。
【0204】
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5で構成されている。フォーカスレンズ群Gfoは、第2レンズ群G2で構成されている。
【0205】
実施例6のズームレンズは、
図5に示すように、物体側から像側に順に、負屈折力の前群GFと、正屈折力の後群GRと、で構成されている。後群GRは、正屈折力のフォーカスレンズ群Gfoを有する。フォーカスレンズ群Gfoは、開口絞りSよりも像側に位置している。
【0206】
より具体的には、ズームレンズは、物体側から像側に順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負正屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5と、負正屈折力の第6レンズ群G6と、で構成されている。開口絞りSは、第3レンズ群G3の物体側に配置されている。
【0207】
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹負レンズL4と、両凸正レンズL5と、で構成されている。
【0208】
第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、で構成されている。ここで、負メニスカスレンズL6と両凸正レンズL7とが接合されている。
【0209】
第3レンズ群G3は、両凸正レンズL8で構成されている。
【0210】
第4レンズ群G4は、両凸正レンズL9と、両凹負レンズL10と、で構成されている。
【0211】
第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、両凸正レンズL14と、で構成されている。ここで、負メニスカスレンズL12と正メニスカスレンズL13とが接合されている。
【0212】
第6レンズ群G6は、両凹負レンズL15と、両凸正レンズL16と、で構成されている。ここで、両凹負レンズL15と両凸正レンズL16とが接合されている。
【0213】
広角端から望遠端への変倍時、各レンズ群は以下のように移動する。第1レンズ群G1は像側に移動する。第2レンズ群G2は物体側に移動する。第3レンズ群G3は物体側に移動する。第4レンズ群G4は物体側に移動する。第5レンズ群G5は物体側に移動する。第6レンズ群G6は物体側に移動する。開口絞りSは、第3レンズ群G3と共に物体側に移動する。
【0214】
合焦時、第3レンズ群G3が光軸に沿って移動する。より詳しくは、無限遠物体から近距離物体への合焦時に、第3レンズ群G3が物体側に移動する。また、手ぶれ補正時、第2レンズ群G2が光軸と直交する方向に移動する。
【0215】
非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL3の像側面と、両凸正レンズL16の像側面との、合計4面に設けられている。
【0216】
前群GFは、第1レンズ群G1で構成されている。後群GRは、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、第5レンズ群G5及び第6レンズ群G6で構成されている。フォーカスレンズ群Gfoは、第3レンズ群G3で構成されている。
【0217】
以下に、上記各実施例の数値データを示す。記号は上記の外、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、*印は非球面である。また、fは全系の焦点距離、FNO.はFナンバー、ωは半画角、IHは像高、FBはバックフォーカス、全長は、ズームレンズの最も物体側のレンズ面から最も像側のレンズ面までの距離にFB(バックフォーカス)を加えたもの、f1、f2…は各レンズ群の焦点距離である。なお、FBは、レンズ最終面から近軸像面までの距離を空気換算して表したものである。また、広角は広角端、中間は中間焦点距離状態、望遠は望遠端を表している。
【0218】
また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10としたとき、次の式で表される。
z=(y
2/r)/[1+{1−(1+k)(y/r)
2}
1/2]
+A4y
4+A6y
6+A8y
8+A10y
10
また、非球面係数において、「e−n」(nは整数)は、「10
-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
【0219】
数値実施例1
単位 mm
面データ
面番号 r d nd νd
物面 ∞ ∞
1 41.534 2.70 1.88300 40.80
2 22.807 4.64
3 27.509 2.50 1.88300 40.80
4 18.423 3.24
5* 22.194 2.50 1.80610 40.88
6* 12.308 11.39
7 -52.674 1.70 1.43700 95.10
8 28.150 4.17 1.80610 33.27
9 176.442 可変
