(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0020】
以下、
図1を参照し、本発明の第一の実施形態に係る濃度分析方法について説明する。
図1に示すように、本実施形態に係る濃度分析方法は、試料分析工程S1と検量線作成工程S2とから概略構成されている。このうち、試料分析工程S1は、試料液を簡易分析具内に収容する工程S1a、胴部を押圧して光路長を一定にする工程S1b、第1の吸光度を測定する工程S1c、第2の吸光度を測定する工程S1d、第1及び第2の吸光度の差分値を算出する工程S1e、差分値を検量線作成工程S2で得られた検量線と照合して対象物質濃度を求める工程S1fとから構成される。
【0021】
(試料液の収容)
まず、簡易分析具内に試料液を収容する工程S1aについて説明する。
図2及び
図3に示すように、本発明で用いられる簡易分析具1は、可撓性を有する樹脂チューブ10内に分析対象物の発色試薬11が封入されて構成されている。本発明において用いられる簡易分析具1の樹脂チューブ10は、簡易分析具1ごと分析対象液の吸光度を測定することができるよう、略透明な材料で形成されていることが好ましい。また、樹脂チューブ10は、後述する押圧手段によって樹脂チューブ10を外方から押圧して吸光度を測定する際の光路長を一定長さとすることができるよう、可撓性を有する樹脂材料で形成されており、一例として、ポリエチレン、ナイロン、ポリエチレンテレフタレート等で形成されている。本実施形態にかかる樹脂チューブ10には、チューブ上端の耳部15にチューブの内外を貫通する栓部材12が埋め込まれた状態で備えられており、この栓部材12は樹脂チューブ10から引抜くことができるように構成されている。この栓部材12を引き抜いた跡には、通孔13が形成され、試料液や標準溶液等の分析対象液を通孔13を介して樹脂チューブ10内に導入することができる。簡易分析具1としては、特に限定されないが、株式会社共立理化学研究所製品の「パックテスト(登録商標)」が好適に用いられる。
【0022】
上述の簡易分析具1に試料液22を収容する際には、まず、
図3に示すように、栓部材12を指20で引き抜き、通孔13を形成する。続いて、指20で樹脂チューブ10を押圧して、樹脂チューブ内の空気21を通孔13から排出する。次に、通孔13の部分を試料液22に浸漬して指20を離し、スポイトのようにして試料液22を簡易分析具1の内部に吸入する。試料液22を樹脂チューブ10内に吸入した後、一度引き抜いた栓部材12を通孔13へ再び挿入することにより、試料液22の漏出を防ぐことができる。試料液22は、樹脂チューブ10の胴部に光を照射して簡易分析具1ごと吸光度を測定する際に、光源からの照射光が通過するよう、少なくとも樹脂チューブ10の容量の半分近くまで収容することが好ましい。簡易分析具1内に試料液22が収容されると、発色試薬11と試料液22中の分析対象物とが反応して、分析対象物の濃度に応じた発色が生じる。
【0023】
(胴部押圧)
次に、簡易分析具の樹脂チューブの胴部を押圧して光路長を一定にする工程S1bについて説明する。本発明における簡易分析具1は、円筒状の樹脂チューブ10から構成されているため軸断面が略円形状であるが、可撓性を有するため、その軸太さ方向に容易に弾性変形する。それゆえ、簡易分析具1の軸太さ、すなわち、光路長は、簡易分析具1の個体差や樹脂チューブ10の内圧等により変化してしまう。よって、一例として
図5に示すように、本工程S1bでは、樹脂チューブ10の胴部を押圧手段50で押圧して樹脂チューブ10の軸太さを一定とし、発色試薬により呈色した試料液22の厚さ、すなわち樹脂チューブの胴部を通過する照射光の光路長Dを一定の長さに調整する。具体的には、一例として
図4及び
図5に示す第一の実施形態に係る濃度分析装置では、押圧手段50を備えたチューブホルダ5に、簡易分析具1を上側から挿しこみ、セットすることにより光路長Dが一定長さに調整される。この押圧手段50は、チューブホルダ5において、入射光孔6a周辺の内壁と通過光孔6b周辺の内壁において、各孔を除く部分に形成された凸部から構成されており、入射光孔6a周辺の内壁に形成された凸部と通過光孔6b周辺の内壁に形成された凸部との間の空間の長さが光路長Dとなるように構成されている。このため、簡易分析具1をチューブホルダにセットすると、凸状の押圧手段50が樹脂チューブ10の胴部を両側から挟むように押圧し、樹脂チューブ10の光路長Dが一定となる。樹脂チューブ10を押圧する方向としては、
図4〜
図5に示すように、光が照射され、光が通過する方向に押圧するほか、光が通過しない方向(通過光に対向する面の方向)に押圧してもよい。また、上述した実施形態においては、樹脂チューブ10をチューブホルダの対向する内壁に形成された凸部で挟むようにして押圧しているが、片方の内壁に形成された凸部のみで押圧して光路長Dを一定とすることも可能である。
【0024】
また、
図6〜
図7に示す第二の実施形態に係る濃度分析装置では、樹脂チューブ10は、その胴部を前後から挟むようにして押圧する2枚の押圧壁510a等の押圧手段510を備えたチューブホルダ51に固定することにより、押圧される。このチューブホルダ51は、2枚の押圧壁510aの間の空間の長さが光路長Dとなるように構成されている。2枚の押圧壁510aには、光が通過する方向に光通過孔61(入射光孔61a及び通過光孔61b)がそれぞれ開けられているため、単色光L2は押圧された樹脂チューブ10の胴部を一定の光路長Dで通過することができる。チューブホルダ51への樹脂チューブ10の固定は、押圧壁510aの四隅に配置されている4つのスペーサー510bとこれを貫通する4つのねじ510cを用いて行われる。2枚の押圧壁510aを貫通するねじ510cを緩め、樹脂チューブ10を2枚の押圧壁510aの間の空間に挿入した後、スペーサー510bの長さDが2枚の押圧壁510aの間の空間の長さとなるように、4つのねじ510cを締める。これにより、2枚の押圧壁510aで樹脂チューブ10の胴部が挟まれて押圧され、光が通過する方向の樹脂チューブ10の胴部の軸太さが一定に調整される。
