(58)【調査した分野】(Int.Cl.,DB名)
前記第1のマイクロレンズ下の前記第1画素と前記第2画素の画素信号を用いて、ダイナミックレンジが拡張された信号を生成するとともに、前記第2のマイクロレンズ下の前記第1画素と前記第2画素の画素信号を位相差信号として出力する信号処理回路をさらに備える
請求項1に記載の固体撮像装置。
前記駆動制御部は、第1のモードと第2のモードで、前記第1のマイクロレンズ下の前記第1画素の前記第1の露光時間と前記第2画素の前記第2の露光時間の露光時間比を変更する
請求項1に記載の固体撮像装置。
同一の受光領域を有する画素が行列状に複数配置されており、1つのマイクロレンズに入射された光が、隣接する複数画素に入射されるように構成されている画素アレイ部の第1のマイクロレンズ下の前記複数画素に含まれる第1画素及び第2画素のうち、前記第1画素に対して第1の露光時間に設定し、前記第2画素に対して第2の露光時間に設定するとともに、前記画素アレイ部の第2のマイクロレンズ下の前記複数画素に含まれる前記第1画素及び前記第2画素に対しては前記第1の露光時間に設定する
固体撮像装置の駆動制御方法。
【発明を実施するための形態】
【0018】
<固体撮像装置の概略構成例>
図1は、本開示に係る固体撮像装置の概略構成を示している。
【0019】
図1の固体撮像装置1は、半導体として例えばシリコン(Si)を用いた半導体基板13に、画素2が行列状に複数配列された画素アレイ部3と、その周辺の周辺回路部とを有して構成される。周辺回路部には、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、バッファ回路7、制御回路8などが含まれる。
【0020】
画素2は、光電変換部としてのフォトダイオードと、複数の画素トランジスタを有して構成される。複数の画素トランジスタは、例えば、転送トランジスタ、増幅トランジスタ、選択トランジスタ、リセットトランジスタなどのMOSトランジスタである。画素2の構成例については、
図2を参照して後述する。
【0021】
垂直駆動回路4は、例えばシフトレジスタによって構成され、画素駆動配線10を選択し、選択された画素駆動配線10に画素2を駆動するためのパルスを供給し、行単位で画素2を駆動する。すなわち、垂直駆動回路4は、画素アレイ部3の各画素2を行単位で順次垂直方向に選択走査し、各画素2の光電変換部において入射光量に応じて生成された信号電荷に基づく画素信号を、垂直信号線9を通してカラム信号処理回路5に供給する。
【0022】
カラム信号処理回路5は、画素2の列ごとに配置されており、1行分の画素2から出力される信号を画素列ごとにノイズ除去などの信号処理を行う。例えば、カラム信号処理回路5は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)およびAD変換等の信号処理を行う。
【0023】
水平駆動回路6は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から画素信号を水平信号線11に出力させる。
【0024】
バッファ回路7は、カラム信号処理回路5の各々から水平信号線11を通して順次に供給される信号をバファリングして、信号処理回路12に出力する。
【0025】
制御回路8は、入力クロックと、動作モードなどを指令するデータを受け取り、また固体撮像装置1の内部情報などのデータを出力する。すなわち、制御回路8は、垂直同期信号、水平同期信号及びマスタクロックに基づいて、垂直駆動回路4、カラム信号処理回路5及び水平駆動回路6などの動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5及び水平駆動回路6等に出力する。
【0026】
信号処理回路12は、バッファ回路7から供給されるデジタルの画素信号に対して、各種のデジタル信号処理を行う。本実施の形態においては、信号処理回路12は、後述するダイナミックレンジ拡張処理や感度差補正処理を実行する。信号処理回路12は、例えば、列ばらつき補正など、その他のデジタル信号処理を行うこともできる。
【0027】
以上のように構成される固体撮像装置1は、CDS処理とAD変換処理を行うカラム信号処理回路5が画素列ごとに配置されたカラムAD方式と呼ばれるCMOSイメージセンサである。
【0028】
<2.画素2の回路構成例>
図2は、画素2の回路構成例を示す図である。
【0029】
画素2は、
図2に示すように、光電変換素子としてのフォトダイオード(PD)21、転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、および、選択トランジスタ25の4つのトランジスタを有する。
【0030】
ここでは、4つの転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24および選択トランジスタ25として、たとえばNチャネルのMOSトランジスタを用いている。ただし、ここで例示した転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24および選択トランジスタ25の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。
【0031】
この画素2に対して、画素駆動配線10として、たとえば、転送線10A、リセット線10Bおよび選択線10Cの3本の駆動配線が同一画素行の各画素について共通に配線されている。これら転送線10A、リセット線10B、および選択線10Cの各一端は、垂直駆動回路4の各画素行に対応した出力端に、画素行単位で接続されている。
【0032】
フォトダイオード21は、アノード電極が負側電源(たとえば、GND)に接続されており、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換する。
フォトダイオード21のカソード電極は、転送トランジスタ22を介して増幅トランジスタ24のゲート電極と電気的に接続されている。増幅トランジスタ24のゲート電極と電気的に繋がったノードをFD(フローティングディフュージョン)部26と呼ぶ。
【0033】
転送トランジスタ22は、フォトダイオード21のカソード電極とFD部26との間に接続されている。転送トランジスタ22のゲート電極には、高レベル(たとえば、Vddレベル)がアクティブ(以下、「Highアクティブ」と記述する)の転送パルスφTRFが転送線10Aを介して与えられる。転送パルスφTRFが与えられることで、転送トランジスタ22はオン状態となってフォトダイオード21で光電変換された光電荷をFD部26に転送する。
【0034】
リセットトランジスタ23は、ドレイン電極が画素電源Vddに、ソース電極がFD部26にそれぞれ接続されている。リセットトランジスタ23のゲート電極には、フォトダイオード21からFD部26への信号電荷の転送に先立って、HighアクティブのリセットパルスφRSTがリセット線10Bを介して与えられる。リセットパルスφRSTが与えられることで、リセットトランジスタ23はオン状態となり、FD部26の電荷を画素電源Vddに捨てることによってFD部26をリセットする。
【0035】
増幅トランジスタ24は、ゲート電極がFD部26に、ドレイン電極が画素電源Vddにそれぞれ接続されている。そして、増幅トランジスタ24は、リセットトランジスタ23によってリセットした後のFD部26の電位をリセット信号(リセットレベル)Vresetとして出力する。増幅トランジスタ24は、転送トランジスタ22によって信号電荷を転送した後のFD部26の電位を光蓄積信号(信号レベル)Vsigとして出力する。
【0036】
選択トランジスタ25は、たとえば、ドレイン電極が増幅トランジスタ24のソース電極に、ソース電極が垂直信号線9にそれぞれ接続されている。選択トランジスタ25のゲート電極には、Highアクティブの選択パルスφSELが選択線10Cを介して与えられる。選択パルスφSELが与えられることで、選択トランジスタ25はオン状態となって画素2を選択状態とし、増幅トランジスタ24から出力される信号を垂直信号線9に中継する。
【0037】
なお、選択トランジスタ25については、画素電源Vddと増幅トランジスタ24のドレインとの間に接続した回路構成を採ることも可能である。
【0038】
