【実施例】
【0093】
以下、実施例に基づいて本発明をより具体的に説明する。
【0094】
実施例1.
A.ガラス基板の製造
1.基板準備工程
上面及び下面が研磨された6025サイズ(152mm×152mm×6.35mm)のTiO
2−SiO
2ガラス基板を準備した。なお、TiO
2−SiO
2ガラス基板は、以下の粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程、局所加工工程、タッチ研磨工程を経て得られたものである。
【0095】
(1)粗研磨加工工程
端面面取加工及び研削加工を終えたガラス基板を両面研磨装置に10枚セットし、以下の研磨条件で粗研磨を行った。10枚セットを2回行い合計20枚のガラス基板の粗研磨を行った。なお、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:酸化セリウム(平均粒径2〜3μm)を含有する水溶液
研磨パッド:硬質ポリシャ(ウレタンパッド)
粗研磨後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬し、超音波を印加して洗浄を行った。
【0096】
(2)精密研磨加工工程
粗研磨を終えたガラス基板を両面研磨装置に10枚セットし、以下の研磨条件で精密研磨を行った。10枚セットを2回行い合計20枚のガラス基板の精密研磨を行った。なお、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:酸化セリウム(平均粒径1μm)を含有する水溶液
研磨パッド:軟質ポリシャ(スウェードタイプ)
精密研磨後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬し、超音波を印加して洗浄を行った。
【0097】
(3)超精密研磨加工工程
精密研磨を終えたガラス基板を再び両面研磨装置に10枚セットし、以下の研磨条件で超精密研磨を行った。10枚セットを2回行い合計20枚のガラス基板の超精密研磨を行った。なお、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:コロイダルシリカを含有するアルカリ性水溶液(pH10.2)
(コロイダルシリカ含有量50wt%)
研磨パッド:超軟質ポリシャ(スウェードタイプ)
超精密研磨後、ガラス基板を水酸化ナトリウムのアルカリ洗浄液が入った洗浄槽に浸漬し、超音波を印加して洗浄を行った。
【0098】
(4)局所加工工程
粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程後のガラス基板の上面及び下面の平坦度を、平坦度測定装置(トロペル社製 UltraFlat200)を用いて測定した。平坦度測定は、ガラス基板の周縁領域を除外した148mm×148mmの領域に対して、1024×1024の地点で行った。ガラス基板の上面及び下面の平坦度の測定結果を、測定点ごとに仮想絶対平面に対する高さの情報(凹凸形状情報)としてコンピュータに保存した。仮想絶対平面は、仮想絶対平面から基板表面までの距離を、平坦度測定領域全体に対して二乗平均したときに最小の値となる面である。
その後、取得された凹凸形状情報とガラス基板に要求される上面及び下面の平坦度の基準値とを比較し、その差分を、ガラス基板の上面及び下面の所定領域ごとにコンピュータで算出した。この差分が、後述する局所的な表面加工における各所定領域の必要除去量(加工取り代)となる。
その後、ガラス基板の上面及び下面の所定領域ごとに、必要除去量に応じた局所的な表面加工の加工条件を設定した。設定方法は以下の通りである。事前にダミー基板を用いて実際の加工と同じようにダミー基板を、一定時間基板移動させずにある地点(スポット)で加工し、その形状を平坦度測定装置(トロペル社製 UltraFlat200)にて測定し、単位時間当たりにおけるスポットでの加工体積を算出した。そして、単位時間当たりにおけるスポットでの加工体積と上述したように算出した各所定領域の必要除去量に従い、ガラス基板をラスタ走査する際の走査スピードを決定した。
その後、ガラス基板の上面及び下面を、基板仕上げ装置を用いて、磁気粘弾性流体研磨(Magneto Rheological Finishing:MRF)により、所定領域ごとに設定した加工条件に従い、局所的に表面加工した。なお、このとき、酸化セリウムの研磨粒子を含有する磁性研磨スラリーを使用した。
その後、ガラス基板を、濃度約10%の塩酸水溶液(温度約25℃)が入った洗浄槽に約10分間浸漬させた。
その後、純水によるリンス、イソプロピルアルコール(IPA)による乾燥を行った。
【0099】
(5)タッチ研磨工程
局所加工工程によって荒れたガラス基板の上面及び下面の平滑性を高めるために、研磨スラリーを用いて行う低荷重の機械的研磨により微小量だけガラス基板の上面及び下面を研磨した。この研磨は、基板の大きさよりも大きい研磨パッドが張り付けられた上下の研磨定盤の間にキャリアで保持されたガラス基板をセットし、コロイダルシリカ砥粒(平均粒子径50nm)を含有する研磨スラリーを供給しながら、ガラス基板を、上下の研磨定盤内で自転しながら公転することによって行った。
その後、ガラス基板を、水酸化ナトリウムのアルカリ洗浄液に浸漬し、超音波を印加して洗浄を行った。
【0100】
2.基板加工工程
次に、
図1及び
図2に示す基板加工装置を用いて、タッチ研磨工程後のガラス基板の主表面として用いる上面に対して、触媒基準エッチングによる加工を施した。
【0101】
この実施例では、ステンレス鋼(SUS)製の直径50mmの円盤形状の定盤本体32と、定盤本体32を覆うように定盤本体32の表面全面に形成されたウレタンパッドと、ガラス基板と対向する側のウレタンパッドの表面全面に形成されたクロムチタン(CrTi)合金からなる加工基準面33(膜厚100nm)とを備えた触媒定盤31を使用した。加工基準面33は、クロムチタン(CrTi)ターゲットを使用し、アルゴン(Ar)ガス雰囲気でスパッタリングを行い形成した。クロムチタン(CrTi)合金からなる加工基準面33の結晶構造をX線回折装置(XRD)により測定したところ、アモルファス構造であった。X線光電子分光法(XPS)で分析した加工基準面33の組成は、Cr:60原子%、Ti:40原子%であった。
加工条件は以下の通りである。
処理流体:純水
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:50hPa
加工取り代:30nm
【0102】
先ず、ガラス基板を、主表面として用いる上面を上側に向けて支持部
21に載置して固定した。
