(58)【調査した分野】(Int.Cl.,DB名)
互いに異なる4つ以上の波長帯域に分けて被写体を順次撮像することにより生成された4つ以上の画像を含む画像群に対し、前記画像群のうちの1つの画像を基準画像として選択する基準画像選択部と、
前記画像群のうち前記基準画像以外の複数の画像の各々を処理対象画像として選択する処理対象画像選択部と、
隣接する画像間において撮像時の波長帯域と撮像順との少なくとも一方が隣り合うように、前記画像群に含まれる画像の並び順を設定する並び順設定部と、
前記画像群に含まれる画像を前記並び順で配列した場合に隣接する画像間の変換情報を推定する変換情報推定部と、
前記処理対象画像に対し、前記並び順における前記処理対象画像から前記基準画像に向け、前記変換情報を累積的に用いて画像変換を施すことにより、変形画像を作成する変形画像作成部と、
前記複数の画像に基づいてそれぞれ作成された複数の前記変形画像と、前記基準画像とを用いて、カラー画像を作成するカラー画像作成部と、
を備えることを特徴とする画像処理装置。
前記並び順において、画像の波長帯域の中心波長が、短波長側から長波長側、又は長波長側から短波長側に、単調にシフトする、ことを特徴とする請求項1に記載の画像処理装置。
前記並び順における前記4つ以上の波長帯域のうち最短波長帯域と最長波長帯域との間に、少なくとも1つの別の波長帯域が挿入されている、ことを特徴とする請求項1〜5のいずれか1項に記載の画像処理装置。
前記並び順において、画像の波長帯域が、前記4つ以上の波長帯域のうち最短波長帯域と最長波長帯域との間を少なくとも1往復する、ことを特徴とする請求項1〜5のいずれか1項に記載の画像処理装置。
前記画像変換は、非剛体変換、平面射影変換、アフィン変換、線形変換、スケール変換、回転変換、及び平行移動のいずれか又は組み合わせである、ことを特徴とする請求項1〜8のいずれか1項に記載の画像処理装置。
前記変形画像作成部は、前記並び順における前記処理対象画像から前記基準画像に向け、前記変換情報を順次累積した累積変換情報を算出し、該累積変換情報を用いて前記処理対象画像に画像変換を施すことにより、前記変形画像を作成する、
ことを特徴とする請求項1〜9のいずれか1項に記載の画像処理装置。
互いに異なる4つ以上の波長帯域に分けて被写体を順次撮像することにより生成された4つ以上の画像を含む画像群に対し、前記画像群のうちの1つの画像を基準画像として選択する基準画像選択部と、
前記画像群のうち前記基準画像以外の複数の画像の各々を処理対象画像として選択する処理対象画像選択部と、
隣接する画像間において撮像時の波長帯域と撮像順との少なくとも一方が隣り合うように、前記画像群に含まれる画像の並び順を設定する並び順設定部と、
前記並び順における前記処理対象画像から前記基準画像に向け、前記画像群に含まれる画像を順次用いて変換情報を推定する変換情報推定部と、
前記処理対象画像に対し、前記変換情報推定部により推定された変換情報を順次用いて画像変換を施すことにより、変形画像を作成する変形画像作成部と、
前記複数の画像に基づいてそれぞれ作成された複数の前記変形画像と、前記基準画像とを用いて、カラー画像を作成するカラー画像作成部と、
を備え、
前記変換情報推定部は、前記画像群に含まれる画像と、前記変形画像作成部により前記画像変換が施された画像との間における変換情報を推定する、
ことを特徴とする画像処理装置。
互いに異なる4つ以上の波長帯域に分けて被写体を順次撮像することにより生成された4つ以上の画像を含む画像群に対し、前記画像群のうちの1つの画像を基準画像として選択する基準画像選択ステップと、
前記画像群のうち前記基準画像以外の複数の画像の各々を処理対象画像として選択する処理対象画像選択ステップと、
隣接する画像間において撮像時の波長帯域と撮像順との少なくとも一方が隣り合うように、前記画像群に含まれる画像の並び順を設定する並び順設定ステップと、
前記画像群に含まれる画像を所定の並び順で配列した場合に隣接する画像間の変換情報を推定する変換情報推定ステップと、
前記処理対象画像に対し、前記並び順における前記処理対象画像から前記基準画像に向け、前記変換情報を累積的に用いて画像変換を施すことにより、変形画像を作成する変形画像作成ステップと、