また、画素2としては、上記構成の4つのトランジスタからなる画素構成のものに限られるものではない。たとえば、増幅トランジスタ24と選択トランジスタ25とを兼用した3つのトランジスタからなる画素構成のものなどであっても良く、その画素回路の構成は問わない。
【0039】
<マイクロレンズの構成例>
図3は、画素アレイ部3内のマイクロレンズの構成例を示す図である。
【0040】
固体撮像装置1の画素アレイ部3では、入射光を集光して、画素2のフォトダイオード21へ入射させるマイクロレンズ(オンチップマイクロレンズ)31が、隣接する複数の画素で共有されるように形成されている。本実施の形態では、
図3に示されるように、水平方向(左右)の2画素に対して1つのマイクロレンズ31が共有されるように形成されている。
【0041】
以下では、1つのマイクロレンズ31を共有する2つの画素2のうち、右側の画素2をR画素、左側の画素2をL画素とも称する。
【0042】
本実施の形態では、
図3に示したように、水平方向(左右)の2画素に対して1つのマイクロレンズ31が共有されるように形成されているが、実際には、
図4に示されるように、マイクロレンズ31は、その下の半導体基板13のフォトダイオード21の受光領域に対して、水平方向にずれて配置されている。
【0043】
図4は、固体撮像装置1における実際のマイクロレンズ31の配置を示す図である。
図4Aは、3個分のマイクロレンズ31に対応する水平方向6画素についての概略上面図であり、
図4Bは、水平方向6画素についての概略断面図である。
【0044】
固体撮像装置1では、
図4Bに示されるように、半導体基板13の、例えば、P型(第1導電型)の半導体領域36に、N型(第2導電型)の半導体領域35を画素ごとに形成することにより、フォトダイオード21が、画素単位に形成されている。N型の半導体領域35のマイクロレンズ31に対向する部分の面積(受光領域)は、各画素2で同一に形成されている。
図4Bにおいては、P型の半導体領域36が画素ごとに区切られているが、便宜上区切ったものであり、実際には、画素ごとには区切られていない。
図4Aの画素2の境界についても同様である。
【0045】
半導体基板13の表面側(図中下側)には、フォトダイオード21に蓄積された電荷の読み出し等を行う複数の画素トランジスタと、複数の配線層と層間絶縁膜とからなる多層配線層が形成されている(いずれも図示せず)。
【0046】
半導体基板13の裏面側(図中上側)の上面には、例えば、シリコン酸化膜などによる絶縁層(反射防止膜)33が形成されており、そのうちの一部に、遮光膜34が形成されている。遮光膜34は、
図4A及び
図4Bに示されるように、マイクロレンズ31の境界であり、かつ、画素境界となる領域に所定の幅で形成されている。遮光膜34は、光を遮光する材料であればよいが、遮光性が強く、かつ微細加工、例えばエッチングで精度よく加工できる材料が望ましい。遮光膜34は、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、チタン(Ti)、モリブデン(Mo)、ニッケル(Ni)などの金属膜で形成することができる。
【0047】
絶縁層33の上には、赤色、緑色、または青色の色フィルタ32が形成され、色フィルタ32の上に、マイクロレンズ31が形成されている。マイクロレンズ31は、例えば、スチレン系樹脂、アクリル系樹脂、スチレン−アクリル共重合系樹脂、またはシロキサン系樹脂等の樹脂系材料で形成される。
【0048】
以上のように構成される画素2では、マイクロレンズ31の光軸(レンズ中心)37と、そこを通過した入射光を受光する複数画素の画素領域中心とが、ずれて形成されている。具体的には、
図4A及び
図4Bに示されるように、マイクロレンズ31の光軸37が、対応する複数画素の画素領域中心に対して、右側(R画素寄り)にずれて形成されている。
【0049】
なお、画素2の受光領域に対するマイクロレンズ31の形成位置のずれは、意図的に発生させたものでもよいし、意図せずに発生されたものでもどちらでもよい。換言すれば、本実施の形態において、どのような要因でマイクロレンズ31の形成位置のずれが生じているかは問題とならない。
【0050】
マイクロレンズ31の形成位置のずれにより、1つのマイクロレンズ31を通過した入射光を受光する複数の画素2それぞれにおいて感度差が発生する。
【0051】
<感度差の説明>
図5を参照して、L画素とR画素に生ずる感度差について説明する。
図5は、L画素とR画素の受光感度分布を示す図である。
【0052】
受光感度分布は、横軸を入射光の入射角、縦軸を受光感度として、入射角に対する感度を示す感度特性グラフである。
【0053】
マイクロレンズ31の光軸37が複数画素の画素領域中心に対して、
図4に示したように、R画素寄りにずれている場合、
図5に示されるように、L画素の受光感度分布と、R画素の受光感度分布の交点が、入射角0°の位置よりも右側にシフトする。
【0054】
L画素に入射される入射光量は、L画素に入射される入射光の入射角の範囲におけるL画素の受光感度分布の面積に相当し、R画素に入射される入射光量は、R画素に入射される入射光の入射角の範囲におけるR画素の受光感度分布の面積に相当する。したがって、L画素は、R画素よりも入射光量が少ない低感度の画素となり、R画素は、L画素よりも入射光量が多い高感度の画素となるため、L画素とR画素で感度差が発生する。
【0055】
以上のように、マイクロレンズ31の光軸37が、対応する複数画素の画素領域中心に対してずれて形成されている場合には、複数画素のそれぞれには感度差が発生することになる。
【0056】
そこで、固体撮像装置1の信号処理回路12は、感度差が発生している画像に対して、
図6及び
図7に示す信号処理(画像処理)を行うように構成されている。
【0057】
<第1の信号処理の説明>
図6は、信号処理回路12が行う第1の信号処理を説明する図である。
【0058】
信号処理回路12は、バッファ回路7から供給される画像41を取得する。画像41は、画素アレイ部3のL画素とR画素で感度の異なる低感度画素と高感度画素で撮像された画像である。
【0059】
そして、信号処理回路12は、画像41の低感度画素と高感度画素の画素信号に基づいてダイナミックレンジ拡張処理を実行し、ダイナミックレンジが拡張された画像42を生成して出力する。
【0060】
<第2の信号処理の説明>
図7は、信号処理回路12が行う第2の信号処理を説明する図である。
【0061】
信号処理回路12は、バッファ回路7から供給される画像から、低感度画素のみで構成される低感度画像43Lと、高感度画素のみで構成される高感度画像43Rの、感度の異なる2枚の画像43L及び43Rを生成する。
【0062】
そして、信号処理回路12は、低感度画像43Lと高感度画像43Rに対して、感度の違いを補正する感度差補正処理を実行し、その結果得られる補正後画像44L及び44Rを出力する。
【0063】
2枚の補正後画像44L及び44Rは、例えば、ユーザに3次元を知覚させるための画像として利用される。
【0064】
<信号処理回路の詳細構成ブロック図>
図8は、信号処理回路12の詳細構成を示すブロック図である。
【0065】
信号処理回路12は、画像取得部51、係数記憶部52、画像処理部53、及び、画像出力部54により構成される。
【0066】
画像取得部51は、バッファ回路7から供給される、感度の異なる複数の画素値(画素信号)で構成される画像を取得し、画像処理部53に供給する。
【0067】
係数記憶部52は、予め取得された、画素アレイ部3の高感度画素と低感度画素の感度比を、感度差情報として記憶する。感度比は、事前に所定の画像(例えば、明度が均一な画像)を撮像し、その画像データを基に求め、係数記憶部52に記憶させることができる。あるいはまた、マイクロレンズ31の形成位置のずれを意図的に形成した場合には、ずれ量から算出される受光量の比から、高感度画素と低感度画素の感度比を求め、係数記憶部52に記憶させてもよい。
【0068】
画像処理部53は、係数記憶部52から取得した感度比を用いて、第1の信号処理として
図6を参照して説明したダイナミックレンジ拡張処理を実行する。
【0069】
また、画像処理部53は、係数記憶部52から取得した感度比を用いて、第2の信号処理として
図7を参照して説明した感度差補正処理を実行する。
【0070】