その後、アーム部51の長手方向移動(両矢印C)、アーム部51のスイング移動(両矢印E)、アーム部51の第1方向移動(両矢印F)、アーム部51の第2方向移動(両矢印G)により、触媒定盤31の加工基準面33がガラス基板の上面に対向して配置された状態で、触媒定盤31を配置した。触媒定盤31の配置位置は、ガラス基板及び触媒定盤31を回転させたときに、触媒定盤31の加工基準面33が、ガラス基板の上面全体に接触又は接近することが可能な位置である。
その後、ガラス基板を10.3回転/分の回転速度及び触媒定盤31を10回転/分の回転速度で回転させる。ここで、ガラス基板の回転方向と触媒定盤31の回転方向とが、互いに逆になるようにガラス基板及び触媒定盤31を回転させる。これにより、両者間に周速差をとり、触媒基準エッチングによる加工の効率を高めることができる。また、両者の回転数は、僅かに異なるように設定される。これにより、触媒定盤31の加工基準面33がガラス基板の上面上に対して異なる軌跡を描くように相対運動させることができ、触媒基準エッチングによる加工の効率を高めることができる。
ガラス基板及び触媒定盤31を回転させながら、噴射ノズル42からガラス基板の上面上に純水を供給し、ガラス基板の上面と加工基準面33との間に純水を介在させた。その状態で、触媒定盤41の加工基準面33を、アーム部51の上下移動(両矢印D)により、ガラス基板の上面に接触又は接近させた。その際、ガラス基板に加えられる荷重(加工圧力)が50hPaに制御された。
その後、加工取り代が30nmになった時点で、ガラス基板及び触媒定盤31の回転及び純水の供給を止めた。そして、アーム部51の上下移動(両矢印D)により、触媒定盤31を、ガラス基板の上面から所定の距離だけ離した。
その後、支持部21からガラス基板を取り外した。
【0103】
その後、支持部21から取り外したガラス基板を以下のように洗浄した。先ず、ガラス基板の上面に中性洗剤と水とを供給し、ポリビニルアルコール(PVA)製のブラシによりガラス基板の上面を擦って上面に付着した異物を掻き落とすブラシ洗浄を行った。その後、ブラシ洗浄後のガラス基板の上面に水素水(H
2濃度:1.2ppm)を供給し、上面に超音波振動(周波数:3MHz)を加え、上面に付着した異物を浮かせて除去するメガソニック洗浄を行った。その後、窒素(N
2)ガスと炭酸水(電気抵抗率:0.2MΩ・cm)による二流体洗浄を行った。その後、純水によるリンス、乾燥を行った。
このようにして、ガラス基板を作製した。
【0104】
3.評価
触媒基準エッチングによる加工前後のガラス基板の主表面として用いる上面の表面粗さを、基板の中心の1μm×1μmの領域に対して、原子間力顕微鏡(AFM)を用いて測定した。
加工前の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.13nmであった。
加工後の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.061nmと良好であった。上面の表面粗さは、触媒基準エッチングにより、二乗平均平方根粗さ(RMS)で0.13nmから0.061nmに向上した。また、加工後の上面の表面粗さは、最大高さ(Rmax)で0.519nmと良好であった。また、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)は、8.5と良好であった。
触媒基準エッチングによる加工後のガラス基板の上面の欠陥検査を、基板の周辺領域を除外した132nm×132nmの領域に対して、欠陥検査装置(KLA−Tencor社製 マスク/ブランク欠陥検査装置 Teron610)を用いて行った。欠陥検査は、SEVD(Sphere Equivalent Volume Diameter)換算で21.5nmサイズの欠陥が検出可能な感度で行った。SEVDは、欠陥を半球状のものと仮定したときの直径の長さである。
加工後の上面の欠陥個数は、42個と少なかった。
また、実施例1の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(RMS)で0.08nm以下と良好であり、欠陥個数も50個以下と少なかった。
実施例1の方法により、高平滑性で且つ低欠陥の主表面を有するガラス基板が安定して得られた。
【0105】
B.多層反射膜付き基板の製造
次に、このようにして作製されたガラス基板の主表面として用いる上面上に、イオンビームスパッタ法により、シリコン膜(Si)からなる高屈折率層(膜厚4.2nm)とモリブデン膜(Mo)からなる低屈折率層(2.8nm)とを交互に、高屈折率層と低屈折率層とを1ペアとし、40ペア積層して、多層反射膜(膜厚280nm)を形成した。
その後、この多層反射膜上に、イオンビームスパッタ法により、ルテニウム(Ru)からなる保護膜(膜厚2.5nm)を形成した。
このようにして、多層反射膜付き基板を作製した。
【0106】
得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率をEUV反射率測定装置により測定した。
ガラス基板上面の高い平滑性により、保護膜表面も高い平滑性を保っており、反射率は64%と高反射率であった。
得られた多層反射膜付き基板の保護膜表面の欠陥検査を、ガラス基板の欠陥検査と同様に行った。
加工後の保護膜表面の欠陥個数は、38個と少なかった。
実施例1の方法により、高平滑性で且つ低欠陥の保護膜表面を有する多層反射膜付き基板が得られた。
【0107】
C.反射型マスクブランクの製造
次に、このようにして作製された多層反射膜付き基板の保護膜上に、ホウ化タンタル(TaB)ターゲットを使用し、アルゴン(Ar)ガスと窒素(N
2)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、タンタルホウ素窒化物(TaBN)からなる下層吸収体層(膜厚50nm)を形成し、さらに、下層吸収体膜上に、ホウ化タンタル(TaB)ターゲットを使用し、アルゴン(Ar)ガスと酸素(O
2)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、タンタルホウ素酸化物(TaBO)からなる上層吸収体層(膜厚20nm)を形成することにより、下層吸収体層と上層吸収体層とからなる吸収体膜(膜厚70nm)を形成した。
その後、多層反射膜付き基板の多層反射膜を形成していない裏面上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)ガスと窒素(N
2)ガスとの混合ガス雰囲気中での反応性スパッタリングにより、クロム窒化物(CrN)からなる裏面導電膜(膜厚20nm)を形成した。
