(58)【調査した分野】(Int.Cl.,DB名)
前記変圧器の二次側は、単相3線結線であり、該単相3線結線の2つの端部に接続される各電線を前記活線とし、中間点に接続される電線を中性線とすることを特徴とする請求項2に記載の絶縁監視装置。
【背景技術】
【0002】
送電線により送電された高電圧を受電変圧器にて低電圧に変換して工場や一般家庭に電力を供給することが行われている。受電変圧器は、二次側電線が地絡して漏電することがあり、このような場合にはいち早く漏電を検出して電路を遮断する必要がある。そこで従来より、電線の絶縁状態を監視する絶縁監視装置が用いられている。従来の絶縁監視装置として、Igr方式を採用したものが知られている(特許文献1参照)。
【0003】
Igr方式の絶縁監視装置では、変圧器の二次側の電線に接続されるB種接地線に、商用周波数(50Hz、60Hz)とは異なる周波数の監視用信号を重畳する。そして、B種接地線に流れる監視信号と同一周波数の信号を検出し、この検出信号から漏電電流を求める。更に、漏電電流には、抵抗成分と容量成分(リアクタンス成分)が存在するので、容量成分の電流を除去して抵抗成分の電流のみを検出し、これを漏電電流とする。この漏電電流が閾値を超えた場合に警報を発する。
【0004】
ところで、昨今において、B種接地線に抑制抵抗を挿入することにより、漏電が発生した際に、B種接地線に流れる電流を抑制することが行われている。この場合には、B種接地線の抵抗をゼロと見なすことができないので、従来の演算方法を用いて漏電電流を算出することができない。以下、
図7、
図8を参照して説明する。
【0005】
図7は、正常時におけるIgr方式を用いた絶縁監視装置の説明図であり、単相2線式の回路を示している。
図7に示すように、変圧器110の二次側電線のうちの1つは、B種接地線101を介してグランドに接地されている。このB種接地線101には、監視信号を重畳するための信号発生器103と、B種接地線101に流れる監視信号を検出する電流検出器105と、該電流検出器105で検出される電流に基づいて地絡抵抗を演算する制御器102と、を備えている。また、B種接地線101に流れる電流を抑制するための抑制抵抗r、及びスイッチ104が設けられており、通常時はスイッチ104を閉塞して抑制抵抗rの両端を短絡する。
【0006】
そして、信号発生器103にてB種接地線に商用周波数とは異なる特定周波数(例えば、20Hz)の監視信号を重畳する。電線111に地絡が発生すると、B種接地線に地絡電流I101が流れ、該地絡電流I101には監視信号が含まれるので、制御器102にて監視信号が検出される。検出した監視信号から容量成分(静電容量C101を介して流れる電流)を除去することにより、地絡抵抗R101を求めることができる。
【0007】
一方、地絡が発生したときは
図8に示すように、スイッチ104を開放とし、B種接地線101に抑制抵抗rを介置する。この場合には、電線112とグランドとの間に生じる静電容量C102が無視できなくなり、抵抗R101に流れる電流は、静電容量C102に流れる電流I103とB種接地線101に流れる電流I102に分流される。従って、電流検出器105で検出される電流を測定しても、抵抗R101に流れる漏電電流を正確に求めることができない。
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述したように、B種接地線101に抑制抵抗rを介置した場合には、電線111が地絡した際に、
図8に示す電流I103が流れるので、電流検出器105で検出される電流から電線111の漏電電流を求めることができなくなるという問題があった。
【0010】
本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、B種接地線に抑制抵抗を介置した場合でも漏電電流を高精度に検出することのできる絶縁監視装置を提供することにある。
【課題を解決するための手段】
【0011】