なお、本実施の形態では、画像処理部53は、ダイナミックレンジ拡張処理と感度差補正処理の両方を、選択的にまたは同時に実行可能であるものとするが、ダイナミックレンジ拡張処理と感度差補正処理のいずれか一方のみを実行するように構成されてもよい。
【0071】
画像出力部54は、画像処理部53で処理された処理後の画像、即ち、ダイナミックレンジが拡張された画像42、または、感度差が補正された補正後画像44L及び44Rを出力する。
【0072】
<ダイナミックレンジ拡張処理の説明>
図9乃至
図11を参照して、ダイナミックレンジ拡張処理についてさらに説明する。
【0073】
図9は、低感度画素と高感度画素における、入射光量と信号量の関係を示す図である。なお、
図9において、低感度画素と高感度画素の露光時間は同一に設定されている。
【0074】
高感度画素では、入射光量がP2となった時点で飽和信号量Q2に到達し、低感度画素では、入射光量がP3となった時点で飽和信号量Q2に到達する。一方、受光により得られる信号量がQ1以下である場合には、ノイズレベルに相当するため、その画素信号は利用することができない。そのため、高感度画素のダイナミックレンジは、入射光量がP0からP2までの範囲となり、低感度画素のダイナミックレンジは、入射光量がP1からP3までの範囲となる。
【0075】
図10は、ダイナミックレンジ拡張処理による入射光量と信号量の関係を示す図である。
【0076】
いま、低感度画素と高感度画素の感度比が1:3(低感度画素:高感度画素=1:3)であるとすると、例えば、画像処理部53は、入射光量Aの画素2については、以下の式(1)により、ダイナミックレンジ拡張処理後の画素信号HDL_Aを求める。
画素信号HDL_A=高感度画素信号×1+低感度画素信号×0・・・(1)
【0077】
また、画像処理部53は、入射光量Bの画素2については、以下の式(2)により、ダイナミックレンジ拡張処理後の画素信号HDL_Bを求める。
画素信号HDL_B=高感度画素信号×(1-α)+低感度画素信号×α×3
・・・(2)
【0078】
さらに、画像処理部53は、入射光量Cの画素2については、以下の式(3)により、ダイナミックレンジ拡張処理後の画素信号HDL_Cを求める。
画素信号HDL_C=高感度画素信号×0+低感度画素信号×3・・・(3)
【0079】
以上のように、画像処理部53は、画素アレイ部3の各画素2の信号量(入射光量)を、例えば、低レベル、中レベル、高レベルの3つに分類し、信号量が低レベルの画素2については、高感度画素の画素信号のみを用いた式(1)により、ダイナミックレンジ拡張処理後の画素信号を求める。
【0080】
また、信号量が中レベルの画素2については、画像処理部53は、高感度画素の画素信号と低感度の画素信号を(1−α):αの比率で合成した式(2)により、ダイナミックレンジ拡張処理後の画素信号を求める。ここで、α(αは0以上1以下)は合成比率を表す。
【0081】
さらに、信号量が高レベルの画素2については、画像処理部53は、低感度の画素信号のみを用いた式(3)により、ダイナミックレンジ拡張処理後の画素信号を求める。
【0082】
これにより、
図10に示されるように、信号量がQ1からQ3までに拡張された高ダイナミックレンジな画像を生成することができる。
【0083】
なお、信号量レベルの低レベル、中レベル、及び高レベルの区分については予め決定される。
【0084】
また、上述した例では、低感度画素と高感度画素の露光時間が同一である場合について説明したが、
図11に示すように、低感度画素の露光時間を、高感度画素よりも短く設定した状態で撮像し、その結果得られる画像から、高ダイナミックレンジの画像を生成することも可能である。
【0085】
図11では、低感度画素の露光時間が高感度画素の露光時間と同一である場合、飽和信号量Q2となる入射光量はP3であるが、低感度画素の露光時間が高感度画素よりも短く設定されることにより、飽和信号量Q2となる入射光量はP4(>P3)となっている。
【0086】
このように低感度画素と高感度画素の露光時間を変える場合には、例えば、画像処理部53が、低感度画素と高感度画素の露光時間を所定の時間に設定する制御信号を制御回路8に出力し、制御回路8が、指定された露光時間となるように垂直駆動回路4をさらに制御する。あるいはまた、低感度画素と高感度画素の露光時間を所定の時間に設定する制御信号は、固体撮像装置1の外部の信号処理回路等から入力されてもよい。
【0087】
なお、低感度画素の露光時間を高感度画素よりも短く設定する代わりに、高感度画素の露光時間を長く変更することで、高ダイナミックレンジを実現することも可能である。また、低感度画素と高感度画素の両方の露光時間を変更してもよい。
【0088】
<感度差補正処理の説明>
次に、
図12及び
図13を参照して、感度差補正処理について説明する。
【0089】
感度差補正処理は、
図12に示されるように、マイクロレンズ31の形成位置のずれによって生じた入射光量の違いにより、高感度画素の信号量Saと、低感度画素の信号量Sbが異なる場合に、信号量が同一となるように、高感度画素の信号量をSa’に、低感度画素の信号量をSb’に補正する処理である。
【0090】
図13は、感度差補正処理による入射光量と信号量の関係を示す図である。
【0091】
上述した例と同様に、低感度画素と高感度画素の感度比が1:3(低感度画素:高感度画素=1:3)であるとすると、例えば、画像処理部53は、入射光量Aの高感度画素と低感度画素それぞれに対して、以下の式(4)により、感度差補正後の高感度画素信号HS_A及び低感度画素信号LS_Aを求める。
高感度画素信号HS_A=高感度画素信号×(2+β)/3
低感度画素信号LS_A=低感度画素信号×(2−β)
・・・(4)
【0092】
また、画像処理部53は、入射光量Bの高感度画素と低感度画素それぞれに対して、以下の式(5)により、感度差補正後の高感度画素信号HS_B及び低感度画素信号LS_Bを求める。
高感度画素信号HS_B=高感度画素信号×2/3
低感度画素信号LS_B=低感度画素信号×2
・・・(5)
【0093】
さらに、画像処理部53は、入射光量Cの高感度画素と低感度画素それぞれに対して、以下の式(6)により、感度差補正後の高感度画素信号HS_C及び低感度画素信号LS_Cを求める。
高感度画素信号HS_C=高感度画素信号×(2−γ)/3
低感度画素信号LS_C=低感度画素信号×(2+γ)
・・・(6)
【0094】
以上のように、画像処理部53は、画素アレイ部3の各画素2の信号量(入射光量)を、例えば、低レベル、中レベル、高レベルの3つに分類し、信号量が低レベルの画素2については、式(4)により、感度差補正後の高感度画素信号及び低感度画素信号を求める。
【0095】
また、信号量が中レベルの画素2については、画像処理部53は、式(5)により、感度差補正後の高感度画素信号及び低感度画素信号を求める。さらに、信号量が高レベルの画素2については、画像処理部53は、式(6)により、感度差補正後の高感度画素信号及び低感度画素信号を求める。ここで、式(4)のβ、及び式(6)のγは、予め決定された正の実数であり、感度差補正を調整する調整係数である。
【0096】
これにより、高感度の画素信号と、低感度の画素信号が、
図13において2点鎖線で示される同レベルの画素信号に補正される。なお、信号量レベルの低レベル、中レベル、及び高レベルの区分については予め決定される。また、ノイズレベルと飽和信号量のレベルは、低感度画素の信号量から推定される。
【0097】
<ダイナミックレンジ拡張処理の処理フロー>
図14のフローチャートを参照して、信号処理回路12によるダイナミックレンジ拡張処理について説明する。
【0098】
初めに、ステップS1において、画像取得部51は、バッファ回路7から供給される、感度差を有する1枚の画像を取得し、画像処理部53に供給する。
【0099】
ステップS2において、画像処理部53は、係数記憶部52に記憶されている低感度画素と高感度画素の感度比を取得し、取得した感度比を用いて、
図9乃至
図11を参照して説明したダイナミックレンジ拡張処理を実行する。処理後の画像は、画像出力部54に供給される。
【0100】
ステップS3において、画像出力部54は、ダイナミックレンジ拡張処理後の画像を、固体撮像装置1の外部へ出力する。
【0101】