このようにして、高平滑性で且つ低欠陥の表面状態を維持したEUV露光用の反射型マスクブランクを作製した。
【0108】
D.反射型マスクの製造
次に、このようにして作製された反射型マスクブランクの吸収体膜上に、電子線描画(露光)用化学増幅型レジストをスピンコート法により塗布し、加熱及び冷却工程を経て、膜厚が150nmのレジスト膜を形成した。
その後、形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
その後、このレジストパターンをマスクにして、吸収体膜のドライエッチングを行って、保護膜上に吸収体膜パターンを形成した。ドライエッチングガスとしては、塩素(Cl
2)ガスを用いた。
その後、残存するレジストパターンを剥離し、洗浄を行なった。
このようにして、高平滑性で且つ低欠陥の表面状態を維持したEUV露光用の反射型マスクを作製した。
【0109】
実施例2.
この実施例では、ステンレス鋼(SUS)製の直径50mmの円盤形状の定盤本体32と、定盤本体32を覆うように定盤本体32の表面全面に形成されたウレタンパッドと、ガラス基板と対向する側のウレタンパッドの表面全面に形成されたルテニウムニオブ(RuNb)合金からなる加工基準面33(膜厚100nm)とを備えた触媒定盤31を使用した。加工基準面33は、ルテニウムニオブ(RuNb)ターゲットを使用し、アルゴン(Ar)ガス雰囲気中でスパッタリングを行い形成した。ルテニウムニオブ(RuNb)合金からなる加工基準面33の結晶構造をX線回折装置(XRD)により測定したところ、アモルファス構造であった。X線光電子分光法で分析した加工基準面33の組成は、Ru:80原子%、Nb:20原子%であった。
それ以外は、実施例1と同様の方法により、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。
【0110】
実施例1と同様に、触媒基準エッチングによる加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.13nmであった。
加工後の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.043nmと良好であった。上面の表面粗さは、触媒基準エッチングにより、二乗平均平方根粗さ(RMS)で0.13nmから0.043nmに向上した。また、加工後の上面の表面粗さは、最大高さ(Rmax)で0.335nmと良好であった。また、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)は、7.8と良好であった。
また、実施例1と同様に、触媒基準エッチングによる加工後のガラス基板の上面の欠陥検査を行った。
加工後の上面の欠陥個数は、16個と少なかった。
また、実施例2の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(RMS)で0.08nm以下と良好であり、欠陥個数も50個以下と少なかった。
実施例2の方法により、高平滑性で且つ低欠陥の主表面を有するガラス基板が安定して得られた。
【0111】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も高い平滑性を保っており、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
加工後の保護膜表面の欠陥個数は、14個と少なかった。
実施例2の方法により、高平滑性で且つ低欠陥の保護膜表面を有する多層反射膜付き基板が得られた。
また、実施例2の方法により、高平滑性で且つ低欠陥の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
【0112】
実施例3.
この実施例では、ステンレス鋼(SUS)製の直径50mmの円盤形状の定盤本体32と、定盤本体32を覆うように定盤本体32の表面全面に形成されたウレタンパッドと、ガラス基板と対向する側のウレタンパッドの表面全面に形成されたタンタルハフニウム(TaHf)合金からなる加工基準面33(膜厚100nm)とを備えた触媒定盤31を使用した。加工基準面33は、タンタルハフニウム(TaHf)ターゲットを使用し、アルゴン(Ar)ガス雰囲気中でスパッタリングを行い形成した。タンタルハフニウム(TaHf)合金からなる加工基準面33の結晶構造をX線回折装置(XRD)により測定したところ、アモルファス構造ではなかった。X線光電子分光法で分析した加工基準面33の組成は、Ta:80原子%、Hf:20原子%であった。
それ以外は、実施例1と同様の方法により、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。
【0113】
実施例1と同様に、触媒基準エッチングによる加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.13nmであった。
加工後の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.047nmと良好であった。上面の表面粗さは、触媒基準エッチングにより、二乗平均平方根粗さ(RMS)で0.13nmから0.047nmに向上した。また、加工後の上面の表面粗さは、最大高さ(Rmax)で0.442nmと良好であった。また、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)は、9.4と良好であった。
また、実施例1と同様に、触媒基準エッチングによる加工後のガラス基板の上面の欠陥検査を行った。
加工後の上面の欠陥個数は、22個と少なかった。
また、実施例3の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(RMS)で0.08nm以下と良好であり、欠陥個数も50個以下と少なかった。
実施例3の方法により、高平滑性で且つ低欠陥の主表面を有するガラス基板が安定して得られた。
【0114】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も高い平滑性を保っており、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
加工後の保護膜表面の欠陥個数は、19個と少なかった。
実施例3の方法により、高平滑性で且つ低欠陥の保護膜表面を有する多層反射膜付き基板が得られた。
また、実施例3の方法により、高平滑性で且つ低欠陥の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
【0115】
実施例4.