10* 15.571 4.00 1.80610 40.88
11* 20.314 可変
12(絞り) ∞ 1.25
13 37.996 0.75 1.67300 38.15
14 25.377 2.82 1.49700 81.54
15 -21.144 2.93
16 -12.171 0.80 1.51633 64.14
17 12.171 3.09 1.49700 81.54
18 -2449.791 0.15
19 22.985 4.06 1.43700 95.10
20 -17.837 0.15
21* 42.216 3.00 1.49700 81.61
22* -22.203 可変
23 -222.327 0.80 1.90366 31.32
24 17.758 可変
25* 33.753 3.81 1.51633 64.06
26* -38.501 14.74
像面 ∞
非球面データ
第5面
k=0.000
A4=5.37803e-05,A6=-3.98313e-07,A8=1.09495e-09,A10=-1.05283e-12
第6面
k=-0.478
A4=4.93152e-05,A6=-5.07624e-07,A8=-1.02107e-09,A10=1.42456e-11,A12=-3.67902e-14
第10面
k=0.000
A4=4.49075e-05,A6=3.50017e-07,A8=-1.81083e-10,A10=3.28059e-11
第11面
k=2.202
A4=6.05422e-05,A6=8.77251e-07,A8=-9.79817e-09,A10=1.99367e-10
第21面
k=0.000
A4=-5.69423e-05,A6=7.11500e-08,A8=-6.67964e-09,A10=1.99900e-11
第22面
k=0.000
A4=2.96556e-05,A6=1.35880e-07,A8=-6.35669e-09,A10=3.90872e-11
第25面
k=0.000
A4=1.36963e-05,A6=-1.93487e-07,A8=3.03819e-10
第26面
k=0.000
A4=4.17364e-05,A6=-3.01793e-07,A8=1.61491e-09,A10=-1.53276e-11,A12=5.82244e-14
ズームデータ
ズーム比 1.92
広角 中間 望遠
f 7.14 9.88 13.70
FNO. 2.88 2.88 2.88
2ω 114.71 96.68 77.79
IH 10.16 10.73 11.15
FB(in air) 14.74 14.74 14.74
全長(in air) 112.88 101.60 96.54
d9 28.14 12.76 2.00
d11 6.89 6.46 5.98
d22 1.00 2.36 3.94
d24 1.66 4.79 9.38
近距離物体合焦時
広角 中間 望遠
d9 29.72 14.35 3.86
d11 5.31 4.86 4.12
d22 1.00 2.36 3.94
d24 1.66 4.79 9.38
各群焦点距離
f1=-15.87 f2=60.11 f3=16.65 f4=-18.17 f5=35.47
【0220】
数値実施例2
単位 mm
面データ
面番号 r d nd νd
物面 ∞ ∞
1 39.821 1.75 1.81600 46.62
2 23.000 11.06
3* 24.731 2.00 1.49700 81.54
4* 8.505 8.88
5 65.085 1.40 1.49700 81.54
6* 22.582 7.72
7 -43.136 1.15 1.91082 35.25
8 66.088 2.39
9 57.694 3.04 2.00069 25.46
10 -107.399 可変
11 25.107 0.50 1.92286 18.90
12 11.990 3.53 1.78472 25.68
13 -194.983 可変
14(絞り) ∞ 0.75
15 29.226 1.85 1.43875 94.93
16 -43.198 可変
17 229.273 4.10 1.49700 81.54
18 -14.418 0.38
19 -13.567 0.50 1.81600 46.62
20 29.367 可変
21 35.890 1.16 1.88300 40.76
22 33.343 0.10
23 13.255 0.65 1.74000 28.30
24 9.293 3.49 1.43875 94.93
25 342.739 1.26
26 21.049 3.27 1.75520 27.51
27 -20.772 可変
28 -27.320 0.50 1.85026 32.27
29 10.500 4.00 1.55332 71.68
30* -29.453 可変
像面 ∞
非球面データ
第3面
k=0.000
A4=8.40972e-06,A6=-1.96312e-07,A8=6.33572e-10,A10=-6.59131e-13
第4面
k=-0.781