画素アレイ部3で撮像された1枚の画像に対するダイナミックレンジ拡張処理は、以上のように実行される。信号処理回路12は、バッファ回路7から順次供給される画像(感度差を有する画像)に対して、上述した処理を繰り返し実行することができる。
【0102】
<感度差補正処理の処理フロー>
次に、
図15のフローチャートを参照して、信号処理回路12による感度差補正処理について説明する。
【0103】
初めに、ステップS11において、画像取得部51は、バッファ回路7から供給される、感度差を有する1枚の画像を取得し、低感度画素のみで構成される低感度画像と、高感度画素のみで構成される高感度画像を生成し、画像処理部53に供給する。
【0104】
ステップS12において、画像処理部53は、係数記憶部52に記憶されている低感度画素と高感度画素の感度比を取得し、取得した感度比を用いて、
図12及び
図13を参照して説明した感度差補正処理を実行する。処理後の低感度画像と高感度画像のそれぞれは、画像出力部54に供給される。
【0105】
ステップS13において、画像出力部54は、感度差補正処理後の低感度画像と高感度画像のそれぞれを、固体撮像装置1の外部へ出力する。
【0106】
画素アレイ部3で撮像された1枚の画像に対する感度差補正処理は、以上のように実行される。信号処理回路12は、バッファ回路7から順次供給される画像(感度差を有する画像)に対して、上述した処理を繰り返し実行することができる。
【0107】
上述したダイナミックレンジ拡張処理及び感度差補正処理では、予め低感度画素と高感度画素の感度比を計測して係数記憶部52に記憶しておき、その記憶された感度比を用いて、所定の信号処理(ダイナミックレンジ拡張処理及び感度差補正処理)を行うようにした。しかし、バッファ回路7から供給された1枚の画像そのものを用いて、感度比をリアルタイムに計算し、計算された感度比を用いて、所定の信号処理を実行してもよい。この場合には、感度比をその都度計算する必要があるため演算時間が増えるが、係数記憶部52を省略することができる。
【0108】
<変形例1>
上述した実施の形態では、複数の画素2で共有されるマイクロレンズ31の形成位置が、フォトダイオード21の受光領域に対してずれていることのみによって、各画素2で感度差が発生する例について説明した。
【0109】
しかし、マイクロレンズ31の形成位置のみならず、その他の構造の違いも含めて、マイクロレンズ31を共有する複数の画素2それぞれで感度差が生じる場合に対しても、本開示の技術は適用可能である。
【0110】
図16は、マイクロレンズ31の形成位置に加えて、遮光膜の違いによっても、感度差が生じるようにした構造の例を示している。
【0111】
図16に示される構造例では、遮光膜71の形成領域が、
図4に示した遮光膜34の形成領域と異なる。具体的には、遮光膜71は、R画素よりもL画素の受光領域をより多く覆うように形成されている。換言すれば、R画素の受光領域の上の遮光膜71の開口面積は、L画素の受光領域上の遮光膜71の開口面積よりも大きく形成されている。
図16のそれ以外の構造は、
図4と同様である。
【0112】
なお、この遮光膜71の形成領域の違いも、意図的に形成する場合に限られない。
【0113】
従って、信号処理回路12は、意図した/しないに関わらず生じたマイクロレンズ31の位置ずれや遮光膜71の位置ずれを含めた感度差に基づく、ダイナミックレンジ拡張処理及び感度差補正処理を行うことができる。
【0114】
<変形例2>
上述した実施の形態では、1つのマイクロレンズ31に対して、水平方向の2画素が配置されるように、マイクロレンズ31が形成されていた。しかし、1つのマイクロレンズ31を共有する画素2の数は、これに限られず、
図17に示されるように、M×N(垂直方向×水平方向)個の画素2で、1つのマイクロレンズ31を共有するものであればよい。ここで、M及びNは1以上の整数であり、MまたはNの少なくとも一方は1より大きい値である。
【0115】
例えば、4×4の16画素で1つのマイクロレンズ31を共有する場合、16種類の受光感度を有する画像が取得される。
【0116】
ダイナミックレンジ拡張処理においては、画像処理部53は、同一マイクロレンズ内の各画素2の画素信号に、各画素2の感度に応じた係数(感度比係数)を乗算する。そして、乗算後の画素信号で各画素が構成される画像が、高ダイナミックレンジの画像として、出力される。
【0117】
感度差補正処理においては、画像処理部53は、画素アレイ部3で生成された1枚の画像から、マイクロレンズ31内の画素位置が同一である画素どうしで構成される16枚の感度の異なる画像を生成する。次に、画像処理部53は、16枚の感度の異なる画像それぞれの各画素2の画素信号に、各画素2の感度差を補正する係数(感度差補正係数)を乗算する。そして、乗算後の画素信号で各画素が構成される16枚の画像が、感度差補正後の画像として、出力される。
【0118】
<本開示のHDR画像の特徴>
上述した実施の形態では、1つのマイクロレンズ31を通過した入射光を受光する複数の画素2それぞれにおいて、マイクロレンズ31の形成位置のずれにより、感度差が発生する場合について説明した。また、低感度画素と高感度画素とで、露光時間が同一である場合と異なる場合の両方について説明した。
【0119】
次に、マイクロレンズ31の形成位置のずれが発生していない場合について説明する。
【0120】
マイクロレンズ31の形成位置のずれが発生していない場合であっても、1つのマイクロレンズ31を通過した入射光を受光する複数の画素2それぞれの露光時間を変えることによって、低感度画素と高感度画素を実現することができ、ダイナミックレンジが拡張された画像(以下、HDR画像(High Dynamic Range画像)という。)を生成することができる。
【0121】
ここで、上述した実施の形態のように1つのマイクロレンズに対して2個の画素2を配置した固体撮像装置1で生成するHDR画像と、1つのマイクロレンズに対して1個の画素を配置した固体撮像装置で生成するHDR画像の違いについて説明する。
【0122】
なお、以下において、1つのマイクロレンズに対して2個の画素2を配置した画素配列を1レンズマルチ画素配列、1つのマイクロレンズに対して1個の画素を配置した画素配列を1レンズシングル画素配列という。
【0123】
図18は、画素アレイ部3の1レンズマルチ画素配列のその他の例を示す図である。
【0124】
なお、
図18は、画素アレイ部3の一部の領域を、説明のため、画素2と、マイクロレンズ31及び色フィルタ32に分解するように示した図である。
【0125】
図18の画素配列では、マイクロレンズ31と、R(赤色)、G(緑色)、またはB(青色)の色フィルタ32が、45度斜め方向に配列されている。色フィルタ32は、配列方向である斜め方向において、隣接する4画素単位で、R,G,B,Gの組合せの繰り返しとなる、いわゆるベイヤー配列で配置されている。
【0126】
そして、
図18の画素配列では、45度回転された菱形領域内の1つのマイクロレンズ31及び1色の色フィルタ32に対して、それらを水平方向に2分するように、2つの画素2が配置されている。
【0127】
従って、
図18に示される画素配列も、1つのマイクロレンズに対して2個の画素2が配置された1レンズマルチ画素配列である。
図18に示した画素配列を、以下では、特に、ジグザグ画素配列という。
【0128】
図19は、
図18に示したジグザグ画素配列を有する固体撮像装置1を用いてCZP(Circular Zone Plate)を撮像したCZP画像(の一部)を示している。
図19には、3つのCZP画像が表示されている。
【0129】
図19の3つのCZP画像のうち、左側のCZP画像は、1つのマイクロレンズ下の2個の画素2に対して、露光時間を同一に制御して撮像したCZP画像である。
【0130】
一方、
図19の真ん中と右側のCZP画像は、1つのマイクロレンズ下の2個の画素2、すなわちL画素とR画素で露光時間を変えて撮像したCZP画像である。
【0131】
具体的には、1つのマイクロレンズ下のL画素とR画素のうち、L画素が短い露光時間に設定された低感度画素、R画素がL画素よりも長い露光時間に設定された高感度画素とされている。
図19の真ん中のCZP画像は、短い露光時間に設定した複数のL画素のみで構成されたL画像であり、