【0025】
なお、押圧手段は簡易分析具の樹脂チューブの胴部を押圧して光路長を一定にすることができる構成であればどのような構成でも採用することができ、上述した構成に限定されない。
【0026】
(第1の吸光度測定)
次に、第1の吸光度を測定する工程S1c及び第2の吸光度を測定する工程S1dについて説明する。
図4に示すように、簡易分析具1の樹脂チューブ10の胴部を押圧手段50で押圧して光路長Dを一定とした後、光路長を一定とした部分に分光器4を介した第1の波長の光を照射し、簡易分析具1の樹脂チューブ10ごと収容している試料液22の吸光度を光検出器7を用いて測定する。第1の吸光度を測定する際の第1の波長は、分析対象物の吸収帯範囲内のいずれかの波長、すなわち、分析対象物の吸収波長範囲内のいずれかの波長であればよいが、分析の精度を高めるため、発色試薬により呈色した分析対象物の極大吸収波長における吸光度(吸収極大)の95%以上の値の吸光度が得られる波長であることが好ましく、極大吸収波長であることがより好ましい。
【0027】
(第2の吸光度測定)
次に、第2の吸光度を測定する工程S1dについて説明する。上述した第1の吸光度測定工程S1cと同様に、簡易分析具1の樹脂チューブ10の胴部を押圧手段50で押圧して光路長Dが一定となった樹脂チューブ10に第2の波長の光を照射し、簡易分析具1の樹脂チューブ10ごと収容している試料液22の吸光度を光検出器7を用いて測定する。第2の吸光度を測定する際の第2の波長は、後述する第1及び第2の吸光度の差分値が得られれば、どのような波長を選択してもよいが、分析の精度を高めるため、発色試薬により呈色した分析対象物の極大吸収波長以外の波長であることが好ましく、吸収極大を有する吸収帯の裾(吸収端)における吸光度未満の値の吸光度が得られる波長、すなわち、非吸収波長であることがより好ましい。
【0028】
(差分値測定)
次に、第1及び第2の吸光度から差分値を算出する工程S1eについて説明する。この工程では、前述した工程により得られた第1の吸光度及び第2の吸光度の差分値を算出する。これにより、分析対象物以外の成分、すなわち、樹脂チューブ材料自体の濁り分や試料液中に存在する浮遊物質(SS)等に由来する吸光度を差し引いた値が得られ、分析精度が向上する。
【0029】
(検量線照合)
次に、差分値を検量線作成工程S2で得られた検量線と照合して対象物質濃度を求める工程S1fについて説明する。本工程においては、差分値測定工程S1eで得られた差分値を後述する検量線と照合することにより、試料液22中の分析対象物質の濃度が得られる。
【0030】
(検量線作成工程)
検量線作成工程S2について説明する。検量線作成工程S2は、標準溶液を簡易分析具内に収容する工程S2a、胴部を押圧して光路長を一定にする工程S2b、第1の吸光度を測定する工程S2c、第2の吸光度を測定する工程S2d、第1及び第2の吸光度の差分値を算出する工程S2e及び標準溶液の差分値に基づく検量線作成工程S2fとから構成されている。このうち、標準溶液を簡易分析具内に収容する工程S2a、胴部を押圧して光路長を一定にする工程S2b、第1の吸光度を測定する工程S2c、第2の吸光度を測定する工程S2d、第1及び第2の吸光度の差分値を算出する工程S2eについては、試料分析工程S1における試料液22を複数の異なる濃度の標準溶液に替えることにより行われる。第1の吸光度及び第2の吸光度は、試料分析工程S1で採用された第1の波長及び第2の波長とそれぞれ同じ波長で測定され、濃度既知の分析対象物質の標準溶液について吸光度の差分値が求められる。検量線作成工程S2fでは、複数の異なる濃度の標準溶液について得られた差分値と分析対象物質の濃度との関係線を作成し、検量線を得る。
【0031】
次に
図4及び
図5を参照し、第一の実施形態に係る濃度分析装置100について説明する。
図4に示すように、本実施形態に係る濃度分析装置100は、異なる波長の光を照射可能な光源3と、光源3からの光L1を単色光L2に分光する分光器4と、樹脂チューブ10を支持するチューブホルダ5と、吸光度を測定する吸光度測定手段7と、異なる波長における吸光度の差分値を算出し、この差分値を分析対象物の標準溶液について予め測定して得られた検量線と照合して分析対象物の濃度を演算する演算手段8と、予め測定して得られた検量線のデータを格納するメモリ9とを概略備えている。
【0032】
光源3は、複数の任意の波長の光を照射できるものであればよいが、装置自体をコンパクトにすることができ、消費電力も小さくすることができる観点から、LED光源が好適に用いられる。そのうち、特に可視光域における分光分布が全体的に高く安定している観点から、演色性に優れたLEDが好適に用いられる。光源3から照射された光L1は分光器4によって所定の単色光L2、すなわち、第1の波長の光又は第2の波長の光に分光される。
図4に示すように、光源3から照射され、分光器4により分光された光L2は、チューブホルダ5に収容された簡易分析具1の樹脂チューブの10の胴部を通過し、吸光度測定手段7により通過光L3の強度が測定される。
【0033】
チューブホルダ5は、簡易分析具1を支持し、樹脂チューブ10の胴部を押圧する押圧手段50を備えており、分光器4からの単色光L2を樹脂チューブ10の所定の位置を通過させるように構成されている。