上記目的を達成するため、本願請求項1に記載の発明は、変圧器のB種接地線に、商用周波数と異なる特定周波数の監視信号を重畳する監視信号発生器と、前記B種接地線に流れる電流に含まれる前記特定周波数の電流を検出する電流検出手段と、前記特定周波数の電流の有効成分及び無効成分に基づいて、前記変圧器の二次側電線の地絡抵抗、及び静電容量を求める抵抗・静電容量算出手段と、前記B種接地線に設けられ、抑制抵抗と、該抑制抵抗の両端の短絡、開放を切り替える切替スイッチと、が並列接続された並列接続回路と、前記地絡抵抗が閾値抵抗を上回る場合には前記抑制抵抗の両端を短絡し、前記地絡抵抗が前記閾値抵抗よりも小さい場合には前記抑制抵抗の両端を開放するように前記切替スイッチを制御する切替制御手段と、前記抑制抵抗の両端が開放された際には、前記二次側電線に一線地絡が生じたものと判断し、且つ、各二次側電線とグランドとの間の静電容量が同一であると
いう条件下で、前記一線地絡による漏電電流を算出する電流演算手段と、を備えたことを特徴とする。
【0012】
請求項2に記載の発明は、前記電流演算手段は、前記B種接地線に接続されない活線が
一線地絡したと
いう条件下で第1漏電電流を演算し、前記B種接地線に接続された中性線が地絡したと
いう条件下で第2漏電電流を演算し、前記第1漏電電流と第2漏電電流のうち、大きい方の電流を漏電電流として採用することを特徴とする。
【0013】
請求項3に記載の発明は、前記変圧器の二次側は、R相、S相、T相の3相デルタ結線であり、このうち
前記S相に接続される電線を前記中性線とし、
前記R相及びT相に接続される電線を前記活線とすることを特徴とする。
【0014】
請求項4に記載の発明は、前記変圧器の二次側は、単相3線結線であり、該単相3線結線の2つの端部に接続される各電線を前記活線とし、中間点に接続される電線を中性線とすることを特徴とする。
【発明の効果】
【0015】
本発明に係る絶縁監視装置では、B種接地線に抑制抵抗が介置された場合でも、二次側電線とグランドとの間の静電容量が各電線で同一であると仮定し、且つ、漏電の原因が一線地絡であると仮定して漏電電流を算出する。従って、地絡した電線に流れる漏電電流を高精度に算出することが可能となる。
【0016】
また、活線が地絡した場合の第1漏電電流と、中性線が地絡した場合の第2漏電電流の双方を算出し、これらのうちの大きい方の電流を漏電電流として採用するので、一線地絡した電線が活線である場合、及び中性線である場合の双方において、漏電電流を高精度に算出することが可能となる。
【0017】
更に、変圧器の二次側回路が三相デルタ結線である場合、及び単相3線結線である場合において、適用することが可能である。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態を図面を参照して説明する。
【0020】
[第1実施形態の説明]
図1は、本発明第1実施形態に係る絶縁監視装置が採用された三相デルタ結線回路を示す説明図である。
図1に示すように、この絶縁監視装置は、変圧器の二次側回路51がR相、S相、T相の3つの相からなる三相デルタ結線とされている。このうち、S相が中性相とされており、並列接続回路12が介置されたB種接地線11を経由してグランドに接地されている。
【0021】
B種接地線11には、並列接続回路12以外に、絶縁監視用の信号として商用周波数(50Hz、60Hz)とは相違する特定周波数(例えば、20Hz)の重畳電圧V1を重畳する信号発生器13(監視信号発生器)と、B種接地線11に流れる電流を検出する電流センサ14(電流検出手段)と、が接続されている。電流センサ14及び信号発生器13は、制御器15に接続されている。
【0022】
並列接続回路12は、抑制抵抗rと、切替スイッチSW1と、保護回路21を備えており、これらが互いに並列接続されている。切替スイッチSW1は、制御器15の制御下で閉塞、開放が制御される。保護回路21は、落雷等に起因して変圧器に過大な電圧が加えられ、該保護回路21の両端電圧が所定の電圧(例えば、600ボルト)を超えた場合に、両端を短絡して電流を流す機能を備えている。