図19右側のCZP画像は、長い露光時間に設定した複数のR画素のみで構成されたR画像である。
【0132】
なお、本明細書において、L画素及びR画素の呼び方は、入射光に応じた電荷を生成するフォトダイオードの位置に基づく。即ち、L画素とは、入射光が、平面図で見てマイクロレンズ31及び色フィルタ32の右側を通過し、左側のフォトダイオードに入射される画素2をいう。R画素とは、入射光が、平面図で見てマイクロレンズ31及び色フィルタ32の左側を通過し、右側のフォトダイオードに入射される画素2をいう。
【0133】
図19左側の全画素同一露光時間のCZP画像と、
図19真ん中のL画素のCZP画像とを比較すると、モアレの出る位置が変わっていないことが分かる。これは、全画素同一露光時間により撮像した画像と、短い露光時間に設定した複数のL画素のみで構成したL画像とで、空間周波数が変わらず、解像度の劣化が発生していないことを示している。
【0134】
同様に、
図19左側の全画素同一露光時間のCZP画像と、
図19右側のR画素のCZP画像とを比較した場合も、モアレの出る位置が変わっていない。したがって、全画素同一露光時間により撮像した画像と、長い露光時間に設定した複数のR画素のみで構成したR画像とで、空間周波数が変わらず、解像度の劣化が発生していない。
【0135】
図10等を参照して説明したように、HDR画像を生成する場合、入射光量が低レベル(一定レベル以下)の画素では、高感度画素のみを用いてHDR画像の画素信号が生成され、反対に、入射光量が高レベル(一定レベル以上)の画素では、低感度画素のみをHDR画像の画素信号が生成される。
【0136】
しかし、上述したように、低感度画素及び高感度画素のうちのいずれか一方の画素信号のみを用いてHDR画像を生成した場合であっても、1つのマイクロレンズ下に複数画素を配置した画素構造を有する固体撮像装置1によれば、生成するHDR画像の解像度は劣化しない。
【0137】
これは、1つのマイクロレンズ下のL画素とR画素のうち、いずれか一方のみで受光している状態は、いわば、マイクロレンズの前または後で絞りを絞った状態に相当するものであり、明るさに変化はあるものの、解像度は変わらないためである。
【0138】
一方、
図20は、1レンズシングル画素配列の例を示している。
【0139】
図20の1レンズシングル画素配列は、ベイヤー配列となっている。HDR画像を生成する場合には、例えば、
図20に示されるように、同色の色フィルタを有する画素が、所定の近傍領域内で高感度画素と低感度画素に交互に配置されるように、露光時間が制御される。
【0140】
図20の1レンズシングル画素配列を有する固体撮像装置が露光時間を制御してHDR画像を生成し、入射光量の大小によって、高感度画素のみ、または、低感度画素のみの画素信号しか使えない状態が発生したとする。この場合、使用できない感度の画素は完全な欠落画素になるので、HDR画像は、空間的に間引いた画像となり、解像度の劣化が発生する。
【0141】
図21は、同じ風景を、
図18の1レンズマルチ画素配列と
図20の1レンズシングル画素配列のそれぞれで撮像して得られたHDR画像を示している。
【0142】
図21の右側のHDR画像が、
図18の1レンズマルチ画素配列で撮像した画像であり、
図21の左側のHDR画像が、
図20の1レンズシングル画素配列で撮像した画像である。
【0143】
図21の左側のHDR画像には、解像度劣化に起因するカラーアーティファクト(偽色)やジャギーが見られるのに対して、
図21の右側のHDR画像には、カラーアーティファクト(偽色)やジャギーが見られない。なお、図面の表示上の制限により、
図21では、カラーアーティファクトやジャギーは見分けにくくなっている。
【0144】
このように、1レンズマルチ画素配列の画素構造の固体撮像装置1でダイナミックレンジ拡張処理を行うことにより生成したHDR画像は、解像度を劣化することがなく、高精細なHDR画像を生成することができる。
【0145】
<位相差検出への適用>
ところで、1つのマイクロレンズ31を通過した入射光を受光する2個の画素2それぞれの画素信号を得ることができれば、それらの画素信号を用いて位相差情報を検出することができ、検出された位相差情報を用いてオートフォーカス制御を行うことが可能となる。
【0146】
しかしながら、
図19で説明したように、1つのマイクロレンズ下のL画素とR画素で露光時間を変えて露光制御した場合、入射光量によっては、低感度画素のみ、または、高感度画素のみの画素信号しか使えない状態が起こり得る。その場合、受光範囲が対称性を有するL画素とR画素のペアリングが得られないため、位相差を検出することができない。このような状態は、特に、低感度画素と高感度画素の露光比(露光時間比)が大きい場合に起こりやすい。
【0147】
そこで次に、位相差の検出も可能となる1レンズマルチ画素配列について説明する。
【0148】
<位相差検出のための第1の露光制御例>
図22は、
図18のジグザグ画素配列を有する固体撮像装置1において、位相差検出を可能とする第1の露光制御を説明する図である。
【0149】
第1の露光制御では、低感度画素と高感度画素を、
図19のようにL画素とR画素に分けるのではなく、行単位に分けて制御される。
図22の例では、低感度画素をグレーで着色し、高感度画素をグレーの着色なし(すなわち、白色)で表しており、低感度画素の画素行と、高感度画素の画素行が、2行単位で交互に配置されている。
【0150】
第1の露光制御では、高感度画素のみ、または、低感度画素のみの画素信号しか使えない状態が発生した場合でも、同一感度でL画素とR画素のペアリングが残存するため、位相差の検出が可能となる。ただし、第1の露光制御では、高感度画素のみ、または、低感度画素のみの画素信号しか使えない状態が発生した場合、2画素行単位で画素が欠落することになる。
【0151】
<位相差検出のための第2の露光制御例>
図23は、
図18のジグザグ画素配列を有する固体撮像装置1において、位相差検出を可能とする第2の露光制御を説明する図である。
【0152】
第2の露光制御では、
図20の1レンズシングル画素配列のときと同様に、同色の色フィルタ32を共有する2画素単位で、高感度画素と低感度画素が所定の近傍領域内で交互に配置されるように、低感度画素と高感度画素が設定される。
【0153】
第2の露光制御では、高感度画素のみ、または、低感度画素のみの画素信号しか使えない状態が発生した場合でも、同一感度でL画素とR画素のペアリングが残存するため、位相差の検出が可能となる。また、1つの画素行のなかに低感度画素と高感度画素が混在するため、高感度画素のみ、または、低感度画素のみの画素信号しか使えない状態が発生した場合でも、画素行全体が欠落することはない。
【0154】
しかし、第2の露光制御では、高感度画素のみ、または、低感度画素のみの画素信号しか使えない状態が発生した場合には、空間間引きとなるため、カラーアーティファクト(偽色)やジャギーが発生する。
【0155】
以上のように、上述した第1及び第2の露光制御によれば、ダイナミックレンジ拡張処理を行うことによりHDR画像を生成することができ、かつ、位相差も検出することができる。
【0156】
しかしながら、低感度画素のみ、または、高感度画素のみの画素信号しか使えない状態が起こった場合、1つのマイクロレンズ下のL画素とR画素の両方が利用できない状態となるため、空間的に間引いた状態となり、解像度の劣化が発生する。
【0157】
<位相差検出のための第3及び第4の露光制御例>
図24は、
図18のジグザグ画素配列を有する固体撮像装置1において、位相差検出を可能とする第3の露光制御を説明する図である。
【0158】
図25は、
図18のジグザグ画素配列を有する固体撮像装置1において、位相差検出を可能とする第4の露光制御を説明する図である。
【0159】
図24及び
図25において、低感度画素をグレーで着色し、高感度画素をグレーの着色なし(すなわち、白色)で表す点は、
図22及び
図23と同様である。
【0160】
図24及び
図25に示される第3及び第4の露光制御は、1つのマイクロレンズ下のL画素とR画素の一方を低感度画素とし、他方を高感度画素となるように分けて制御する点で共通する。
【0161】
第3の露光制御と第4の露光制御で異なる点は、
図24では、同一画素行の低感度画素と高感度画素の配置が、隣接する同色の色フィルタ32単位で、交互に入れ替わっているが、