図5に示すように、本実施形態のチューブホルダ5は、上面が開口した四角柱として形成されており、4つの柱側面のうち対向する2面に略円形の光通過孔6、すなわち、単色光L2が入射する入射光孔6a及び樹脂チューブ10を通過した光が通過する通過光孔6b、がそれぞれ配置されている。このチューブホルダ5は、簡易分析具1の樹脂チューブの胴部を押圧する押圧手段50を備えているところ、この押圧手段50で樹脂チューブ10の胴部を押圧することにより、可撓性を備える樹脂チューブ10の軸太さ、すなわち光路長Dを一定とすることができる。
【0034】
本実施形態では、押圧手段50は入射光孔6a及び通過光孔6bを備える壁の内側に形成された凸部として構成されている。詳細には、
図4及び
図5に示すように、この押圧手段50は、チューブホルダ5の入射光孔6a周辺の内壁と、通過光孔6b周辺の内壁とにおいて、各孔を除く部分に形成された凸部から構成されており、入射光孔6a周辺の内壁に形成された凸部と通過光孔6b周辺の内壁に形成された凸部との間の幅長さが光路長Dとなるように構成されている。押圧手段50の凸部の高さは、樹脂チューブ10を確実に押圧して光路長Dを一定とするため、各壁面について一定とすることが好ましいが、本実施形態に示すように、光路長Dに影響を及ぼさない範囲において、例えば、押圧手段50の上側部分のみを谷型のテーパ状に形成してガイド面を形成し、簡易分析具1をチューブホルダ5内部に挿しこみやすい形状とすることも可能である。
図5に示すように、簡易分析具1をチューブホルダに挿しこむと、押圧手段50にて樹脂チューブ10が両側から押圧され、樹脂チューブ10の胴部の軸太さは
図5(C)の側面視において光路長Dにまで細くなる。このように、押圧手段50にて簡易分析具1の樹脂チューブ10の胴部を押圧することにより、樹脂チューブの光路長Dが一定となり、簡易分析具1の個体差の影響が少なくなり、どの簡易分析具1を用いても同じ光路長Dで吸光度を測定することができる。また、このとき
図5(D)に示すように、正面視においては、押圧手段50で押圧されたために樹脂チューブ10の軸太さは拡大しており、この拡大した軸部分の略中央部分に光が入射し通過する。このように、樹脂チューブ10が押圧されることにより、光が入射する方向における軸太さが拡大されると、元来曲面状の樹脂チューブ10の表面が入射部分及び通過部分において略平面状になり、入射及び通過する光の反射や散乱が低減されるため、より高い精度で吸光度を測定することができる。
【0035】
図4に示すように、チューブホルダ5の入射光孔6aを介して樹脂チューブ10の胴部を通過した光L3は、もう一方の通過光孔6bを介して吸光度測定手段7に到達する。吸光度測定手段7は主に光検出器であり、到達した光L3の光強度を光検出器7で測定することにより吸光度が求められる。
【0036】
簡易分析具1に収容された試料液22について、第1の波長及び第2の波長における樹脂チューブ10の胴部を通過した光L3の吸光度がそれぞれ光検出器7で測定されると、これらの吸光度の差分値が、光検出器7と接続されている演算手段8により算出される。次にこの差分値は、引き続き演算手段8により、分析対象物の標準溶液について予め測定して得られた検量線と照合され、分析対象物の濃度が求められる。演算手段8にはメモリ9が接続されており、このメモリには演算手段8での処理データのほか、検量線データを格納することができる。
【0037】
次に、
図6及び
図7を参照し、第二の実施形態に係る濃度分析装置200について説明する。本発明の第二の実施形態に係る濃度分析装置200は、チューブホルダ51の構成が異なるほかは、第一の実施形態に係る装置100と同様の構成を有している。なお、本実施形態において、第一の実施形態に係る装置100と同じ構成については、同じ参照符号を使用して説明する。すなわち、
図6に示すように、本実施形態に係る濃度分析装置200は、異なる波長の光を照射可能な光源3と、光源3からの光L1を単色光L2に分光する分光器4と、樹脂チューブ10を支持するチューブホルダ51と、吸光度を測定する吸光度測定手段7と、異なる波長における吸光度の差分値を算出し、この差分値を分析対象物の標準溶液について予め測定して得られた検量線と照合して分析対象物の濃度を演算する演算手段8と、予め測定して得られた検量線のデータを格納するメモリ9とを概略備えている。
【0038】
チューブホルダ51は、簡易分析具1を支持しつつ樹脂チューブ10の胴部を押圧する押圧手段510を備えており、分光器4からの単色光L2が樹脂チューブ10の押圧された部分を通過するように構成されている。
図6及び
図7に示すように、本実施形態のチューブホルダ51は、水平に配置されたベース台511上に垂直に2枚の押圧壁510aが対向して配置された構造より概略構成されている。本実施形態では、2枚の押圧壁510aのうちの1枚の押圧壁510aとベース台511とが固定されている。2枚の押圧壁510aの間には円筒状のスペーサー510bが四隅に配置されており、スペーサー510bの長さが2枚の押圧壁510aで挟まれた空間の距離Dになるように構成されている。このスペーサー510bは中空状に形成されており、押圧壁510aの四隅に設けられたねじ穴及びスペーサー510bの内部を貫通するねじ510cにより調整自在に固定されている。このように、1枚目の押圧壁510a、スペーサー510b及び2枚目の押圧壁510aを貫通して取り付けられたねじ510cにより押圧手段510が構成されている。これらの押圧手段510で樹脂チューブ10の胴部を押圧することにより、可撓性を備える樹脂チューブ10の軸太さ、すなわち光路長Dを一定とすることができる。