【0023】
制御器15は、電流センサ14で検出される電流から上述した重畳電圧V1と同一周波数の電流を検出し、この電流に基づいてIgr方式により変圧器の二次側回路51に接続された各電線L1,L2,L3とグランドとの間の地絡抵抗Rg、及び静電容量Cgを算出する。即ち、制御器15は、特定周波数の電流の有効成分及び無効成分に基づいて、変圧器の二次側電線L1,L2,L3の地絡抵抗、及び静電容量を求める抵抗・静電容量算出手段としての機能を備える。そして、地絡抵抗Rgが予め設定した閾値抵抗Rthよりも小さいと判断した場合には、各電線L1,L2,L3のうちの少なくとも一つに、漏電(地絡)が発生しているものと判断する。
【0024】
また、制御器15は、地絡抵抗Rgが閾値抵抗Rthよりも大きいと判断した場合(漏電が発生していない場合)には、切替スイッチSW1を閉塞し、地絡抵抗Rgが閾値抵抗Rthよりも小さい場合(漏電が発生している場合)には、切替スイッチSW1を開放するように制御する。即ち、地絡抵抗Rgが小さく、漏電が発生しているものと判断される場合には、切替スイッチSW1を開放して、B種接地線11に抑制抵抗rが介置されるように切り替えることにより、B種接地線11に過大な電流が流れることを阻止する。そして、切替スイッチSW1を開放した場合には、後述する演算方法により漏電電流を演算することにより、
図8にて説明した問題を回避する。
【0025】
即ち、制御器15は、地絡抵抗Rgが閾値抵抗Rthを上回る場合には抑制抵抗rの両端を短絡し、地絡抵抗Rgが閾値抵抗Rthよりも小さい場合には抑制抵抗rの両端を開放するように切替スイッチSW1を制御する切替制御手段としての機能を備えている。更に、抑制抵抗rの両端が開放された際には、二次側電線に一線地絡が生じたものと判断し、且つ、各二次側電線とグランドとの間の静電容量が同一であると仮定して、一線地絡による漏電電流を算出する電流演算手段としての機能を備えている。なお、制御器15は、例えば、中央演算ユニット(CPU)や、RAM、ROM、ハードディスク等の記憶手段からなる一体型のコンピュータとして構成することができる。
【0026】
また、
図1に示すように、変圧器の二次側回路51に設けられるS相、R相、T相の各電線L1、L2、L3とグランドとの間に存在する静電容量をそれぞれ、C1、C2、C3とし、各電線L1、L2、L3とグランドとの間の抵抗をR1、R2、R3とする。すると、重畳電圧V1に対して、
図2に示す如くの等価回路が得られる。
図2において、符号V1は監視信号の重畳電圧を示している。符号CgはC1〜C3の合計の静電容量であり、該静電容量CgはCg=C1+C2+C3で示すことができる。また、符号RgはR1〜R3の合計の抵抗であり、1/Rg=1/R1+1/R2+1/R3で示すことができる。
【0027】
そして、本実施形態に係る絶縁監視装置では、制御器15において上述したIgr方式を用いることにより3つの電線L1〜L3とグランドとの間の地絡抵抗Rgを演算し、この地絡抵抗Rgが閾値抵抗Rthを下回った場合、即ち、電線L1〜L3のうち少なくとも一つの電線にて漏電が発生しているものと判断された場合に、切替スイッチSW1を閉塞から開放に切り替える。更に、切り替えスイッチSW1を開放した場合には、
図8に示した如くの問題が生じるので、以下に示す演算方式により、漏電電流を算出する。
【0028】
本実施形態では、漏電の発生原因が一線地絡によるものと仮定し、且つ、各電線L1、L2、L3とグランドとの間の静電容量C1、C2、C3が全て同一の静電容量「C」であると仮定して、地絡した電線からの漏電電流を高精度に算出する。
【0029】
また、一線地絡については、中性相であるS相が地絡する場合(以下「中性線地絡」という)、及び活線であるR相またはT相が地絡する場合(以下「活線地絡」という)の2通りがある。本実施形態では、後述する演算手法により中性線地絡の場合の漏電電流、及び活線地絡の場合の漏電電流の双方を算出し、大きい方の電流を一線地絡時の漏電電流として求める。