図25では、各画素行で低感度画素と高感度画素の配置は共通している点である。
【0162】
すなわち、
図24では、例えば、Gの色フィルタ32を共有する所定の2画素で、L画素が高感度画素、R画素が低感度画素に設定されているとすると、その隣りのGの色フィルタ32を共有する2画素では、反対に、L画素が低感度画素、R画素が高感度画素となっている。RやBの色フィルタ32を共有する2画素単位でも同様である。
【0163】
これに対して、
図25では、Gの色フィルタ32を有する所定の画素行では、L画素が高感度画素、R画素が低感度画素に設定されており、その上または下のGの色フィルタ32を有する画素行では、反対に、L画素が低感度画素、R画素が高感度画素に設定されている。
【0164】
従って、
図24のように露光制御した場合には、同一画素行内の、同色の色フィルタ32を共有する隣接する4画素で、受光範囲が対称性を有するL画素とR画素のペアリングが得られる。
【0165】
一方、
図25のように露光制御した場合には、同色の色フィルタ32を有する隣接する画素行を対とすることで、受光範囲が対称性を有するL画素とR画素のペアリングが得られる。
【0166】
以上より、第3及び第4の露光制御では、ダイナミックレンジ拡張処理を行うことによりHDR画像を生成することができ、かつ、位相差も検出することができる。
【0167】
しかしながら、第3及び第4の露光制御では、L画素とR画素のペアリングは、受光位置が半ピッチずれた画素のペアとなるため、視差が混じり、色ずれの原因となり得る。
【0168】
<遮光膜を用いた位相差画素の問題>
位相差を検出する方法として、
図26に示されるように、2次元配列された複数の画素の一部に、遮光膜を用いて入射光の非対称性を形成する方法が知られている。
【0169】
図26Aは、遮光膜を用いた位相差画素を含む画素アレイ部の平面図であり、
図26Bは、
図26AのX-X’線の断面図である。
【0170】
このような遮光膜を用いた位相差画素では、以下に示す2つの問題を含んでいる。
【0171】
1つは、混色分の入射光が、遮光膜により遮断され、位相差画素の周辺画素が減光する問題である。
【0172】
即ち、本来、遮光膜がない場合には、入射光の角度によって、
図26の入射光221のように、光が入射されたマイクロレンズがある画素の隣りの画素のフォトダイオードに入射される光が存在する。
【0173】
しかし、遮光膜がある場合には、入射光222のように、本来、隣りの画素のフォトダイオードに入射されるべき光が遮光膜で遮断されるため、位相差画素の隣りの画素では、この混色分の光が減少する。
【0174】
2つ目は、遮光膜により反射されることで、位相差画素の周辺画素が増光する問題である。
【0175】
即ち、本来、遮光膜がない場合には、
図26の入射光231のように、入射された光がストレートにフォトダイオードに入射されるが、遮光膜がある場合には、ストレートにフォトダイオードに入射されるべき光が、入射光232のように、遮光膜で反射されるため、位相差画素の隣りの画素では、この反射分の光が増加する。
【0176】
このように、遮光膜を用いた位相差画素では、位相差画素の周辺画素で入射光が影響を受ける。そのため、位相差画素を、画像生成用の画素信号が生成できない欠陥画素として補間(補正)する画素補間処理以外に、位相差画素の周辺画素に対して、上述した原因による光量変化を補正する補正処理を行う必要があるが、このような補正処理は難しい。
【0177】
<位相差検出のための第5の露光制御例>
図27は、
図18のジグザグ画素配列を有する固体撮像装置1において、位相差検出を可能とする第5の露光制御を説明する図である。
図27においても、低感度画素をグレーで着色し、高感度画素をグレーの着色なし(すなわち、白色)で表す点は、上述した
図22乃至
図25と同様である。
【0178】
図27では、画素アレイ部3内のほとんどマイクロレンズ下のL画素が低感度画素、R画素が高感度画素となっている。以下、1つのマイクロレンズ下の2個の画素2が、低感度画素と高感度画素のペアになっている画素対を、感度差画素対250という。
【0179】
しかし、
図27では、画素アレイ部3内の一部で、1つのマイクロレンズ下のL画素とR画素の両方が低感度画素になっている場所と、1つのマイクロレンズ下のL画素とR画素の両方が高感度画素になっている場所がある。以下、1つのマイクロレンズ下のL画素とR画素の両方が低感度画素になっている画素対を、低感度位相差画素対251といい、1つのマイクロレンズ下のL画素とR画素の両方が高感度画素になっている画素対を、高感度位相差画素対252という。
【0180】
低感度位相差画素対251のR画素は、画素アレイ部3内のほとんどのR画素(感度差画素対250のR画素)が規則的に高感度に露光制御されているのに対して、不規則に低感度に露光制御される画素である。また、高感度位相差画素対252のL画素は、画素アレイ部3内のほとんどのL画素(感度差画素対250のL画素)が規則的に低感度に露光制御されているのに対して、不規則に高感度に露光制御される画素である。このように、低感度位相差画素対251及び高感度位相差画素対252の不規則に露光制御される一方の画素を、以下では、不規則露光制御画素という。
【0181】
固体撮像装置1の垂直駆動回路4は、
図27を参照して説明したように、各画素2の露光時間を制御する。これにより、信号処理回路12は、1つのマイクロレンズ下のL画素とR画素が低感度画素と高感度画素のペアになっている感度差画素対250の画素信号を用いてダイナミックレンジ拡張処理を行うことによりHDR画像を生成することができる。
【0182】
また、信号処理回路12は、低感度位相差画素対251及び高感度位相差画素対252の少なくとも一方を用いて、位相差信号を出力することができる。
【0183】
従って、固体撮像装置1によれば、HDR画像の生成と位相差情報の生成を両立させることができる。
【0184】
低感度位相差画素対251及び高感度位相差画素対252は、1つのマイクロレンズ31の下にある2つの画素2で構成されている。したがって、
図24及び
図25の露光制御で得られる位相差信号のような、空間的にずれた画素対による位相差信号ではないため、位相差信号に視差が混じることもない。
【0185】
また、低感度位相差画素対251及び高感度位相差画素対252は、
図26を参照して説明したような、遮光膜で入射光を遮断することにより入射光の非対称性を形成するものではないので、入射光の減光がなく、感度低下がない。
【0186】
従って、低感度位相差画素対251及び高感度位相差画素対252を用いた位相差の検出によれば、位相差精度を向上させることができる。
【0187】
また、低感度位相差画素対251及び高感度位相差画素対252の画素構造は、遮光膜で入射光を遮断する構造ではなく、他の画素2と同じ構造である。そのため、
図26に示した、遮光膜を有する位相差画素が抱えるような問題もない。即ち、位相差画素が、その周辺画素に感度的に影響を及ぼしてしまうということはない。
【0188】
従って、位相差画素を、画像生成用の画素信号が生成できない欠陥画素として補間する画素補間処理だけを行えばよく、位相差画素の周辺画素に対して光量変化を補正する補正処理は行う必要がないので、補正処理の処理量を軽減することができる。
【0189】
なお、上述した低感度位相差画素対251及び高感度位相差画素対252では、画素対となっている2個の画素2の感度差が同一に設定されているが、位相差情報の生成に問題ない範囲で僅かな露光時間差を付けるようにしてもよい。
【0190】
<位相差検出精度向上の動作モード>
上述した第5の露光制御のように各画素の露光時間を制御することで、HDR画像の生成と、位相差検出を両立させることができるが、画素アレイ部3内の低感度位相差画素対251及び高感度位相差画素対252の数が少なく、位相差情報が少ない場合には、以下のような動作モードで実行することにより、位相差検出精度を向上させることができる。
【0191】
図28は、動画を撮影する場合の動作モードを説明する図である。
【0192】
動画を撮影する場合には、複数フレームの位相差信号を積算した信号を位相差検出のための信号として利用することで、位相差オートフォーカスの性能を、全画素で位相差検出を行う位相差オートフォーカス並みに向上させることができる。