この実施例では、ステンレス鋼(SUS)製の直径50mmの円盤形状の定盤本体32と、定盤本体32を覆うように定盤本体32の表面全面に形成されたウレタンパッドと、ガラス基板と対向する側のウレタンパッドの表面全面に形成された鉄ニッケルクロム(FeNiCr)合金からなる加工基準面33(膜厚100nm)とを備えた触媒定盤31を使用した。加工基準面33は、鉄ニッケルクロム(FeNiCr)ターゲットを使用し、アルゴン(Ar)ガス雰囲気中でスパッタリングを行い形成した。鉄ニッケルクロム(FeNiCr)合金からなる加工基準面33の結晶構造をX線回折装置(XRD)により測定したところ、アモルファス構造ではなかった。X線光電子分光法で分析した加工基準面33の組成は、Ni:0.5原子%、Cr:14原子%、Fe:残部であった。
それ以外は、実施例1と同様の方法により、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。
【0116】
実施例1と同様に、触媒基準エッチングによる加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.13nmであった。
加工後の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.060nmと良好であった。上面の表面粗さは、触媒基準エッチングにより、二乗平均平方根粗さ(RMS)で0.13nmから0.060nmに向上した。また、加工後の上面の表面粗さは、最大高さ(Rmax)で0.582nmと良好であった。また、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)は、9.8と良好であった。
また、実施例1と同様に、触媒基準エッチングによる加工後のガラス基板の上面の欠陥検査を行った。
加工後の上面の欠陥個数は、40個と少なかった。
また、実施例4の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(RMS)で0.08nm以下と良好であり、欠陥個数も50個以下と少なかった。
実施例4の方法により、高平滑性で且つ低欠陥の主表面を有するガラス基板が安定して得られた。
【0117】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も高い平滑性を保っており、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
加工後の保護膜表面の欠陥個数は、58個と少なかった。
実施例4の方法により、高平滑性で且つ低欠陥の保護膜表面を有する多層反射膜付き基板が得られた。
また、実施例4の方法により、高平滑性で且つ低欠陥の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
【0118】
実施例5.
この実施例では、ステンレス鋼(SUS)製の直径50mmの円盤形状の定盤本体32と、定盤本体32を覆うように定盤本体32の表面全面に形成されたウレタンパッドと、ガラス基板と対向する側のウレタンパッドの表面全面に形成されたクロム炭化物(CrC)からなる加工基準面33(膜厚100nm)とを備えた触媒定盤31を使用した。加工基準面33は、クロム(Cr)ターゲットを使用し、アルゴン(Ar)ガスとメタン(CH
4)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い形成した。X線光電子分光法で分析した加工基準面33の組成は、Cr:96原子%、C:4原子%であった。
また、この実施例では、支持部21から取り外したガラス基板を以下のように洗浄した。先ず、ガラス基板を硝酸第二セリウムアンモニウムと過塩素酸とを含むクロムエッチング液が入った洗浄槽に約10分間浸漬させた。その後、ガラス基板の主表面として用いる上面に中性洗剤と水とを供給し、ポリビニルアルコール(PVA)製のブラシによりガラス基板の上面を擦って上面に付着した異物を掻き落とすブラシ洗浄を行った。その後、ブラシ洗浄後のガラス基板の上面に水素水(H
2濃度:1.2ppm)を供給し、上面に超音波振動(周波数:3MHz)を加え、上面に付着した異物を浮かせて除去するメガソニック洗浄を行った。その後、窒素(N
2)ガスと炭酸水(電気抵抗率:0.2MΩ・cm)による二流体洗浄を行った。その後、純水によるリンス、乾燥を行った。
それ以外は、実施例1と同様の方法により、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。
【0119】
実施例1と同様に、触媒基準エッチングによる加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.13nmであった。
加工後の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.063nmと良好であった。上面の表面粗さは、触媒基準エッチングにより、二乗平均平方根粗さ(RMS)で0.13nmから0.063nmに向上した。また、加工後の上面の表面粗さは、最大高さ(Rmax)で0.523nmと良好であった。また、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)は、8.3と良好であった。
また、実施例1と同様に、触媒基準エッチングによる加工後のガラス基板の上面の欠陥検査を行った。
加工後の上面の欠陥個数は、14個と少なかった。
また、実施例5の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(RMS)で0.08nm以下と良好であり、欠陥個数も50個以下と少なかった。
実施例5の方法により、高平滑性で且つ低欠陥の主表面を有するガラス基板が安定して得られた。
【0120】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板主表面の高い平滑性により、保護膜表面も高い平滑性を保っており、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
加工後の保護膜表面の欠陥個数は、12個と少なかった。
実施例5の方法により、高平滑性で且つ低欠陥の保護膜表面を有する多層反射膜付き基板が得られた。
また、実施例5の方法により、高平滑性で且つ低欠陥の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
【0121】
実施例6.