【0039】
本実施形態では、
図7に示すように、押圧手段510を構成する2枚の押圧壁510aには細長の長方形状の光通過孔61、すなわち、単色光L2が入射する入射光孔61a及び樹脂チューブ10を通過した光が通過する通過光孔61bがそれぞれ形成されている。よって、入射光孔61aが設けられた押圧壁510aと通過光孔61bが設けられた押圧壁510aとで樹脂チューブ10を一定程度押圧することにより、入射光孔61aから通過光孔61bまでの光路長Dを調整することができる。押圧手段510の2つの押圧壁510aの間の空間の距離D、すなわち、スペーサー510bの長さは、樹脂チューブ10の個体差や内圧による軸太さの違いが実質的に生じなくなる程度に押圧した際の樹脂チューブ10の軸太さであればよい。具体的には、樹脂チューブ10の材質や物性によっても異なるが、一例として、スペーサー510bの長さDは樹脂チューブの軸太さの85%以下とすることが好ましく、75%以下とすることがより好ましく、65%以下とすることが特に好ましい。本実施形態においては、樹脂チューブ10の軸太さは10〜12mmであるところ、スペーサー510bの長さDを7mmに設計している。本実施形態のチューブホルダ51への樹脂チューブ10のセッティング及び押圧は、次のようにして行われる。2枚の押圧壁510a及びスペーサー510bを貫通するねじ510c及びナットを緩め、樹脂チューブ10を2枚の押圧壁510aの間の空間に挿入した後、スペーサー510bの長さが2枚の押圧壁510aの間の空間の長さDとなるように、4つのねじ510cを締める。これにより、2枚の押圧壁510aで樹脂チューブ10の胴部が挟まれて押圧され、光が通過する方向の樹脂チューブ10の胴部の軸太さが一定長さDに調整される。このように、押圧手段510にて簡易分析具1の樹脂チューブ10の胴部を押圧することにより、樹脂チューブの光路長Dが一定となり、簡易分析具1の個体差の影響が少なくなり、どの簡易分析具1を用いても同じ光路長Dで吸光度を測定することができる。また、このとき
図7(D)に示すように、正面視においては、押圧手段510で押圧されたために樹脂チューブ10の軸太さは拡大しており、この拡大した軸部分の略中央部分に光が入射し通過する。このように、樹脂チューブ10が押圧されることにより、光が入射する方向における軸太さが拡大されると、元来曲面状の樹脂チューブ10の表面が入射部分及び通過部分において略平面状になり、入射及び通過する光の反射や散乱が低減されるため、より高い精度で吸光度が測定される。なお、このように樹脂チューブ10を押圧手段510で押圧する際に、樹脂チューブの外壁に傷が生じて吸光度に影響を及ぼすのを避けるため、押圧壁510aの内面に緩衝部材を備えることも好ましい。緩衝部材としては、特に限定されないが、シート状のゴムやエラストマー、ゲル状素材又は樹脂フォーム素材等が挙げられる。
【0040】
光源3、分光器4、吸光度測定手段7、演算手段8及びメモリ9の構成並びに使用方法についてのその他の説明は上述した第一の実施形態に係る装置100の場合と同様であり、その機能や作用効果も同様である。また、簡易分析装置200で用いられる簡易分析具1の構成及び使用方法についても上述した第一の実施形態に係る方法の場合と同様であり、その機能や作用効果も同様である。
【0041】
次に、
図8を参照し、本発明の第二の実施形態に係る濃度分析方法について説明する。
図8に示すように、本実施形態に係る濃度分析方法は、試料分析工程S10と検量線作成工程S20とから概略構成されている。このうち、試料分析工程S10は、試料液を簡易分析具内に収容する工程S10a、胴部を押圧して光路長を一定にする工程S10b、試料液及び空気部分の吸光度を測定する工程S10c、試料液及び空気部分の吸光度の差分値を算出する工程S10d、差分値を検量線作成工程S20で得られた検量線と照合して対象物質濃度を求める工程S10eとから構成される。
【0042】
(試料液の収容)
まず、簡易分析具内に試料液を収容する工程S10aについて説明する。本発明で用いられる簡易分析具の構成、機能及び使用方法は、前述の第一の実施形態に係る濃度分析方法で用いられた簡易分析具1と同様である。本実施形態では、簡易分析具1に試料液22を収容する際には、樹脂チューブ10内に空気部分が残存するように試料液22を収容する(
図9の樹脂チューブ10参照)。これは、後述するように、1個の簡易分析具1を用いて、試料液22部分の吸光度と空気部分21の吸光度の2つの吸光度をほぼ同時に測定することができるようにするためである。試料液22の収容量は、樹脂チューブ10の容量の半分以下とすることが好ましい。
【0043】
(胴部押圧)
次に、簡易分析具の樹脂チューブの胴部を押圧して光路長を一定にする工程S10bについて説明する。本実施形態では、一例として
図9及び
図10で示すように、樹脂チューブ10の試料液が収容されている部分の胴部及び空気部分の胴部を押圧手段520で押圧する。これにより、押圧した部分の樹脂チューブ10の軸太さを一定とし、通過する照射光の光路長Dを一定の長さに調整する。具体的には、
図9〜
図10に示す第三の実施形態に係る濃度分析装置では、樹脂チューブ10は、その胴部を前後から挟むようにして押圧する2枚の押圧壁520a等の押圧手段520を備えたチューブホルダ52に固定することにより、押圧される。このチューブホルダ52は、2枚の押圧壁520aの間の空間の長さが光路長Dとなるように構成されている。2枚の押圧壁520aには、光が通過する方向に光通過孔(入射光孔62a及び通過光孔62b)がそれぞれ開けられている。これらの光通過孔62は、押圧手段52に支持固定された樹脂チューブの長軸方向(図の上下方向)に沿って、上下に伸長した長方形の穴として形成されている。それゆえ、上述した試料液収容工程S10aにおける樹脂チューブ10内に収容される試料液の量は、