【0193】
なお、
図10を参照して説明した信号量が中レベルとなるような感度差画素対250、すなわち、入射光量が、低感度画素のダイナミックレンジと高感度画素のダイナミックレンジが重複する範囲の信号量となっている感度差画素対250については、その低感度画素と高感度画素の2個の画素信号も、位相差検出に用いてもよい。
【0194】
図29は、静止画を撮影する場合の動作モードを説明する図である。
【0195】
静止画を撮影する動作は、撮影対象の画像をファインダーやディスプレイに表示させて確認するプレビュー撮影動作と、シャッターボタン押下に応じて所定の記録媒体に画像を記録する記録撮影動作とに分かれる。
【0196】
プレビュー撮影動作では、垂直駆動回路4が、画素アレイ部3内の各画素2の露光時間を、全画素で位相検出可能な露光時間に設定する。例えば、垂直駆動回路4は、1つのマイクロレンズ下のL画素とR画素の露光時間を同一に制御する。あるいはまた、垂直駆動回路4は、1つのマイクロレンズ下のL画素とR画素の露光比を、本来のHDR撮影時の露光比(例えば、10乃至12倍)よりも抑えた露光比(例えば、2乃至4倍)に設定する。
【0197】
これにより、プレビュー撮影動作では、画素アレイ部3内の低感度位相差画素対251及び高感度位相差画素対252以外の感度差画素対250でも位相差を検出することができ、かつ、撮影画像をファインダーやディスプレイに表示させることができる。
【0198】
そして、記録撮影動作では、垂直駆動回路4は、画素アレイ部3内の各画素2の露光時間を、本来のHDR撮影時の露光比(例えば、10乃至12倍)に変更し、
図27で説明した露光制御で撮像し、記録する。フォーカスは、プレビュー撮影動作時に検出された位相差に基づいて制御される。
【0199】
画素アレイ部3内の低感度位相差画素対251及び高感度位相差画素対252の不規則露光制御画素については、信号処理回路12が、欠陥画素として画素補間する画素補間処理を行う。
【0200】
なお、低感度位相差画素対251及び高感度位相差画素対252の不規則露光制御画素を、感度差画素対250と同じに露光制御できる場合は、そのようにしてもよい。
【0201】
<駆動制御配線図>
次に、
図30及び
図31を参照して、画素アレイ部3内に低感度位相差画素対251及び高感度位相差画素対252を配置した場合の駆動制御配線について説明する。
【0202】
ジグザグ画素配列で2次元配列された複数の画素2に対して、画素列ごとにカラム信号処理回路5が配置され、各画素2とカラム信号処理回路5が垂直信号線9を介して接続されている場合、画素駆動配線10は、
図30に示されるように、低感度画素と高感度画素とに分ける必要がある。
【0203】
図30では、画素駆動配線10として、1画素行に対して、高感度画素用の画素駆動配線10Hと、低感度画素用の画素駆動配線10Lの2本が設けられている。
【0204】
そして、低感度位相差画素対251の不規則露光制御画素は、その画素対の他方の低感度画素と同じ低感度画素用の画素駆動配線10Lに接続されている。また、高感度位相差画素対252の不規則露光制御画素は、その画素対の他方の低感度画素と同じ高感度画素用の画素駆動配線10Hに接続されている。
図30では、不規則露光制御画素の接続先は白丸(○)で表され、その他の画素の接続先は黒丸(●)で表されている。
【0205】
このように、画素列単位にカラム信号処理回路5が設けられている場合には、不規則露光制御画素を、画素対の他方の画素駆動配線10に接続して、露光制御を他方の画素駆動配線10に合わせるだけでよい。
【0206】
図31は、2画素列ごとにカラム信号処理回路5が配置された場合の駆動制御配線を示している。
【0207】
この場合には、各画素行において、高感度画素用の画素駆動配線10Hと、低感度画素用の画素駆動配線10Lの2本が設けられる他、不規則露光制御画素が配置された画素行には、不規則露光制御画素用の画素駆動配線10Xが設けられている。
【0208】
2画素列ごとにカラム信号処理回路5が配置され、
図2で説明した増幅トランジスタ27や選択トランジスタ28を、隣接する2画素で共有する場合には、不規則露光制御画素専用の画素駆動配線10Xを設け、不規則露光制御画素を独立して駆動制御する必要がある。
【0209】
<画素配列のその他の例>
図32は、画素アレイ部3の1レンズマルチ画素配列のその他の例を示している。
【0210】
上述した例では、画素アレイ部3が、45度回転された斜め方向に画素2が配列されたジグザグ画素配列で構成される例について説明した。
【0211】
しかし、画素配列は、ジグザグ画素配列に限定されず、例えば、
図32に示されるように、画素境界が画素アレイ部3の水平方向または垂直方向と一致するように画素2が繰り返し配列された正方配列でもよい。また、
図17を参照して説明したように、1つのマイクロレンズ31で2個の画素2を共有するものに限定されず、M×N個の画素2で1つのマイクロレンズ31を共有するものであればよい。さらには、本技術は、多眼カメラ(ステレオカメラ)においても適用することができる。
【0212】
<撮像処理>
図33のフローチャートを参照して、上述した第5の露光制御により撮像を行う場合の撮像処理について説明する。
【0213】
ステップS31において、固体撮像装置1の垂直駆動回路4は、感度差画素対250の第1画素に対して第1の露光時間に設定し、感度差画素対の第2画素に対して第2の露光時間に設定するとともに、低感度位相差画素対251の第1画素及び第2画素に対して第1の露光時間に設定し、高感度位相差画素対252の第1画素及び第2画素に対して第2の露光時間に設定する。ここで、第1画素は、上述した説明のL画素、第2画素はR画素、第1の露光時間は、低感度となる露光時間、第2の露光時間は、高感度となる露光時間に相当する。
【0214】
ステップS32において、信号処理回路12は、感度差画素対250の第1画素と第2画素の画素信号を用いて、ダイナミックレンジが拡張された信号を生成して出力し、低感度位相差画素対251の第1画素と第2画素の画素信号を低感度の位相差信号として出力し、高感度位相差画素対252の第1画素及び第2画素の画素信号を高感度の位相差信号として出力する。
【0215】
以上の処理が、固体撮像装置1において、例えば、フレーム全体で繰り返される。
【0216】
なお、マイクロレンズ31の形成位置のずれが発生していない場合を前提に説明したが、マイクロレンズ31の形成位置のずれが発生している場合にも適用可能である。その場合には、最初に、マイクロレンズ31の形成位置ずれによる感度差を補正し、その補正後の信号を用いて、上述したステップS31及びS32の処理を行えばよい。
【0217】
<固体撮像装置の基板構成例>
図1の固体撮像装置1は、
図34Aに示されるように、1枚の半導体基板13に、画素2が行列状に複数配列されている画素領域81と、各画素2を制御する制御回路82と、信号処理回路12を含むロジック回路83とが形成された構成とされている。
【0218】
しかしながら、固体撮像装置1は、
図34Bに示されるように、画素領域81と制御回路82が形成された第1の半導体基板91と、ロジック回路83が形成された第2の半導体基板92とを積層して構成することも可能である。第1の半導体基板91と第2の半導体基板92は、例えば、貫通ビアやCu-Cuの金属結合により電気的に接続される。
【0219】
あるいはまた、固体撮像装置1は、
図34Cに示されるように、画素領域81のみが形成された第1の半導体基板93と、制御回路82とロジック回路83が形成された第2の半導体基板94とを積層して構成することも可能である。第1の半導体基板93と第2の半導体基板94は、例えば、貫通ビアやCu-Cuの金属結合により電気的に接続される。
【0220】
<電子機器への適用例>
上述した固体撮像装置1は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えたオーディオプレーヤといった各種の電子機器に適用することができる。
【0221】
図35は、本開示に係る電子機器としての撮像装置の構成例を示すブロック図である。
【0222】
図35に示される撮像装置101は、光学系102、シャッタ装置103、固体撮像装置104、制御回路105、信号処理回路106、モニタ107、およびメモリ108を備えて構成され、静止画像および動画像を撮像可能である。