前記複数の画像に基づいてそれぞれ作成された複数の前記変形画像と、前記基準画像とを用いて、カラー画像を作成するカラー画像作成ステップと、
を含み、
前記並び順で隣接する画像間において、撮像時の波長帯域と撮像順との少なくとも一方が隣り合っている、
ことを特徴とする画像処理方法。
互いに異なる4つ以上の波長帯域に分けて被写体を順次撮像することにより生成された4つ以上の画像を含む画像群に対し、前記画像群のうちの1つの画像を基準画像として選択する基準画像選択ステップと、
前記画像群のうち前記基準画像以外の複数の画像の各々を処理対象画像として選択する処理対象画像選択ステップと、
隣接する画像間において撮像時の波長帯域と撮像順との少なくとも一方が隣り合うように、前記画像群に含まれる画像の並び順を設定する並び順設定ステップと、
前記画像群に含まれる画像を所定の並び順で配列した場合に隣接する画像間の変換情報を推定する変換情報推定ステップと、
前記処理対象画像に対し、前記並び順における前記処理対象画像から前記基準画像に向け、前記変換情報を累積的に用いて画像変換を施すことにより、変形画像を作成する変形画像作成ステップと、
前記複数の画像に基づいてそれぞれ作成された複数の前記変形画像と、前記基準画像とを用いて、カラー画像を作成するカラー画像作成ステップと、
をコンピュータに実行させ、
前記並び順で隣接する画像間において、撮像時の波長帯域と撮像順との少なくとも一方が隣り合っている、
ことを特徴とする画像処理プログラム。
【発明を実施するための形態】
【0030】
以下、本発明に係る画像処理装置、画像処理方法、画像処理プログラム、及び撮像システムの実施の形態について、図面を参照しながら詳細に説明する。なお、これらの実施の形態により本発明が限定されるものではない。また、各図面の記載において、同一部分には同一の符号を附して示している。
【0031】
(実施の形態1)
図1は、本発明の実施の形態1に係る撮像システムの構成例を示すブロック図である。
図1に示すように、本実施の形態1に係る撮像システム1は、面順次方式でマルチバンド撮像を行うことにより画像を生成する撮像装置10と、該撮像装置10から出力された画像に基づいてカラー画像を生成する画像処理装置100とを備える。本出願においては、マルチバンド撮像に際して、可視光領域を4つ以上の波長帯域に分離した波長帯域ごとに被写体を撮像することとする。
【0032】
図2は、撮像装置10の構成例を示す模式図である。
図2に示すように、撮像装置10は、モノクロカメラ101と、フィルタ部103と、結像レンズ105とを備える。モノクロカメラ101は、例えばCCDやCMOS等の撮像素子を含み、撮像素子の受光面に入射した光を、該光の強度に応じた電気信号に変換して画像データとして出力する。
【0033】
フィルタ部103は、分光特性が互いに異なる複数の光学フィルタ103aと、該光学フィルタ103aを回転可能に保持するフィルタホイール103bとを備える。このフィルタホイール103bを回転させることにより、モノクロカメラ101の前面に配置される光学フィルタ103aが順次切り換えられる。なお、
図2においては、5種類の光学フィルタ103aを備えるフィルタ部103を図示しているが、光学フィルタ103aの構成はこれに限定されない。一例として、波長帯域の中心波長が400nm〜720nmの間で10nmずつシフトする33枚の光学フィルタを有するフィルタ部を用いても良い。
【0034】
結像レンズ105は、被写体からの観察光(例えば被写体からの反射光)をモノクロカメラ101の受光面に結像する。
【0035】
マルチバンド撮像を行う際には、被写体に白色光を照射し、モノクロカメラ101の前面に配置される光学フィルタ103aを撮像フレームレートに合わせて切り換えながら撮像を行う。それにより、被写体からの観察光が結像レンズ105及び光学フィルタ103aを介してモノクロカメラ101に順次入射し、各光学フィルタ103aに対応する波長帯域の画像が順次生成される。撮像装置10は、このようにして生成した各波長帯域の画像を表す画像データを順次出力する。
【0036】