図9〜
図10に示すように、簡易分析具1を押圧手段52で押圧した際に、光通過孔62から試料液22の液面が確認できるように調整することが好ましく、光通過孔62の下側部分に収容された試料液22が位置し、光通過孔62の上側部分に空気部分21が位置するように、試料液22の量を調整することがさらに好ましい。これにより、光通過孔62を介して、樹脂チューブ10の試料液22部分の吸光度と空気部分21の吸光度の2つの吸光度を一緒に測定することができる。なお、本実施形態においては、光通過孔62は1枚の押圧壁520aに縦長の孔を1つ備える構成となっているが、樹脂チューブ10の試料液22部分及び空気部分21に対し個別に光を通過させることができるように1枚の押圧壁520aに2つ以上の孔を備える構成としてもよく、上述した構成に限定されない。
【0044】
図9及び
図10に示すように、押圧手段520によって、樹脂チューブ10の試料液22が収容されている部分及び空気部分21の軸太さが一定長さに調整されることにより、単色光L2及びL20はこれらの部分を一定の光路長Dでそれぞれ通過することができる。チューブホルダ52への樹脂チューブ10の固定は、押圧壁520aの四隅に配置されている4つのスペーサー520bとこれを貫通する4つのねじ520cを用いて行われる。2枚の押圧壁520aを貫通するねじ520c及びナットを緩め、樹脂チューブ10を2枚の押圧壁520aの間の空間Dに挿入した後、スペーサー520bの長さが2枚の押圧壁520aの間の空間の長さとなるように、4つのねじ520cを締める。これにより、2枚の押圧壁520aで樹脂チューブ10の胴部が挟まれて押圧され、光が通過する方向の樹脂チューブ10の胴部の軸太さが一定に調整される。なお、押圧手段は簡易分析具の樹脂チューブの胴部を押圧して光路長を一定にすることができる構成であればどのような構成でも採用することができ、上述した構成に限定されない。
【0045】
(試料液及び空気部分の吸光度測定)
次に、試料液及び空気部分の吸光度を測定する工程S10cについて説明する。
図9に示すように、簡易分析具1の試料液22が収容されている部分及び空気部分21の樹脂チューブ10の胴部を押圧手段520で押圧して光路長Dを一定とする。次に、光路長を一定とした試料液22部分及び空気21部分に、一定波長の光L2、L20を入射光孔62aを介してそれぞれ照射し、簡易分析具1の樹脂チューブ10ごと収容している試料液22及び空気21の吸光度を光検出器7及び70を用いてそれぞれ測定する。これらの吸光度を測定する際の波長は、分析対象物の吸収帯範囲内のいずれかの波長、すなわち、分析対象物の吸収波長範囲内のいずれかの波長であればよいが、分析の精度を高めるため、発色試薬により呈色した分析対象物の極大吸収波長における吸光度(吸収極大)の95%以上の値の吸光度が得られる波長であることが好ましく、極大吸収波長であることがより好ましい。
【0046】
(差分値測定)
次に、吸光度の差分値を算出する工程S10dについて説明する。この工程では、前述した工程により得られた試料液22部分の吸光度及び空気21部分の吸光度から差分値を算出する。これにより、分析対象物以外の成分、すなわち、樹脂チューブ材料自体の濁り分や試料液中に存在する浮遊物質(SS)等に由来する吸光度を差し引いた値が得られ、分析精度が向上する。
【0047】
(検量線照合)
次に、差分値を検量線作成工程S20で得られた検量線と照合して対象物質濃度を求める工程S10eについて説明する。本工程においては、差分値測定工程S10dで得られた差分値を後述する検量線と照合することにより、試料液22中の分析対象物質の濃度が得られる。
【0048】
(検量線作成工程)
検量線作成工程S20について説明する。検量線作成工程S20は、標準溶液を簡易分析具内に収容する工程S20a、胴部を押圧して光路長を一定にする工程S20b、標準溶液及び空気部分の吸光度を測定する工程S20c、標準溶液部分及び空気部分の吸光度の差分値を算出する工程S20d及び標準溶液の差分値に基づく検量線作成工程S20eとから構成されている。このうち、標準溶液を簡易分析具内に収容する工程S20a、胴部を押圧して光路長を一定にする工程S20b、標準溶液及び空気部分の吸光度を測定する工程S20c、標準溶液部分及び空気部分の吸光度の差分値を算出する工程S20dについては、試料分析工程S10における試料液22を複数の異なる濃度の標準溶液に替えることにより行われる。標準溶液及び空気部分の吸光度は、試料分析工程S10で採用された吸光度の測定波長と同じ波長で測定され、濃度既知の分析対象物質の標準溶液について吸光度の差分値が求められる。検量線作成工程S20eでは、複数の異なる濃度の標準溶液について得られた差分値と分析対象物質の濃度との関係線を作成し、検量線を得る。
【0049】
次に、
図9及び
図10を参照し、第三の実施形態に係る濃度分析装置300について説明する。本発明の第三の実施形態に係る濃度分析装置300は、チューブホルダ52の光通過孔62の構成及びチューブホルダ52に入射する単色光L2、L20がダブルビーム構成である点及び光検出器7、70を2つ備える点が異なるほかは、第二の実施形態に係る装置200と略同様の構成を有している。なお、本実施形態において、第一及び第二の実施形態に係る装置と同じ構成については、同じ参照符号を使用して説明する。すなわち、