A.ガラス基板の製造
この実施例では、上面及び下面が研磨された6025サイズ(152mm×152mm×6.35mm)の合成石英ガラス基板を準備した。なお、合成石英ガラス基板は、上述の粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程を経て得られたものである。
それ以外は、実施例1と同様の方法により、ガラス基板を作製した。
【0122】
実施例1と同様に、触媒基準エッチングによる加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.17nmであった。
加工後の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.059nmと良好であった。上面の表面粗さは、触媒基準エッチングにより、二乗平均平方根粗さ(RMS)で0.17nmから0.059nmに向上した。また、加工後の上面の表面粗さは、最大高さ(Rmax)で0.472nmと良好であった。また、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)は、8.0と良好であった。
また、実施例1と同様に、触媒基準エッチングによる加工後のガラス基板の上面の欠陥検査を行った。
加工後の上面の欠陥個数は、37個と少なかった。
また、実施例6の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(RMS)で0.08nm以下と良好であり、欠陥個数も50個以下と少なかった。
実施例6の方法により、高平滑性で且つ低欠陥の主表面を有するガラス基板が安定して得られた。
【0123】
B.ハーフトーン型位相シフトマスクブランクの製造
次に、このようにして作製されたガラス基板の上面上に、モリブデンシリサイド(MoSi)ターゲットを使用し、アルゴン(Ar)ガスと窒素(N
2)ガスと酸素(O
2)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、モリブデンシリサイド酸化窒化物(MoSiON)からなる光半透過膜(膜厚88nm)を形成した。ラザフォード後方散乱分析法で分析した光半透過膜の膜組成は、Mo:5原子%、Si:30原子%、O:39原子%、N:26原子%であった。光半透過膜の露光光に対する透過率は6%であり、露光光が光半透過膜を透過することにより生じる位相差は180度であった。
その後、光半透過膜上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)ガスと二酸化炭素(CO
2)と窒素(N
2)ガスとヘリウム(He)ガスとの混合ガス雰囲気中で反応性スパッタリング(DCスパッタリング)を行い、クロム酸化炭化窒化物(CrOCN)層(膜厚30nm)を形成し、さらに、その上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)ガスと窒素(N
2)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、クロム窒化物(CrN)層(膜厚4nm)を形成し、クロム酸化炭化窒化物(CrOCN)層とクロム窒化物(CrN)層との積層からなる遮光層を形成した。さらに、この遮光層上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)ガスと二酸化炭素(CO
2)ガスと窒素(N
2)ガスとヘリウム(He)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、クロム酸化炭化窒化物(CrOCN)からなる表面反射防止層(膜厚14nm)を形成した。このようにして、遮光層と表面反射防止層とからなる遮光膜を形成した。
このようにして、高平滑で且つ低欠陥の表面状態を維持したArFエキシマレーザー露光用のハーフ
トーン型位相シフトマスクブランクを作製した。
【0124】
C.ハーフトーン型位相シフトマスクの製造
次に、このようにして作製されたハーフトーン型位相シフトマスクブランクの遮光膜上に、電子線描画(露光)用化学増幅型レジストをスピンコート法により塗布し、加熱及び冷却工程を経て、膜厚が150nmのレジスト膜を形成した。
その後、形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
その後、このレジストパターンをマスクにして、遮光膜のドライエッチングを行って、光半透過膜上に遮光膜パターンを形成した。ドライエッチングガスとしては、塩素(Cl
2)ガスと酸素(O
2)ガスとの混合ガスを用いた。
その後、レジストパターン及び遮光膜パターンをマスクにして、光半透過膜のドライエッチングを行って、光半透過膜パターンを形成した。ドライエッチングガスとしては、六フッ化硫黄(SF
6)ガスとヘリウム(He)ガスとの混合ガスを用いた。
その後、残存するレジストパターンを剥離し、再度レジスト膜を塗布し、転写領域内の不要な遮光膜パターンを除去するためのパターン露光を行った後、このレジスト膜を現像してレジストパターンを形成した。
その後、ウェットエッチングを行って、不要な遮光膜パターンを除去した。
その後、残存するレジストパターンを剥離し、洗浄を行った。
このようにして、高平滑性で且つ低欠陥の表面状態を維持したArFエキシマレーザー露光用のハーフトーン型位相シフトマスクを作製した。
【0125】
なお、この実施例では、モリブデンシリサイド酸化窒化物(MoSiON)からなる光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについて本発明を適用したが、モリブデンシリサイド窒化物(MoSiN)からなる光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、単層の光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクに限らず、多層構造の光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、多層構造の遮光膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクに限らず、単層の遮光膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、ハーフトーン型位相シフトマスクブランクや位相シフトマスクブランクに限らず、レベンソン型位相シフトマスクブランクや位相シフトマスクブランク、クロムレス型位相シフトマスクブランクや位相シフトマスクブランクについても、本発明を適用できる。
また、この実施例では、粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程を経て得られたガラス基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、実施例1で行った局所加工工程およびタッチ研磨工程を経て得られたガラス基板の主表面に対して触媒基準エッチングによる加工を施す場合についても、本発明を適用することができる。
【0126】
比較例1.