【0223】
光学系102は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を固体撮像装置104に導き、固体撮像装置104の受光面に結像させる。
【0224】
シャッタ装置103は、光学系102および固体撮像装置104の間に配置され、制御回路105の制御に従って、固体撮像装置104への光照射期間および遮光期間を制御する。
【0225】
固体撮像装置104は、上述した固体撮像装置1により構成される。固体撮像装置104は、光学系102およびシャッタ装置103を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。固体撮像装置104に蓄積された信号電荷は、制御回路105から供給される駆動信号(タイミング信号)に従って転送される。固体撮像装置104は、それ単体でワンチップとして構成されてもよいし、光学系102ないし信号処理回路106などと一緒にパッケージングされたカメラモジュールの一部として構成されてもよい。
【0226】
制御回路105は、固体撮像装置104の転送動作、および、シャッタ装置103のシャッタ動作を制御する駆動信号を出力して、固体撮像装置104およびシャッタ装置103を駆動する。
【0227】
信号処理回路106は、固体撮像装置104から出力された画素信号に対して各種の信号処理を施す。信号処理回路106が信号処理を施すことにより得られた画像(画像データ)は、モニタ107に供給されて表示されたり、メモリ108に供給されて記憶(記録)されたりする。
【0228】
なお、上述したダイナミックレンジ拡張処理及び感度差補正処理は、固体撮像装置104内の信号処理回路で実行してもよいし、固体撮像装置104から画素信号を受け取った信号処理回路106が実行してもよい。
【0229】
また、ダイナミックレンジ拡張処理及び感度差補正処理を行う信号処理回路106は、DSP(Digital Signal Processor)などにより、外部から入力される画像信号を処理する画像処理装置として独立して設けることも可能である。
【0230】
上述したように、固体撮像装置104として、上述した実施の形態に係る固体撮像装置1を用いることで、高ダイナミックレンジな画像や感度差が補正された複数枚の画像を生成することができる。従って、ビデオカメラやデジタルスチルカメラ、さらには携帯電話機等のモバイル機器向けカメラモジュールなどの撮像装置101においても、撮像画像の高画質化を図ることができる。
【0231】
上述した例では、第1導電型をP型、第2導電型をN型として、電子を信号電荷とした固体撮像装置について説明したが、本開示の技術は正孔を信号電荷とする固体撮像装置にも適用することができる。すなわち、第1導電型をN型とし、第2導電型をP型として、前述の各半導体領域を逆の導電型の半導体領域で構成することができる。
【0232】
また、本開示の技術は、可視光の入射光量の分布を検知して画像として撮像する固体撮像装置への適用に限らず、赤外線やX線、あるいは粒子等の入射量の分布を画像として撮像する固体撮像装置や、広義の意味として、圧力や静電容量など、他の物理量の分布を検知して画像として撮像する指紋検出センサ等の固体撮像装置(物理量分布検知装置)全般に対して適用可能である。
【0233】
本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
【0234】
例えば、上述した複数の実施の形態の全てまたは一部を組み合わせた形態を採用することができる。
【0235】
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
【0236】
なお、本開示は以下のような構成も取ることができる。
(1)
同一の受光領域を有する画素が行列状に複数配置されており、1つのマイクロレンズに入射された光が、隣接する複数画素に入射されるように構成されている画素アレイ部を備え、
前記画素アレイ部のマイクロレンズ下の前記複数画素に含まれる第1画素と第2画素とが感度差を有するように設定される
固体撮像装置。
(2)
前記画素アレイ部の第1のマイクロレンズ下の前記複数画素に含まれる第1画素及び第2画素のうち、前記第1画素に対して第1の露光時間に設定し、前記第2画素に対して第2の露光時間に設定するとともに、前記画素アレイ部の第2のマイクロレンズ下の前記複数画素に含まれる前記第1画素及び前記第2画素に対しては前記第1の露光時間に設定する駆動制御部をさらに備える
前記(1)に記載の固体撮像装置。
(3)
前記第1のマイクロレンズ下の前記第1画素と前記第2画素の画素信号を用いて、ダイナミックレンジが拡張された信号を生成するとともに、前記第2のマイクロレンズ下の前記第1画素と前記第2画素の画素信号を位相差信号として出力する信号処理回路をさらに備える
前記(2)に記載の固体撮像装置。
(4)
前記信号処理回路は、複数フレームの前記位相差信号を積算して出力するモードも有する
前記(3)に記載の固体撮像装置。
(5)
前記駆動制御部は、前記画素アレイ部の全ての画素を同一の露光時間に設定するモードも有する
前記(2)乃至(4)のいずれかに記載の固体撮像装置。
(6)
前記駆動制御部は、第1のモードと第2のモードで、前記第1のマイクロレンズ下の前記第1画素の前記第1の露光時間と前記第2画素の前記第2の露光時間の露光時間比を変更する
前記(2)乃至(5)のいずれかに記載の固体撮像装置。
(7)
前記マイクロレンズの光軸と前記複数の画素の中心位置がずれていることにより、前記第1画素と第2画素とが感度差を有する
前記(1)乃至(6)のいずれかに記載の固体撮像装置。
(8)
前記受光領域の上に形成された遮光膜の開口面積がさらに異なる
前記(7)に記載の固体撮像装置。
(9)
前記信号処理回路は、前記マイクロレンズの光軸と前記複数の画素の中心位置がずれていることによる感度差を補正する処理も行う
前記(3)乃至(8)のいずれかに記載の固体撮像装置。
(10)
第1の半導体基板と第2の半導体基板を積層して構成されている
前記(1)乃至(9)のいずれかに記載の固体撮像装置。
(11)
同一の受光領域を有する画素が行列状に複数配置されており、1つのマイクロレンズに入射された光が、隣接する複数画素に入射されるように構成されている画素アレイ部のマイクロレンズ下の前記複数画素に含まれる第1画素と第2画素とが感度差を有するように設定される
固体撮像装置の駆動制御方法。
(12)
同一の受光領域を有する画素が行列状に複数配置されており、1つのマイクロレンズに入射された光が、隣接する複数画素に入射されるように構成されている画素アレイ部を備え、
前記画素アレイ部のマイクロレンズ下の前記複数画素に含まれる第1画素と第2画素とが感度差を有するように設定される
固体撮像装置
を備える電子機器。
(13)
同一の受光領域を有する画素が行列状に複数配置された画素アレイ部が、1つのマイクロレンズに入射された光が、隣接する複数画素に入射されるように構成されており、前記マイクロレンズの光軸と前記複数画素の中心位置がずれていることにより、前記複数画素が高感度の画素と低感度の画素に分類される固体撮像装置から出力された信号を処理する信号処理回路が、前記高感度の画素から出力される高感度画素信号と、前記低感度の画素から出力される低感度画素信号を用いて所定の信号処理を実行する
画像処理方法。
(14)
前記信号処理回路は、前記高感度画素信号と前記低感度画素信号とを用いて、ダイナミックレンジが拡張された画素信号を生成して出力する
前記(13)に記載の画像処理方法。
(15)
前記信号処理回路は、前記高感度画素信号と前記低感度画素信号とを用いて、前記高感度の画素と前記低感度の画素の感度差を補正した画素信号を生成して出力する
前記(13)に記載の画像処理方法。
(16)
同一の受光領域を有する画素が行列状に複数配置されており、1つのマイクロレンズに入射された光が、隣接する複数画素に入射されるように構成されている画素アレイ部を少なくとも有する固体撮像装置と、
前記マイクロレンズの光軸と前記複数画素の中心位置がずれていることにより、前記複数画素が高感度の画素と低感度の画素に分類され、前記高感度の画素から出力される高感度画素信号と、前記低感度の画素から出力される低感度画素信号を用いて所定の信号処理を実行する信号処理回路と
を備える電子機器。