図9に示すように、本実施形態に係る濃度分析装置300は、光源3と、光源3からの光L1を単色光L2に分光する分光器4と、単色光L2の一部をL20に分岐させるミラーM1及びM2と、樹脂チューブ10を支持するチューブホルダ52と、試料液22の吸光度を測定する吸光度測定手段7と、空気21部分の吸光度を測定する吸光度測定手段70と、試料液20の吸光度と空気21部分の吸光度の差分値を算出し、この差分値を分析対象物の標準溶液について予め測定して得られた検量線と照合して分析対象物の濃度を演算する演算手段8と、予め測定して得られた検量線のデータを格納するメモリ9とを概略備えている。
【0050】
チューブホルダ52は、簡易分析具1を支持しつつ樹脂チューブ10の胴部を押圧する押圧手段520を備えており、分光器4からの単色光L2及びL20が樹脂チューブ10の押圧された部分を通過するように構成されている。
図9及び
図10に示すように、本実施形態のチューブホルダ52は、水平に配置されたベース台521上に垂直に2枚の押圧壁520aが対向して配置された構造より概略構成されている。2枚の押圧壁520aの間には円筒状のスペーサー520bが四隅に配置されており、スペーサー520bの長さが2枚の押圧壁520aで挟まれた空間の距離Dになるように構成されている。このスペーサー520bは中空状に形成されており、押圧壁520aの四隅に設けられたねじ穴及びスペーサー520bの内部を貫通するねじ520cにより調整自在に固定されている。このように、1枚目の押圧壁520a、スペーサー520b及び2枚目の押圧壁520aを貫通して取り付けられたねじ520cにより押圧手段520が構成されている。これらの押圧手段520で樹脂チューブ10の胴部を押圧することにより、可撓性を備える樹脂チューブ10の試料液が収容されている部分及び空気部分の胴部の軸太さ、すなわち光路長Dを一定とすることができる。
【0051】
本実施形態では、
図10に示すように、押圧手段520を構成する2枚の押圧壁520aには上下方向(支持固定される簡易分析具1の長軸方向)に伸長した縦長の長方形状の光通過孔62、すなわち、単色光L2及びL20が入射する入射光孔62a及び樹脂チューブ10を通過した光L3及びL30が通過する通過光孔61bがそれぞれ形成されている。よって、入射光孔62aが設けられた押圧壁520aと通過光孔62bが設けられた押圧壁520aとで樹脂チューブ10を一定程度押圧することにより、入射光孔62aから通過光孔62bまでの光路長Dを調整することができる。本実施形態では、入射光孔62a及び通過光孔62bは上下方向に長い長方形に形成されている。それゆえ、1つの入射光孔62aを介して、樹脂チューブ10内に収容されている試料液22部分に単色光L2を、樹脂チューブ10内に何も収容されていない空気21部分に単色光L20を入射させ、1つの通過光孔62bを介して、試料液22部分を通過した光L3と空気部分を通過した光L30を通過させることができる。なお、光通過孔62の構成としては、各押圧壁520aに1つ備える構成に限定されず、各押圧壁520aに複数の孔を備え、試料液22部分及び空気21部分について個別に光を通す構成としてもよく、本実施形態の構成に限定されない。
【0052】
本実施形態のチューブホルダ52への樹脂チューブ10のセッティング及び押圧は、次のようにして行われる。2枚の押圧壁520a及びスペーサー520bを貫通するねじ520cを緩め、樹脂チューブ10を2枚の押圧壁520aの間の空間に挿入した後、スペーサー520bの長さが2枚の押圧壁520aの間の空間の長さDとなるように、4つのねじ520cを締める。これにより、2枚の押圧壁520aで樹脂チューブ10の胴部が挟まれて押圧され、光が通過する方向の樹脂チューブ10の胴部の軸太さが一定長さDに調整される。このとき、押圧壁520aに設けられた光通過孔62を介して、樹脂チューブ10の試料液22部分の吸光度と空気部分21の吸光度の2つの吸光度を一緒に測定できるよう、
図9〜
図10に示すように、光通過孔62から試料液22の液面が確認できるように調整することが好ましく、光通過孔62の略中央付近に収容された試料液22の液面が位置するように、試料液22の収容量が調整されていることがさらに好ましい。このように、押圧手段520にて簡易分析具1の樹脂チューブ10の胴部を押圧することにより、樹脂チューブ10の吸光度測定部分の光路長Dが一定となり、簡易分析具1の個体差の影響が少なくなり、どの簡易分析具1を用いても同じ光路長Dで吸光度を測定することができる。なお、チューブホルダ52のその他の構成、その機能及び使用方法についての説明は、上述した第二の実施形態に係る装置200のチューブホルダ51と同様である。
【0053】
図9に示すように、チューブホルダ52の入射光孔62aを介して樹脂チューブ10の胴部を通過した光L3、L30は、もう一方の通過光孔62bを介して吸光度測定手段7に到達する。吸光度測定手段7は主に光検出器であり、到達した光L3の光強度を光検出器7で測定することにより試料液22部分の吸光度が求められ、到達した光L30の光強度を光検出器70で測定することにより空気21部分の吸光度が求められる。
【0054】
簡易分析具1に収容された試料液22部分及び何も収容されていない空気21部分の吸光度がそれぞれ光検出器7及び70で測定されると、これらの吸光度の差分値が、光検出器7と接続されている演算手段8により算出される。次にこの差分値は、引き続き演算手段8により、分析対象物の標準溶液について予め測定して得られた検量線と照合され、分析対象物の濃度が求められる。演算手段8にはメモリ9が接続されており、このメモリには演算手段8での処理データのほか、検量線データを格納することができる。
【0055】