A4=2.71176e-06,A6=1.07377e-07,A8=-1.03654e-08,A10=4.69259e-11,A12=-6.74201e-14
第6面
k=-19.553
A4=2.45719e-04,A6=-2.71891e-06,A8=4.36132e-08,A10=-3.26819e-10,A12=1.23213e-12
第30面
k=7.364
A4=1.38265e-04,A6=8.12349e-08,A8=1.19526e-08,A10=-6.26300e-11
ズームデータ
ズーム 1.92
広角 中間 望遠
f 6.12 8.85 11.76
FNO. 2.88 2.88 2.88
2ω 122.21 103.51 85.45
IH 10.15 11.15 11.15
FB(in air) 14.39 19.24 23.78
全長(in air) 112.45 100.95 97.08
d10 21.86 7.90 1.00
d13 4.80 4.68 2.50
d16 1.50 1.73 3.00
d20 4.25 1.50 0.90
d27 0.23 0.47 0.46
d30 14.39 19.24 23.78
近距離物体合焦時
広角 中間 望遠
d10 23.03 8.62 1.68
d13 3.63 3.96 1.82
d16 1.50 1.73 3.00
d20 4.25 1.50 0.90
d27 0.23 0.47 0.46
d30 14.39 19.24 23.78
各群焦点距離
f1=-11.41 f2=34.33 f3=40.04 f4=-20.03 f5=12.29 f6=-26.45
【0221】
数値実施例3
単位 mm
面データ
面番号 r d nd νd
物面 ∞ ∞
1 38.750 2.70 1.72916 54.68
2 20.150 4.10
3* 17.017 3.00 1.80610 40.88
4* 8.773 11.01
5 -88.459 1.15 1.43700 95.10
6 17.864 3.68
7 25.150 2.50 1.90366 31.32
8 44.634 可変
9* 33.761 3.79 1.59201 67.02
10* -326.845 可変
11(絞り) ∞ 可変
12 -35.000 0.70 2.00069 25.46
13 963.652 0.65
14 65.292 2.46 1.84666 23.78
15 -25.858 可変
16 -34.852 0.70 1.91082 35.25
17 765.081 可変
18* 15.416 3.35 1.49700 81.61
19* -769.308 0.15
20 23.354 1.83 1.80400 46.58
21 10.306 4.31 1.43700 95.10
22 39.932 0.53
23 16.986 6.10 1.43700 95.10
24 -18.122 0.15
25 -91.369 0.85 1.76200 40.10
26 22.184 3.97 1.43700 95.10
27 -24.379 2.41 1.69350 53.18
28* -73.437 可変
像面 ∞
非球面データ
第3面
k=-0.772
A4=-3.92747e-05,A6=1.50395e-08,A8=1.18115e-10,A10=-1.96180e-13,A12=-2.59650e-17
第4面
k=-0.994
A4=-1.02952e-05,A6=-1.74449e-07,A8=2.73995e-10,A10=4.31904e-12,A12=-1.74697e-14
第9面
k=0.000
A4=6.46420e-05,A6=1.96489e-07,A8=2.99230e-09,A10=2.07686e-11
第10面
k=0.000
A4=7.93076e-05,A6=1.81734e-07,A8=5.20927e-09,A10=3.46579e-11
第18面
k=0.000
A4=-4.14573e-07,A6=2.65414e-07,A8=-4.10155e-09,A10=5.55192e-11
第19面
k=0.000
A4=4.66839e-05,A6=4.51038e-07,A8=-6.38088e-09,A10=7.65812e-11
第28面
k=0.000
A4=8.52243e-05,A6=4.42744e-07,A8=-2.52365e-09,A10=4.41834e-11,A12=-1.38054e-13
ズームデータ
ズーム比 1.92
広角 中間 望遠
f 7.14 9.90 13.72
FNO. 2.84 2.81 2.88
2ω 112.03 98.51 77.81
IH 9.70 11.15 11.15
FB(in air) 14.64 19.15 24.73
全長(in air) 111.73 101.03 96.52
d8 16.46 6.79 1.60
d10 7.05 6.03 6.70
d11 5.15 4.20 1.30