この実施例では、ステンレス鋼(SUS)製の直径50mmの円盤形状の定盤本体32と、定盤本体32を覆うように定盤本体32の表面全面に形成されたウレタンパッドと、ガラス基板と対向する側のウレタンパッドの表面全面に形成された鉄(Fe)からなる加工基準面33(膜厚100nm)とを備えた触媒定盤31を使用した。加工基準面33は、ウレタンパッド上に、鉄(Fe)ターゲットを使用し、アルゴン(Ar)ガス雰囲気中でスパッタリングを行い形成した。
それ以外は、実施例1と同様の方法により、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。
【0127】
実施例1と同様に、触媒基準エッチングによる加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.13nmであった。
加工後の上面の表面粗さは、二乗平均平方根粗さ(RMS)で0.140nmと不十分であった。上面の表面粗さは、触媒基準エッチングにより、二乗平均平方根粗さ(RMS)で0.13nmから0.140nmに悪化した。また、加工後の上面の表面粗さは、最大高さ(Rmax)で2.954nmと不十分であった。また、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)は、21.1と不十分であった。
また、実施例1と同様に、触媒基準エッチングによる加工後のガラス基板の上面の欠陥検査を行った。
加工後の上面の欠陥個数は、2118個と多かった。
また、比較例1の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(RMS)で0.08nm以上と不十分であり、欠陥個数も2000個以上と多かった。
比較例1の方法により、高平滑性で且つ低欠陥の主表面を有するガラス基板は得られなかった。
【0128】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板主表面の不十分な平滑性により、保護膜表面の平滑性も不十分であり、反射率は62%と実施例1と比べて2%低下した。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
加工後の保護膜表面の欠陥個数は、3089個と多かった。
比較例1の方法により、高平滑性で且つ低欠陥の保護膜表面を有する多層反射膜付き基板は得られなかった。
また、比較例1の方法により、高平滑性で且つ低欠陥の表面を有するEUV露光用の反射型マスクブランク及び反射型マスクは得られなかった。
【0129】
なお、上述した実施例では、反射型マスクブランク用基板や位相シフトマスクブランク用基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、バイナリーマスクブランクやナノインプリント用マスクブランクの主表面に対して、触媒基準エッチングによる加工を施す場合についても、本発明を適用できる。
また、上述した実施例では、マスクブランク用基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、磁気記録媒体用基板の主表面に対して、触媒基準エッチングによる加工を施す場合にも、本発明を適用できる。
【0130】
実施例7.
A.ガラス基板の製造
1.基板準備工程
上面及び下面が研磨された2.5インチサイズ(φ65mm)のアルミノシリケートガラス基板を準備した。なお、アルミノシリケートガラス基板は、以下のプレス成形工程、コアリング工程、チャンファリング工程、端面研磨工程、研削工程、第1研磨(主表面研磨)工程、化学強化工程、第2研磨(最終研磨)工程を経て得られたものである。
【0131】
(1)プレス成形工程(板状のガラスブランクの作製)
板状のガラスブランクの作製では、プレス金型を用いて熔融ガラスをプレス成形することによりガラスブランクを作製する。
プレス成形の工程では、例えば、受けゴブ形成型である下型上に、溶融ガラスからなるガラスゴブ(ガラス塊)が供給され、下型と対向するゴブ形成型である上型とを使用してガラスゴブが挟まれてプレス成形される。これにより、磁気ディスク用ガラス基板の元となる円板状のガラスブランクが成形される。なお、後述するラッピング、研削、第1研磨及び第2研磨における取り代である表面加工量(ラッピング量+研削量+研磨量)を小さくしても、目標とする板厚、例えば0.8mmを確保でき、目標とする表面粗さ、例えば算術平均粗さRaを0.15nm以下とすることができ、しかも、コストの増大を抑制する点から、プレス成形で作製されるガラスブランクの板厚が0.9mm以下となるように、プレス成形することが好ましい。
なお、成形直後の板状のガラスをガラスブランクといい、このガラスブランクを用いて以降の加工処理が施されるとき、この板状のガラスをガラス素板という。
【0132】
(2)コアリング工程
次に、作製された円板状のガラスブランクを磁気ディスク用ガラス基板のガラス素板として用いてコアリングが施される。コアリング工程では、具体的には、円筒状のダイヤモンドドリルを用いて、円板状のガラス素板の中心部に内孔を形成し、円環状のガラス素板をつくる。このとき、ガラス素板を支持台に載せて固定して内孔を形成する。支持台によるガラス素板の支持固定は、支持台の表面に設けられた吸引口を通してガラス素板を吸引することにより行われる。すなわち、プレス成形時の主表面の表面凹凸の状態を有するガラス素板の主表面の一方を支持固定してガラス素板に貫通する穴を開ける。また、支持台にはガラス素板の主表面と接触する部分に弾性部材が設けられ、この弾性部材を用いてガラス素板を支持固定することが、ガラス素板の主表面に傷をつけない点で好ましい。
【0133】
(3)チャンファリング工程