また、光源3及び分光器4等の構成並びに使用方法についてのその他の説明は上述した第一の実施形態に係る装置の場合と同様であり、その機能や作用効果も同様である。また、簡易分析装置300で用いられる簡易分析具1の構成及び使用方法についても上述した第一の実施形態に係る方法の場合と同様であり、その機能や作用効果も同様である。
【0056】
以下、実施例を用いて、本発明を詳細に説明する。
【0057】
[比較例1]
1.簡易分析具をそのまま用いる吸光分析方法の検討1
図6及び
図7に示す本発明の第二の実施形態に係る装置200において、チューブホルダ51の押圧手段510を機能させない状態で以下試験を行った。チューブホルダ51の押圧手段510のねじ510cを緩め、2枚の押圧壁510a間の距離Dを13mmとした状態で吸光度を測定した。簡易分析具1(株式会社共立理化学研究所製品、パックテスト)を6個準備した。簡易分析具1から発色試薬を取り除いたのち、蒸留水を樹脂チューブ10内に1.5mL収容し、上述のように調整されたチューブホルダ51にセットして測定波長532nmにて簡易分析具の樹脂チューブ10ごと収容された水の吸光度を測定した。なお、ベースライン測定はチューブホルダ51に簡易分析具1をセットしない状態、すなわち、空のチューブホルダ51について行った。試験に用いた簡易分析具の樹脂チューブの胴部の軸太さはいずれも10〜12mmの範囲内にあり、樹脂チューブの胴部はいずれも押圧されていない状態であった。測定結果を
図11及び以下表1に示す。測定波長532nmにおける吸光度は0.520〜0.935の範囲となり、平均値は0.694、標準偏差は0.159であった。このように、簡易分析具をそのまま吸光度測定した場合においては、得られる吸光度はバラツキが大きいことがわかった。
【0059】
[比較例2]
2.簡易分析具をそのまま用いる吸光分析方法の検討2
図6及び
図7に示す本発明の第二の実施形態に係る装置200において、チューブホルダ51の押圧手段510を機能させた状態で以下試験を行った。チューブホルダ51の押圧手段510のねじ510cを締め、2枚の押圧壁510a間の距離Dを7mmとした状態で吸光度を測定した。簡易分析具1(株式会社共立理化学研究所製品、パックテスト)を6個準備した。簡易分析具1から発色試薬を取り除いたのち、蒸留水を樹脂チューブ10内に1.5mL収容し、上述のように調整されたチューブホルダ51にセットして測定波長532nmにて簡易分析具の樹脂チューブ10ごと収容された水の吸光度を測定した。なお、ベースライン測定はチューブホルダ51に簡易分析具1をセットしない状態、すなわち、空のチューブホルダ51について行った。試験に用いた簡易分析具の樹脂チューブの胴部の軸太さはいずれも10〜12mmの範囲内にあり、樹脂チューブの胴部はいずれも押圧された状態であった。測定結果を
図12及び以下表2に示す。測定波長532nmにおける吸光度は0.569〜0.736の範囲となり、平均値は0.633、標準偏差は0.062であった。比較例1の結果と比べると、バラツキの割合が減少していることから、押圧手段による光路長の調整が分析の精度を向上させることがわかった。また、本実施例で測定された吸光度は主にポリエチレン材料からなる樹脂チューブに由来する吸光度であるため、ポリエチレンチューブの個体差に由来するバラツキがあることがわかった。
【実施例1】
【0061】
3.亜硝酸測定の簡易分析具をそのまま用いる吸光分析方法
図6及び
図7に示す本発明の第二の実施形態に係る装置200において、チューブホルダ51の押圧手段510を機能させた状態で以下試験を行った。チューブホルダ51の押圧手段510のねじ510cを締め、2枚の押圧壁510a間の距離Dを7mmとした状態で吸光度を測定した。亜硝酸濃度が1ppmの標準溶液を準備した。簡易分析具1(株式会社共立理化学研究所製品、パックテストWAK−NO
2)を3個準備し、この標準溶液を1.5mLずつ吸いこませ、発色試薬とよく混合させた。上述のように調整したチューブホルダ51に簡易分析具1を1個ずつセットして吸光度をそれぞれ測定した。測定波長は532nm、650nm及び700nmとした。亜硝酸濃度が0.5ppm、0.1ppm及び0ppmの標準溶液についても、同様にして吸光度を測定した。なお、ベースライン測定はチューブホルダ51に簡易分析具1をセットしない状態、すなわち、空のチューブホルダ51について行った。試験に用いた簡易分析具の樹脂チューブの胴部の軸太さはいずれも10〜12mmの範囲内にあり、樹脂チューブの胴部はいずれも押圧された状態であった。
図13に各濃度の亜硝酸の標準溶液を1.5mL収容した簡易分析具の波長全域における吸収スペクトルを示す。この吸収スペクトルによれば、亜硝酸の吸収帯の波長の範囲はおよそ450〜620nmであり、極大吸収波長はおよそ520〜550nmである。
【0062】
各測定波長における吸光度の測定値と異なる波長における吸光度の差分値を以下表3に示す。また、各測定波長における吸光度と標準溶液の濃度に基づく検量線を
図14に、差分値と標準溶液の濃度に基づく検量線を
図15に示す。
【0063】
【表3】
【0064】
表3の各測定波長における吸光度の値及び
図14の結果から、各測定波長における吸光度と標準溶液の濃度の関係を示すデータを検討したところ、押圧手段による光路長の調整により吸光度のバラツキは低減したものの、
図14に示すように吸光度と標準溶液の濃度に基づく関係線が直線状とはならず、検量線としては使用できないことがわかった。他方、異なる測定波長における吸光度の値から得られた差分値についてみると、表3及び