【0030】
また、
図4に示すように、
R相電圧位相とT相電圧位相の差は60°である。つまり、活線地絡の場合には、
図4に示すT相が地絡した場合とR相が地絡した場合で、流れる電流が異なる。具体的には、地絡抵抗が同一であってもT線地絡電流の方が、R線地絡電流よりも大きい電流が流れることになる。従って、本実施形態では、一線地絡が発生した場合には、T線が地絡したものと判断して、地絡電流を演算する。
【0031】
以下、第1実施形態に係る絶縁監視装置の作用を
図3に示すフローチャートを参照して説明する。この処理は、
図1に示す制御器15により、所定の演算周期で実行される。また、初期的には、切替スイッチSW1は閉塞されており、抑制抵抗rの両端は短絡されている。つまり、切替スイッチSW1はノーマリクローズ型のスイッチである。
【0032】
初めに、
図3のステップS11において、制御器15は、電流センサ14で検出される電流から、変圧器の二次側回路51に接続された各電線L1〜L3とグランドとの間の地絡抵抗Rg及び静電容量Cgを算出する。この演算は、信号発生器13からB種接地線11に重畳した重畳電圧V1の位相と、電流センサ14で検出される重畳電圧V1と同一周波数の電流の位相との位相差から、地絡抵抗Rg、及び静電容量Cgを算出する。
【0033】
ステップS12において、制御器15は、ステップS11の処理で算出した地絡抵抗Rgが予め設定した閾値抵抗Rth以下であるか否かを判断する。そして、地絡抵抗Rgが閾値抵抗Rthよりも大きい場合には(ステップS12でNO)、ステップS11に処理を戻す。一方、地絡抵抗Rgが閾値抵抗Rth以下である場合には(ステップS12でYES)、ステップS13において、制御器15は、各電線L1〜L3の地絡抵抗Rgが異常であり、漏電が発生しているものと判断する。
【0034】
ステップS14において、制御器15は、切替スイッチSW1を閉塞から開放に切り替える。即ち、通常時においては、切替スイッチSW1は閉塞され、抑制抵抗rの両端が短絡されており、地絡抵抗Rgが小さくなった場合には、切替スイッチSW1を開放することにより、抑制抵抗rの両端を開放する。こうすることにより、
図1に示すB種接地線11に抑制抵抗rが介置されることになり、該B種接地線11を流れる電流は、抑制抵抗rを流れることになる。従って、漏電の発生により、B種接地線11に過大な電流が流れることを抑制することができる。
【0035】
ステップS15において、制御器15は、Igr方式を用いて地絡抵抗Rg及び静電容量Cgを演算する。そして、上述したように、各電線L1〜L3とグランドとの間の静電容量C1〜C3は同一であるものと仮定しこれを「静電容量C」とするので、静電容量Cgに基づいて静電容量Cを求めることができる。また、一線地絡であると仮定するので、地絡した電線とグランドとの間の抵抗Rは、地絡抵抗Rgと見なすことができる。
【0036】
そして、ステップS16において、制御器15は、静電容量C、及び地絡抵抗Rgを用いて後述する手法により漏電電流を求める。
【0037】
ステップS17において、制御器15は、ステップS16の処理で演算した漏電電流が予め設定した基準値以上であるか否かを判断する。そして、基準値以上であると判断された場合には(ステップS17でYES)、ステップS18において、制御器15は、警報機(図示省略)により警報を出力することにより、漏電が発生していることをユーザ通知する。
【0038】
ステップS19において、制御器15は、地絡抵抗Rgが閾値抵抗Rth以上であるか否かを判断する。そして、閾値抵抗Rthを下回る場合にはステップS15に処理を戻し、閾値抵抗Rth以上である場合には、ステップS20において、制御器15は、切替スイッチSW1を閉塞する。こうして、電線L1〜L3にて地絡事故が発生し、地絡抵抗Rgが低下した場合には、B種接地線11に抑制抵抗rを介置することにより、漏電発生時にB種接地線11に過大な電流が流れることを防止することができる。これに加えて、漏電電流の検出を高精度に行うことが可能となる。