d15 0.50 0.76 1.60
d17 7.84 3.96 0.50
d28 14.64 19.15 24.73
近距離物体合焦時
広角 中間 望遠
d8 17.62 7.98 2.88
d10 5.89 4.84 5.43
d11 5.15 4.20 1.30
d15 0.50 0.76 1.60
d17 7.84 3.96 0.50
d28 14.64 19.15 24.73
各群焦点距離
f1=-13.37 f2=51.89 f3=55.20 f4=-36.58 f5=22.17
【0222】
数値実施例4
単位 mm
面データ
面番号 r d nd νd
物面 ∞ ∞
1 40.857 2.70 1.88300 40.80
2 24.161 4.85
3 29.020 2.50 1.88300 40.80
4 19.322 2.97
5* 22.072 2.50 1.80610 40.88
6* 12.388 12.51
7 -50.251 1.70 1.43700 95.10
8 33.573 0.42
9 30.981 4.00 1.90366 31.32
10 90.155 可変
11* 16.598 4.00 1.80610 40.88
12* 22.336 可変
13(絞り) ∞ 1.25
14 41.481 0.70 1.51633 64.14
15 31.481 2.58 1.49700 81.61
16 -27.003 2.61
17 -14.574 0.80 1.53996 59.46
18 12.504 3.11 1.49700 81.61
19 1684.817 0.15
20* 26.235 3.41 1.49700 81.61
21* -23.920 0.15
22 -171.223 3.00 1.43700 95.10
23 -17.233 可変
24 33.531 2.09 1.56883 56.36
25 -172.910 0.80 1.90366 31.32
26 16.111 可変
27* 21.000 4.00 1.51633 64.06
28* -119.058 14.59
像面 ∞
非球面データ
第5面
k=0.000
A4=5.07542e-05,A6=-3.26124e-07,A8=7.23527e-10,A10=-5.64831e-13
第6面
k=-0.545
A4=5.47849e-05,A6=-3.95024e-07,A8=-1.11242e-09,A10=1.04300e-11,A12=-2.12350e-14
第11面
k=0.000
A4=2.79972e-05,A6=1.18399e-07,A8=2.94567e-09,A10=-8.36669e-12
第12面
k=0.000
A4=6.23392e-05,A6=3.91477e-07,A8=4.86816e-09,A10=-1.84851e-11
第20面
k=0.000
A4=-3.06299e-05,A6=2.92993e-07,A8=-2.53560e-09,A10=3.68190e-11
第21面
k=0.000
A4=4.70106e-05,A6=1.86947e-07,A8=-1.29414e-09,A10=3.34999e-11
第27面
k=0.000
A4=5.08450e-06,A6=-9.63084e-08,A8=4.37614e-10
第28面
k=0.000
A4=2.32475e-05,A6=-2.19104e-07,A8=1.79764e-09,A10=-1.41583e-11,A12=5.51140e-14
ズームデータ
ズーム比 1.91
広角 中間 望遠
f 7.20 9.91 13.73
FNO. 2.88 2.88 2.88
2ω 116.82 99.54 82.26
IH 10.19 10.62 11.15
FB(in air) 14.59 14.59 14.59
全長(in air) 116.21 105.48 100.62
d10 28.04 13.85 2.18
d12 7.98 6.63 7.50
d23 1.00 3.16 6.48
d26 1.81 4.43 7.06
近距離物体合焦時
広角 中間 望遠
d10 29.61 15.46 4.07
d12 6.41 5.02 5.61
d23 1.00 3.16 6.48
d26 1.81 4.43 7.06
各群焦点距離
f1=-15.86 f2=61.13 f3=20.96 f4=-25.38 f5=34.91
【0223】
数値実施例5
単位 mm
面データ
面番号 r d nd νd
物面 ∞ ∞
1 40.000 2.50 1.88300 40.80
2 22.530 4.89
3 27.243 2.50 1.88300 40.80
4 18.157 2.79
5* 20.564 2.50 1.80610 40.88
6* 11.636 11.44
7 -73.513 1.75 1.49700 81.54
8 24.987 4.20 1.90366 31.32
9 98.362 可変
10* 16.348 3.72 1.80610 40.88