図15に示すように、差分値では値のバラツキがより小さくなり、吸光度と標準溶液の濃度に基づく関係線が直線状となることがわかった。この差分値は、分析対象物である亜硝酸イオンの極大吸収波長における吸光度から、吸収波長域外での波長における吸光度を差し引いた値である。吸収波長域外での波長における吸光度は、実質的に簡易分析具の樹脂チューブ材料自体による光の吸収を示していると考えられる。それゆえ、吸収波長域外での波長における吸光度を差し引くことによって、樹脂チューブ材料のバラツキが除かれ、実質的に簡易分析具内に収容されている亜硝酸溶液の発色状態に起因する吸収のみが精度よく測定されることがわかった。
【実施例2】
【0065】
4.リン酸測定の簡易分析具をそのまま用いる吸光分析方法
実施例1で用いた装置200を用い、チューブホルダ51の押圧手段510を機能させた状態で以下試験を行った。チューブホルダ51の押圧手段510のねじ510cを締め、2枚の押圧壁510a間の距離Dを7mmとした状態でリン酸の吸光度を測定した。リン酸濃度が5ppmの標準溶液を準備した。簡易分析具1(株式会社共立理化学研究所製品、パックテストWAK−PO
4)を1個準備し、この標準溶液を1.5mLずつ吸いこませ、発色試薬とよく混合させた。上述のように調整したチューブホルダ51に簡易分析具1をセットして吸光度をそれぞれ測定した。測定波長は500nm及び710nmとした。リン酸濃度が1ppm、0.5ppm、0.1ppm及び0ppmの標準溶液についても同様にして吸光度を測定した。なお、ベースライン測定はチューブホルダ51に簡易分析具1をセットしない状態、すなわち、空のチューブホルダ51について行った。試験に用いた簡易分析具の樹脂チューブの胴部の軸太さはいずれも10〜12mmの範囲内にあり、樹脂チューブの胴部はいずれも押圧された状態であった。
図16に各濃度のリン酸の標準溶液を1.5mL収容した簡易分析具の波長全域における吸収スペクトルを示す。この吸収スペクトルによれば、リン酸の吸収帯の波長の範囲はおよそ500〜800nmであり、極大吸収波長はおよそ650〜730nmである。
【0066】
各測定波長における吸光度の測定値と異なる波長における吸光度の差分値を以下表4に示す。また、各測定波長又はその差分値と標準溶液の濃度に基づく検量線を
図17に示す。
【0067】
【表4】
【0068】
表4の各測定波長における吸光度の値及び
図17の結果から、異なる測定波長における吸光度の値から得られた差分値と標準溶液の濃度に基づく関係線が直線状となることがわかった。この差分値は、分析対象物であるリン酸イオンの極大吸収波長近傍の波長(710nm)における吸光度から、吸収波長域外での波長(500nm)における吸光度を差し引いた値である。吸収波長域外での波長における吸光度は、実質的に簡易分析具の樹脂チューブ材料自体による光の吸収を示していると考えられる。それゆえ、吸収波長域外での波長における吸光度を差し引くことによって、樹脂チューブ材料のバラツキが除かれ、実質的に簡易分析具内に収容されているリン酸溶液の発色状態に起因する吸収のみが精度よく測定されることがわかった。
【実施例3】
【0069】
4.次亜塩素酸(遊離残留塩素)測定の簡易分析具をそのまま用いる吸光分析方法
実施例1で用いた装置200を用い、チューブホルダ51の押圧手段510を機能させた状態で以下試験を行った。チューブホルダ51の押圧手段510のねじ510cを締め、2枚の押圧壁510a間の距離Dを7mmとした状態で次亜塩素酸の吸光度を測定した。次亜塩素酸濃度が300ppmの標準溶液を準備した。簡易分析具1(株式会社共立理化学研究所製品、パックテストWAK−ClO(C))を1個準備し、この標準溶液を1.5mLずつ吸いこませ、発色試薬とよく混合させた。上述のように調整したチューブホルダ51に簡易分析具1をセットして吸光度をそれぞれ測定した。測定波長は526nm及び700nmとした。次亜塩素酸濃度が200ppm、50ppm、10ppm及び0ppmの標準溶液についても同様にして吸光度を測定した。なお、ベースライン測定はチューブホルダ51に簡易分析具1をセットしない状態、すなわち、空のチューブホルダ51について行った。試験に用いた簡易分析具の樹脂チューブの胴部の軸太さはいずれも10〜12mmの範囲内にあり、樹脂チューブの胴部はいずれも押圧された状態であった。
図18に各濃度の次亜塩素酸の標準溶液を1.5mL収容した簡易分析具の波長全域における吸収スペクトルを示す。この吸収スペクトルによれば、次亜塩素酸の吸収帯の波長の範囲は、短波長側の裾部は確認できないが、およそ〜600nmであり、極大吸収波長はおよそ〜450nmである。
【0070】
各測定波長における吸光度の測定値と異なる波長における吸光度の差分値を以下表5に示す。また、各測定波長またはその差分値と標準溶液の濃度に基づく検量線を
図19に示す。
【0071】
【表5】
【0072】
表5の各測定波長における吸光度の値及び
図19の結果から、異なる測定波長における吸光度の値から得られた差分値と標準溶液の濃度に基づく関係線が直線状となることがわかった。この差分値は、分析対象物である次亜塩素酸の吸収帯の波長(526nm)における吸光度から、吸収波長域外での波長(700nm)における吸光度を差し引いた値である。このように、吸収波長域外での波長における吸光度を差し引くことによって、樹脂チューブ材料のバラツキが除かれ、実質的に簡易分析具内に収容されている次亜塩素酸を含む溶液の発色状態に起因する吸収のみが精度よく測定されることがわかった。
【0073】
本発明は、上記の実施形態又は実施例に限定されるものでなく、特許請求の範囲に記載された発明の要旨を逸脱しない範囲内での種々、設計変更した形態も技術的範囲に含むものである。