【0039】
次に、
図3のステップS16に示した漏電電流の演算方法について説明する。漏電電流の演算方法は、活性地絡の場合と中性線地絡の場合で異なる。以下、それぞれの場合について説明する。
【0040】
[活線が地絡した場合の漏電電流の演算方法]
図1にて説明したように、S相、R相、T相のそれぞれに接続される電線L1、L2、L3とグランドとの間には、抵抗R1、R2、R3、及び静電容量C1、C2、C3が存在する。そして、各電線L1〜L3のうち、活線である電線L3が地絡した場合には、
図4に示す如くの等価回路となる。地絡していない電線L1,L2とグランドとの間の抵抗R1,R2は、抵抗値が無限大であるので、
図4に記載していない。また、
図4では地絡した電線L3とグランドとの間の抵抗R3を「R」で示している。
【0041】
そして、抵抗Rに流れる電流をI1、コンデンサC3,C2,C1に流れる電流をそれぞれI2,I3,I5とし、抑制抵抗rに流れる電流をI4とする。また、R相の電圧をEa、T相の電圧をEbとすると、電圧Ea,Ebは下記の(1)、(2)式で示すことができる。また、グランドの電圧をExとする。
【0043】
【数2】
すると、
図4に示す電流I1について下記(3)式が成立し、I2について下記(4)式が成立し、電流I3について下記(5)式が成立し、I4について下記(6)式が成立し、I5について下記(7)式が成立する。
【0048】
【数7】
更に、電流I1〜I5について、下記(8)式が成立する。
【0049】
I1+I2+I3=I4+I5 …(8)
(8)式に上記した(3)〜(7)式を代入すると、下記(9)式が得られる。
【0050】
【数8】
(9)式から電圧Exを求めると、下記(10)式となる。
【0051】
【数9】
(10)式を前述の(6)式に代入すると、下記(11)式が得られる。
【0052】
【数10】
即ち、抑制抵抗rに流れる電流I4は(11)式で示される。また、(10)式を前述の(3)式に代入すると、下記(12)式が得られる。
【0053】
【数11】
即ち、抵抗Rに流れる電流I1、即ち電線L3が地絡することによって流れる漏電電流I1は、(12)式で示される。そして、(12)式で用いている各数値Ea、Eb、C、r、Rは全て既知であるから、(12)式を用いることにより、抑制抵抗rが介置された場合でも、活線地絡が発生した場合の漏電電流I1を精度良く算出することができる。
【0054】
[中性線が地絡した場合の漏電電流の演算方法]
図1にて説明したように、S相、R相、T相のそれぞれに接続される電線L1、L2、L3とグランドとの間には、抵抗R1、R2、R3、及び静電容量C1、C2、C3が存在する。そして、
図1に示した各電線L1〜L3のうち、中性線である電線L1が地絡した場合には、
図5に示す如くの等価回路となる。地絡していない電線L2,L3とグランドとの間の抵抗R2,R3は、抵抗値が無限大であるので、
図5に記載していない。また、
図5では地絡した電線L1とグランドとの間の抵抗R1を「R」で示している。
【0055】
そして、抵抗Rに流れる電流をI3、コンデンサC3,C2,C1に流れる電流をそれぞれI1,I2,I4とし、抑制抵抗rに流れる電流をI5とする。また、T相の電圧をEb、R相の電圧をEaとし、グランドの電圧をExとする。電圧Ea,Ebは前述した(1)、(2)式で示すことができる。
【0056】
すると、
図5に示す電流I1について下記(13)式が成立し、I2について下記(14)式が成立し、電流I3について下記(15)式が成立し、I4について下記(16)式が成立し、I5について下記(17)式が成立する。
【0061】
【数16】
更に、電流I1〜I5について、下記(18)式が成立する。
【0062】
I1+I2=I3+I4+I5 …(18)
(18)式に上記した(13)〜(17)式を代入すると、下記(19)式が得られる。
【0063】
【数17】
(19)式から電圧Exを求めると、下記(20)式となる。