11* 21.877 可変
12(絞り) ∞ 1.25
13 37.981 0.95 1.72000 46.02
14 26.359 3.22 1.49700 81.54
15 -15.490 1.44
16 -10.950 0.80 1.51633 64.14
17 12.238 2.98 1.49700 81.54
18 170.879 0.15
19 20.681 4.25 1.43700 95.10
20 -17.740 0.15
21* 112.166 2.85 1.49700 81.61
22* -18.752 可変
23 -137.026 0.80 1.90366 31.32
24 19.525 可変
25* 39.261 4.13 1.51633 64.06
26* -34.524 可変
像面 ∞
非球面データ
第5面
k=0.000
A4=6.57195e-05,A6=-5.09445e-07,A8=1.47888e-09,A10=-1.69855e-12
第6面
k=-0.500
A4=7.32025e-05,A6=-7.37876e-07,A8=-3.81674e-10,A10=1.47076e-11,A12=-4.50516e-14
第10面
k=0.000
A4=4.79125e-05,A6=4.73335e-08,A8=7.67036e-09,A10=-5.60898e-11
第11面
k=5.585
A4=2.36048e-05,A6=-3.84290e-07,A8=1.77462e-08,A10=-3.54139e-10
第21面
k=0.000
A4=-8.24382e-05,A6=-6.06057e-07,A8=4.46043e-09,A10=3.33433e-11
第22面
k=0.000
A4=1.56244e-05,A6=-5.11423e-07,A8=7.02354e-09,A10=2.24911e-11
第25面
k=0.000
A4=4.75833e-06,A6=-2.33909e-07,A8=8.62893e-10
第26面
k=0.000
A4=2.88478e-05,A6=-2.44406e-07,A8=7.64290e-10,A10=-5.65104e-12,A12=3.44034e-14
ズームデータ
ズーム比 2.04
広角 中間 望遠
f 6.95 9.88 14.14
FNO. 2.88 2.88 2.88
2ω 116.14 99.21 75.99
IH 10.12 11.15 11.15
FB(in air) 15.52 15.84 16.64
全長(in air) 113.21 101.40 96.63
d9 29.00 12.75 1.00
d11 6.80 6.40 6.46
d22 1.00 2.37 4.04
d24 1.64 4.78 9.23
d26 15.52 15.84 16.64
近距離物体合焦時
広角 中間 望遠
d9 30.36 14.20 2.75
d11 5.44 4.95 4.71
d22 1.00 2.37 4.04
d24 1.64 4.78 9.23
d26 15.52 15.84 16.64
各群焦点距離
f1=-15.66 f2=61.74 f3=16.57 f4=-18.87 f5=36.27
【0224】
数値実施例6
単位 mm
面データ
面番号 r d nd νd
物面 ∞ ∞
1 39.821 1.750 1.81600 46.62
2 23.000 11.062
3* 24.731 2.000 1.49700 81.54
4* 8.505 8.879
5 65.085 1.400 1.49700 81.54
6* 22.582 7.715
7 -43.136 1.150 1.91082 35.25
8 66.088 2.392
9 57.694 3.036 2.00069 25.46
10 -107.399 可変
11 25.107 0.500 1.92286 18.90
12 11.990 3.529 1.78472 25.68
13 -194.983 可変
14(絞り) ∞ 0.750
15 29.226 1.855 1.43875 94.93
16 -43.198 可変
17 229.273 4.102 1.49700 81.54
18 -14.418 0.384
19 -13.567 0.500 1.81600 46.62
20 29.367 可変
21 35.890 1.158 1.88300 40.76
22 33.343 0.100
23 13.255 0.650 1.74000 28.30
24 9.293 3.495 1.43875 94.93
25 342.739 1.258
26 21.049 3.265 1.75520 27.51
27 -20.772 可変
28 -27.320 0.500 1.85026 32.27
29 10.500 4.002 1.55332 71.68
30* -29.453 可変
像面 ∞
非球面データ
第3面
k=0.0000