コアリング工程の後、円板状のガラス素板の端部(外周端面及び内周端面)に面取り面を形成するチャンファリング(面取り)工程が行われる。チャンファリング工程では、コアリング工程によって円環状に加工されたガラス素板の外周面および内周面に対して、例えば、ダイヤモンド砥粒を用いた総型砥石等によって面取りが施される。総型砥石とは、複数の砥粒サイズと、ガラス素板をチャンファリングのために当接させる砥石面の傾斜角度が異なる複数の砥石型が用意された研削用工具である。総型砥石は、例えば、特許第3061605号公報に記載の工具が例示される。この総型砥石により、面取りを施しつつ、ガラス素板の直径も所定の大きさ、例えば65mmに揃えられる。ガラス素板の端部には、主表面に対して垂直な面取りされなかった側壁面と、面取りされた面取り面とを有するが、以降では、側壁面及び面取り面を纏めて端面という。
【0134】
(4)端面研磨工程
次に、円環状のガラス素板の端面研磨(エッジポリッシング)が行われる。
端面研磨では、円環状のガラス素板の内周端面及び外周端面をブラシ研磨により鏡面仕上げを行う。このとき、スペーサ等の端面研磨用の治具をガラス素板間に挟んで積層した複数のガラス素板を、研磨ブラシを用いて研磨を行う。さらに、研磨に用いる研磨液は、酸化セリウム等の微粒子を遊離砥粒として含む。端面研磨を行うことにより、ガラス素板の端面での塵等が付着した汚染、ダメージあるいは傷等の損傷の除去を行うことにより、サーマルアスペリティの発生の防止や、NaやK等のコロージョンの原因となるイオン析出の発生を防止することができる。
【0135】
(5)研削工程
両面研削装置を用いて円環状で板状のガラス素板の両側の主表面に対して研削加工を行う。両面研削装置は、両面研磨装置におけるパッドの代わりにダイヤモンド砥粒を分散させたダイヤモンドシート等が用いられる。固定砥粒による研削工程以外に、遊離砥粒を用いた研削工程を行ってもよい。この研削工程は、後述するガラス素板の主表面粗さを低減する研磨(第1研磨及び第2研磨)の前に、平坦度を向上し、板厚を揃え、あるいは、さらに、うねりを低減するために行う。
【0136】
(6)第1研磨(主表面研磨)工程
次に、円環状のガラス素板の主表面に第1研磨が施される。第1研磨は、遊星運動を行う両面研磨装置を用いて遊離砥粒で行われる。研磨剤である遊離砥粒には、粒子サイズ(直径)が略0.5〜2.0μmの酸化セリウム、酸化ジルコニウム、酸化チタン等の微粒子が用いられる。この粒子サイズは、研削工に用いるダイヤモンド砥粒の粒子サイズに比べて小さい。第1研磨は、(5)の研削により主表面に残留した傷、歪みの除去、うねり、微小うねりの調整を目的とする。
【0137】
(7)化学強化工程
次に、第1研磨後の円環状のガラス素板は化学強化される。化学強化液として、例えば硝酸カリウム(60重量%)と硝酸ナトリウム(40重量%)の混合液等を用いることができる。化学強化では、化学強化液が、例えば300℃〜500℃に加熱され、洗浄したガラス素板が、例えば200℃〜300℃に予熱された後、円環状のガラス素板が化学強化液中に、例えば1時間〜4時間浸漬される。この浸漬の際には、円環状のガラス素板の両主表面全体が化学強化されるように、複数の円環状のガラス素板の端部を保持して収納するかご(ホルダ)を用いて行うことが好ましい。
このように、ガラス素板を化学強化液に浸漬することによって、ガラス素板の表層にあるLiイオン及びNaイオンが、化学強化液中のイオン半径が相対的に大きいNaイオン及びKイオンにそれぞれ置換され、ガラス素板の表面に圧縮層が形成されることにより強化される。なお、化学強化処理された円環状のガラス素板は洗浄される。例えば、硫酸で洗浄された後に、純水等で洗浄される。
【0138】
(8)第2研磨(最終研磨)工程
次に、化学強化されて十分に洗浄されたガラス素板に第2研磨が施される。第2研磨は、主表面の鏡面研磨を目的とする。第2研磨では例えば、第1研磨と同様の構成の研磨装置を用いる。このとき、第1研磨と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、パッドの硬度が異なることである。パッドは、発泡ウレタン等のウレタン製研磨パッド、スエードパッド等が用いられる。
第2研磨に用いる遊離砥粒として、例えば、研磨液に混濁させたシリカからなるコロイダルシリカ等の微粒子(粒子サイズ:直径10〜50nm程度)が用いられる。この微粒子は、第1研磨で用いる遊離砥粒に比べて細かい。コロイダルシリカ等の微粒子が混濁した研磨液(スラリー)には、シリカが例えば0.1〜40質量%、好ましくは、3質量%〜30質量%含むことが、研磨の加工効率を確保し、表面粗さを高める点で好ましい。
研磨されたガラス素板は洗浄される。洗浄では、中性洗浄液あるいはアルカリ性洗浄液を用いた洗浄であることが、洗浄によってガラス表面に傷等の欠陥を形成せず、さらに表面粗さを粗くさせない点で好ましい。これにより、主表面の算術平均粗さRaを0.15nm以下、例えば0.13〜0.15nmとすることができる。中性洗浄液の他に、純水、酸(酸性洗浄液)、IPA等を用いた複数の洗浄処理を施すこともできる。こうして、ガラス素板を洗浄することにより、ガラス基板を準備する。
【0139】
2.基板加工工程
次に、
図1及び
図2に示す基板加工装置を用いて、第2研磨工程後のガラス基板の主表面として用いる上下面(両面)に対して、触媒基準エッチングによる加工を施した。
この実施例では、実施例2で使用したルテニウムニオブ(RuNb)合金からなる加工基準面33を備えた触媒定盤31を使用した。
加工条件は以下の通りである。
処理流体:純水
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:35hPa
加工取り代:25nm
【0140】
3.評価
実施例1と同様に、触媒基準エッチングによる加工前後のガラス基板の主表面の表面粗さを測定した。
加工前の表面粗さは、二乗平均平方根粗さ(RMS)で0.12nmであった。