【0064】
【数18】
(20)式を前述の(17)式に代入すると、下記(21)式が得られる。
【0065】
【数19】
即ち、抑制抵抗rに流れる電流I5は(21)式で示される。また、(20)式を前述の(14)式に代入すると、下記(22)式が得られる。
【0066】
【数20】
即ち、抵抗Rに流れる電流I3、即ち電線L1が地絡することによって流れる漏電電流はI3は、(22)式で示される。そして、(22)式で用いている各数値Ea、Eb、C、r、Rは全て既知であるから、(22)式を用いることにより、抑制抵抗rが介置された場合でも、中性線地絡が発生した場合の漏電電流I1を精度良く算出することができる。
【0067】
そして、本実施形態では、前述した活線地絡の場合、及び中性線地絡の場合の双方について漏電電流を演算する。即ち、活線地絡の場合の漏電電流を第1漏電電流とし、中性線地絡の場合の漏電電流を第2漏電電流とし、第1漏電電流と第2漏電電流のうち大きい方の漏電電流が実際の漏電電流であるものと判断する。つまり、活線地絡の場合の上記(12)式で演算した電流I1、及び中性線地絡の場合の上記(22)式で演算した電流I3のうちの大きい方の電流を用いて、漏電電流を判断する。
【0068】
このようにして、本実施形態に係る絶縁監視装置では、B種接地線11に流れる電流が大きくなった場合には、切替スイッチSW1を開放することにより、B種接地線11に抑制抵抗rを介置して過大な電流が流れることを阻止する。更に、制御器15は、二次側電線とグランドとの間の合計の静電容量Cgを演算し、更に、各電線L1〜L3とグランドとの間の静電容量C1〜C3が同一であると仮定して、この同一の静電容量Cを求める。そして、漏電の原因が一線地絡であると仮定して、上述したように連立方程式を設定して、地絡した電線に流れる漏電電流を算出する。従って、B種接地線11に抑制抵抗rが介置された場合でも、漏電電流を高精度に算出することが可能となる。
【0069】
また、地絡が発生した際には、活線地絡の場合、及び中性線地絡の場合の双方について漏電電流を算出し、このうち大きい方の漏電電流を採用する。従って、活線地絡、及び中性線地絡のいずれが発生した場合においても、高精度な漏電電流の算出が可能となる。
【0070】
なお、第1実施形態では、(1)式、(2)式に示したように、電圧Ea、Ebが200Vである例について説明したが、本発明はこれに限定されず、例えば、400V等の他の電圧とすることも可能である。
【0071】
[第2実施形態の説明]
次に、本発明の第2実施形態について説明する。
図6は、本発明の第2実施形態に係る絶縁監視装置の構成を示す回路図である。
図6に示すように、第2実施形態は、変圧器の二次側回路52が単相3線結線とされている。即ち、変圧器の二次側回路52の中間点が電線L11に接続され2つの端部がそれぞれ電線L12,L13に接続されている。また、二次側回路52の中間点にはB種接地線11が接続されている。それ以外の構成は、前述した
図1と同一であるので構成説明を省略する。
【0072】
そして、第2実施形態では、
図4、
図5に示した電圧EaとEbが逆位相となる。即ち、Ea=−Ebの関係となる。それ以外の演算方法は、前述した第1実施形態と同様である。従って、前述した(12)式にて用いるEaをEa=−Eb、またはEbをEb=−Eaと置き換えることにより、活線地絡が発生したときの漏電電流I1を演算することができる。
【0073】
同様に前述した(22)式にて用いるEaをEa=−Eb、またはEbをEb=−Eaと置き換えることにより、中性線地絡が発生したときの漏電電流I3を演算することができる。
【0074】
このようにして、第2実施形態では、単相3線式回路にて、B種接地線11に抑制抵抗rを介置した場合においても、前述した第1実施形態と同様に、漏電電流を高精度に演算することが可能となる。
【0075】
以上、本発明の絶縁監視装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。