A4=8.4097e-006,A6=-1.9631e-007,A8=6.3357e-010,A10=-6.5913e-013
第4面
k=-0.7811
A4=2.7118e-006,A6=1.0738e-007,A8=-1.0365e-008,A10=4.6926e-011,A12=-6.7420e-014
第6面
k=-19.5525
A4=2.4572e-004,A6=-2.7189e-006,A8=4.3613e-008,A10=-3.2682e-010,A12=1.2321e-012
第30面
k=7.3642
A4=1.3827e-004,A6=8.1235e-008,A8=1.1953e-008,A10=-6.2630e-011
ズームデータ
ズーム比 1.92
広角 中間 望遠
f 6.120 8.850 11.760
FNO. 2.880 2.878 2.880
2ω 121.1 103.5 85.4
IH 10.04 11.15 11.15
FB(in air) 14.388 19.237 23.780
全長(in air) 112.45452 100.95076 97.07926
d10 21.855 7.899 1.000
d13 4.801 4.681 2.500
d14 0.750 0.750 0.750
d16 1.500 1.731 3.000
d20 4.249 1.500 0.900
d27 0.228 0.469 0.465
d30 14.388 19.237 23.780
近距離物体合焦時
広角 中間 望遠
物体距離 160.76909 165.41606 300.00000
d10 21.85549 7.89946 1.00000
d13 4.80055 4.68083 2.50000
d14 0.52468 0.25830 0.22417
d16 1.72532 2.22229 3.52583
d20 4.24879 1.50000 0.90000
d27 0.22826 0.46885 0.46492
各群焦点距離
f1=-11.41193 f2=34.32751 f3=40.04388 f4=-20.03396 f5=12.28707
f6=-26.44901
f
Rw=25.8682
【0225】
以上の実施例において、前群は、複数のレンズ群を有し、広角端から望遠端への変倍に際して、前群内の複数のレンズ群間の間隔が変化してもよい。
例えば、本願実施例6における数値データにおいて、以下の変形例の数値データであっても、上記実施例と同様の作用効果を奏する。
【0226】
単位 mm
面データ
面番号 r d nd νd
物面 ∞ ∞
1 39.821 1.750 1.81600 46.62
2 23.000 11.062
3* 24.731 2.000 1.49700 81.54
4* 8.505 8.879
5 65.085 1.400 1.49700 81.54
6* 22.582 7.715
7 -43.136 1.150 1.91082 35.25
8 66.088 可変
9 57.694 3.036 2.00069 25.46
10 -107.399 可変
11 25.107 0.500 1.92286 18.90
12 11.990 3.529 1.78472 25.68
13 -194.983 可変
14(絞り) ∞ 0.750
15 29.226 1.855 1.43875 94.93
16 -43.198 可変
17 229.273 4.102 1.49700 81.54
18 -14.418 0.384
19 -13.567 0.500 1.81600 46.62
20 29.367 可変
21 35.890 1.158 1.88300 40.76
22 33.343 0.100
23 13.255 0.650 1.74000 28.30
24 9.293 3.495 1.43875 94.93
25 342.739 1.258
26 21.049 3.265 1.75520 27.51
27 -20.772 可変
28 -27.320 0.500 1.85026 32.27
29 10.500 4.002 1.55332 71.68
30* -29.453 可変
像面 ∞
非球面データ
第3面
k=0.0000
A4=8.4097e-006,A6=-1.9631e-007,A8=6.3357e-010,A10=-6.5913e-013
第4面
k=-0.7811
A4=2.7118e-006,A6=1.0738e-007,A8=-1.0365e-008,A10=4.6926e-011,A12=-6.7420e-014
第6面
k=-19.5525
A4=2.4572e-004,A6=-2.7189e-006,A8=4.3613e-008,A10=-3.2682e-010,A12=1.2321e-012
第30面
k=7.3642
A4=1.3827e-004,A6=8.1235e-008,A8=1.1953e-008,A10=-6.2630e-011
ズームデータ
ズーム比 1.92
広角 中間 望遠
f 6.122 8.878 11.760
f