加工後の表面粗さは、二乗平均平方根粗さ(RMS)で0.049nmと良好であった。
表面粗さは、触媒基準エッチングにより、二乗平均平方根粗さ(RMS)で0.12nmから0.049nmに向上した。また、加工後の表面粗さは、最大高さ(Rmax)で0.38nmと良好であった。また、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)は、7.8と良好であった。
【0141】
B.磁気記録媒体(磁気ディスク)の製造
次に、このように作製されたガラス基板の両面に、DCマグネトロンスパッタリング法によりArガス雰囲気中で付着層、軟磁性層、下地層、磁気記録層、バリア層、補助記録層を順次、形成した。
付着層は、膜厚20nmのCrTiとした。軟磁性層は、第1軟磁性層、スペーサ層、第2軟磁性層のラミネート構造とした。第1軟磁性層、第2軟磁性層は、膜厚25nmのCoFeTaZrとし、スペーサ層は膜厚1nmのRuとした。下地層は、膜厚5nmのNiWとした。磁気記録層は、第1磁気記録層と第2磁気記録層の積層構造とし、第1磁気記録層は、膜厚10nmのCoCrPt−Cr
2O
3、第2磁気記録層は、膜厚10nmのCoCrPt−SiO
2−TiO
2とした。バリア層は、膜厚0.3nmのRu−WO
3とした。補助記録層は、膜厚10nmのCoCrPtBとした。
次に、補助記録層上にCVD法により水素化カーボン層(C
2H
4)及び窒化カーボン層(CN)の膜厚4nmの積層構造からなる保護層を形成し、最後にディップコート法によりパーフルオロポリエーテル(PFPE)からなる膜厚1.3nmの潤滑層を形成してDFHヘッド対応の磁気記録媒体を作製した。
このようにして、ガラス基板の両面に、それぞれ、付着層、軟磁性層(第1軟磁性層、スペーサ層、第2軟磁性層)、下地層、磁気記録層(第1磁気記録層と第2磁気記録層)、バリア層、補助記録層、保護層、及び、潤滑層を順次、形成してなる磁気記録媒体(磁気ディスク)を製造した。
尚、上記付着層をCrTiとしたが、これに限定されるものではなく、例えば、CoW系、CrW系、CrTa系、CrNb系の材料から選択してもよい。上記軟磁性層の第1軟磁性層、第2軟磁性層をCoFeTaZrとしたが、これに限定されるものではなく、例えば、CoCrFeBなどの他のCo−Fe系合金、CoTaZrなどのコバルト系合金、[Ni−Fe/Sn]
n多層構造などのNi−Fe系合金から選択してもよい。上記磁気記録層の第1磁気記録層をCoCrPt−Cr
2O
3とし、第2磁気記録層をCoCrPt−SiO
2−TiO
2としたが、これらに限定されるものではなく、第1磁気記録層及び第2磁気記録層の組成や種類が同じ材料であってもよい。これらの磁気記録層に非磁性領域を形成するための非磁性物質としては、上記のような酸化クロム(CrxOy)、酸化チタンの他、例えば、酸化ケイ素(SiOx)、酸化ジルコン(ZrO
2)、酸化タンタル(Ta
2O
5)、酸化鉄(Fe
2O
3)、酸化ボロン(B
2O
3)などの酸化物、BNなどの窒化物、B
4C
3などの炭化物、Crなどから選択してもよい。上記バリア層をRu−WO
3としたが、これに限定されるものではなく、Ruや上記以外のRu合金から選択してもよい。上記補助記録層をCoCrPtBとしたが、これに限定されるものではなく、例えば、CoCrPtから選択してもよく、これらに微少量の酸化物を含有させてもよい。
また、軟磁性層と下地層との間に前下地層を形成してもよく、また、下地層と磁気記録層との間に非磁性グラニュラー層を形成してもよい。前下地層の材質としては、例えば、Ni、Cu、Pt、Pd、Zr、Hf、Nb、Taから選択される。非磁性グラニュラー層の組成は、Co系合金からなる非磁性の結晶粒子の間に、非磁性物質を偏析させて粒界を形成することにより、グラニュラー構造とすることができる。
【0142】
C.ロードアンロード(LUL)耐久試験、DFHタッチダウン試験
得られた磁気記録媒体(磁気ディスク)について、その回転数を7200rpmとし、DFHヘッドの浮上量を9〜10nmとするLUL試験を行った。LUL試験の結果、100万回繰り返しても故障を生じることがなかった。なお、通常、LUL耐久試験では、故障なくLUL回数が連続して40万回を超えることが必要とされている。かかるLUL回数の40万回は、通常のHDDの使用環境における10年程度の利用に匹敵する。このようにして、極めて信頼性の高いDFHヘッド対応の磁気記録媒体を作製した。
また、得られた磁気記録媒体(磁気ディスク)について、DFHタッチダウン試験を行った。DFHタッチダウン試験は、得られた磁気記録媒体(磁気ディスク)に対し、DFH機構によってDFHヘッド素子部を徐々に突き出していき、磁気ディスク表面との接触を検知することによって、DFHヘッド素子部と磁気記録媒体が接触した距離を評価する試験である。尚、ヘッドは、320GB/P磁気ディスク(2.5インチサイズ)向けのDFHヘッドを用いた。DFHヘッド素子部の突出しがないときの浮上量を10nmとし、評価半径を22mmとし、磁気ディスクの回転数を5400rpmとした。また、試験時の温度は25℃であり、湿度は60%であった。その結果、DFHヘッド素子部と磁気記録媒体が接触した距離は、1.0nm以下と良好な結果が得られた。
【0143】
上述の構成1乃至13のいずれか一に記載の基板の製造方法によって得られた磁気記録媒体用のガラス基板の主表面は、二乗平均平方根粗さ(RMS)で0.05nm以下、最大高さ(Rmax)で0.5nm以下、二乗平均平方根粗さと最大高さとの比(Rmax/RMS)で8以下の高い平滑性を有する磁気記録媒体用ガラス基板が得られる。
上述の構成1乃至13のいずれか一に記載の基板の製造方法によって得られた基板の主表面上に、磁気記録層を形成する磁気記録媒体の製造方法により、信頼性の高いDFHヘッド対応の磁気記録媒体を得ることができる。