F -11.3007 -11.3560 -11.41193
FNO. 2.887 2.887 2.880
2ω 121.1 103.3 85.4
IH 10.04 11.15 11.15
FB(in air) 14.529 19.386 23.780
全長(in air) 112.59619 100.09960 97.07926
d8 2.192 2.292 2.392
d10 22.055 7.999 1.000
d13 4.801 4.681 2.500
d14 0.750 0.750 0.750
d16 1.500 1.731 3.000
d20 4.249 1.500 0.900
d27 0.228 0.469 0.465
d30 14.529 19.386 23.780
近距離物体合焦時
広角 中間 望遠
物体距離 160.76909 165.41606 300.00000
d8 2.192 2.292 2.392
d10 22.055 7.999 1.00000
d13 4.801 4.681 2.50000
d14 0.52468 0.25830 0.22417
d16 1.72532 2.22229 3.52583
d20 4.24879 1.50000 0.90000
d27 0.22826 0.46885 0.46492
各群焦点距離
f1=-6.13 f2=37.85 f3=34.32751 f4=40.04388 f5=-20.03396
f6=12.28707 f7=-26.44901
f
Rw=25.8682
【0227】
また、以上の実施例において、第2レンズ群と第3レンズ群との間、第3レンズ群と第4レンズ群との間、第4レンズ群と第5レンズ群との間、第5レンズ群と第6レンズ群との間、の少なくとも一つ以上の間に、一以上のレンズ群を配置しても良い。
【0228】
以上の実施例1〜6の収差図を、それぞれ
図7〜
図18に示す。一つの実施例に対して収差図は2つあり、無限遠物体合焦時における収差図、近距離物体合焦時における収差図の順に示している。また、各図中、”FIY”は最大像高を示す。
【0229】
これらの収差図において、(a)、(b)、(c)、(d)は、それぞれ、広角端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
【0230】
また、(e)、(f)、(g)、(h)は、それぞれ、中間焦点距離状態2における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
【0231】
また、(i)、(j)、(k)、(l)は、それぞれ、望遠端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。
【0232】
次に、各実施例における条件式(1−3)〜(15−1)の値を掲げる。なお、条件式(12)については、広角端における値を上段に、望遠端における値を下段に記載している。
実施例1 実施例2 実施例3 実施例4
(1-3)νd
Fnmax 95.1 81.54 95.1 95.1
(2)FB
w/f
F -0.93 -1.26 -1.10 -0.92
(3-3)f
w×Fno
wmin/f
F -1.30 -1.54 -1.52 -1.31
(4)f
Rw/FB
w 1.70 1.80 1.80 1.70
(5)|r
F1i/f
F|
1.44 2.02 1.51 1.52
(6)θgF
Fn 0.5334 0.5375 0.5334 0.5334
(7)θgF
Fn+0.0016
0.0441 0.0265 0.0441 0.0441
×νd-0.6415
(8)FB
w/LTL
w 0.13 0.13 0.13 0.13
(9-1)SP
F1 3.44 3.73 3.17 3.89
(10)ASP
Rθ 50.0 56.7 51 52.30
(11)DTL
w -8.86 -7.43 -8.42 -10.31
(12)|MG
fob2×(MG
fo2-1)|
0.20 0.18 0.28 0.20
0.55 1.06 0.87 0.55
(13)f
F/(f
w×f
t)
1/2 -1.60 -1.35 -1.35 -1.59
(14)SP
F2 5.06 2.05 3.13 4.98
(15-1)SP
F4 3.49 2.06 0.66 3.56
実施例5 実施例6
(1-3)νd
Fnmax 81.54 81.54
(2)FB
w/f
F -0.99 -1.26
(3-3)f
w×Fno
wmin/f
F -1.28 -1.54
(4)f
Rw/FB
w 1.58 1.80
(5)|r
F1i/f
F|
1.44 2.02
(6)θgF
Fn 0.5375 0.5375
(7)θgF
Fn+0.0016
0.0265 0.026464
×νd-0.6415
(8)FB
w/LTL
w 0.14 0.13
(9-1)SP
F1 3.58 3.73
(10)ASP
Rθ 51.00 56.7
(11)DTL
w -9.26 7.35
(12)|MG
fob2×(MG
fo2-1)|
0.20 0.18
0.57 1.06
(13)f
F/(f
w×f
t)
1/2 -1.58 -1.35
(14)SP
F2 5.00 2.05
(15-1)SP
F4 3.61 2.06
【0233】
図19は、電子撮像装置としての一眼ミラーレスカメラの断面図である。
図19において、一眼ミラーレスカメラ1の鏡筒内には撮影光学系2が配置される。マウント部3は、撮影レンズ系2を一眼ミラーレスカメラ1のボディに着脱可能とする。マウント部3としては、スクリュータイプのマウントやバヨネットタイプのマウント等が用いられる。この例では、バヨネットタイプのマウントを用いている。また、一眼ミラーレスカメラ1のボディには、撮像素子面4、バックモニタ5が配置されている。なお、撮像素子としては、小型のCCD又はCMOS等が用いられている。
【0234】
そして、一眼ミラーレスカメラ1の撮影光学系2として、例えば上記実施例1〜6に示したズームレンズが用いられる。
【0235】
図20、
図21は、実施例1〜6に示したズームレンズを有する撮像装置の構成の概念図を示す。
図20は撮像装置としてのデジタルカメラ40の外観を示す前方斜視図、
図21は同後方斜視図である。このデジタルカメラ40の撮影光学系41に、本実施例のズームレンズが用いられている。
【0236】
この実施形態のデジタルカメラ40は、撮影用光路42上に位置する撮影光学系41、シャッターボタン45、液晶表示モニター47等を含み、デジタルカメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、結像面近傍に設けられた撮像素子(光電変換面)上に形成される。この撮像素子で受光された物体像は、処理手段によって電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、撮影された電子画像は記録手段に記録することができる。
【0237】
図22は、デジタルカメラ40の主要部の内部回路を示すブロック図である。なお、以下の説明では、前述した処理手段は、例えばCDS/ADC部24、一時記憶メモリ17、画像処理部18等で構成され、記憶手段は、記憶媒体部19等で構成される。
【0238】
図22に示すように、デジタルカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。
【0239】
上記の一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21は、バス22を介して相互にデータの入力、出力が可能とされている。また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。
【0240】
操作部12は、各種の入力ボタンやスイッチを備え、これらを介して外部(カメラ使用者)から入力されるイベント情報を制御部13に通知する。制御部13は、例えばCPUなどからなる中央演算処理装置であって、不図示のプログラムメモリを内蔵し、プログラムメモリに格納されているプログラムにしたがって、デジタルカメラ40全体を制御する。
【0241】
CCD49は、撮像駆動回路16により駆動制御され、撮像光学系41を介して形成された物体像の画素ごとの光量を電気信号に変換し、CDS/ADC部24に出力する撮像素子である。
【0242】
CDS/ADC部24は、CCD49から入力する電気信号を増幅し、かつ、アナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時記憶メモリ17に出力する回路である。
【0243】
一時記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力されるRAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一時記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13にて指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。
【0244】
記憶媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、これらのフラッシュメモリに、一時記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する。
【0245】
表示部20は、液晶表示モニター47などにて構成され、撮影したRAWデータ、画像データや操作メニューなどを表示する。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、操作部12の入力操作によってROM部から読み出された画質パラメータを記憶するRAM部が備えられている。
【0246】
このように構成されたデジタルカメラ40は、撮影光学系41として本実施例のズームレンズを採用することで、超広画角、小型でありながら、画質を劣化させずに高解像の画像を得るのに有利な撮像装置とすることが可能となる。