このような撮像装置10は、例えば顕微鏡装置に設けられ、顕微鏡装置のステージ上に載置された標本等を被写体として撮像する。或いは、撮像装置10を、生体内に挿入されて生体の管腔内を撮像する内視鏡に設けても良い。
【0037】
なお、撮像装置10の構成は、
図2に示す構成に限定されない。例えば、フィルタ部103の代わりに、電気的な制御により分光特性が変化する液晶チューナブルフィルタを用いても良い。
【0038】
また、被写体に白色光を照射する代わりに、波長帯域が制限された光を被写体に順次照射し、被写体からの反射光を、結像レンズ105を介してモノクロカメラ101によって受光することにより、各波長帯域の画像を生成しても良い。
【0039】
再び
図1を参照すると、画像処理装置100は、複数の波長帯域の画像を含む画像群の画像データを取得する画像取得部110と、画像処理装置100及び撮像システム1全体の動作を制御する制御部120と、画像取得部110が取得した画像データ等を記憶する記憶部130と、記憶部130に記憶された画像データに基づき、所定の画像処理を実行する演算部140と、入力部150と、表示部160とを備える。
【0040】
画像取得部110は、当該画像処理装置100を含む撮像システム1の態様に応じて適宜構成される。例えば
図1に示すように、画像処理装置100に撮像装置10を接続する場合、画像取得部110は、撮像装置10から出力された画像データを取り込むインタフェースによって構成される。また、撮像装置10によって生成された画像データを保存しておくサーバを設置する場合、画像取得部110はサーバと接続される通信装置等により構成され、サーバとデータ通信を行って画像データを取得する。或いは、画像取得部110を、可搬型の記録媒体を着脱自在に装着し、該記録媒体に記録された画像データを読み出すリーダ装置によって構成しても良い。
【0041】
制御部120は、例えばCPU等のハードウェアによって構成され、記憶部130に記憶されている各種制御プログラムを読み込むことにより、画像取得部110が取得した画像データや入力部150から入力された各種信号に従って、画像処理装置100を構成する各部への指示やデータの転送等を行い、画像処理装置100及び撮像システム1全体の動作を統括的に制御する。また、制御部120は、撮像装置10における面順次方式によるマルチバンド撮像動作を制御する面順次マルチバンド撮像制御部121を備える。
【0042】
記憶部130は、更新記録可能なフラッシュメモリ等のROMやRAMといった各種ICメモリ、内蔵若しくはデータ通信端子で接続されたハードディスク、又は、CD−ROM等の情報記録装置及びその読取装置等によって構成される。記憶部130は、当該画像処理装置100及び撮像システム1の動作を制御するための各種制御プログラムや、マルチバンド画像に基づいてカラー画像を生成する画像処理を演算部140に実行させる画像処理プログラム等の各種プログラムを記憶するプログラム記憶部131と、撮像装置10から出力された画像データを記憶する画像データ記憶部132とを含み、画像処理プログラムの実行中に使用されるデータ等を格納する。
【0043】
演算部140は、CPU等のハードウェアによって実現され、プログラム記憶部131に記憶された画像処理プログラムを読み込むことにより、画像データ記憶部132に記憶された画像データに基づいてカラー画像を生成する画像処理を実行する。
【0044】
より詳細には、演算部140は、並び順設定部141と、基準画像選択部142と、処理対象画像選択部143と、変換情報推定部144と、変形画像作成部145と、カラー画像作成部146とを備える。
【0045】
並び順設定部141は、被写体が写った4つ以上の波長帯域の画像を含む画像群(以下、マルチバンド画像群ともいう)に対し、隣接する画像間で波長帯域が隣り合うように、画像の並び順を設定する。
【0046】
基準画像選択部142は、マルチバンド画像群のうちの1つの画像を基準画像として選択する。
【0047】
処理対象画像選択部143は、マルチバンド画像群のうちの基準画像以外の画像を、処理対象画像として順次設定する。
【0048】
変換情報推定部144は、並び順設定部141により設定された並び順でマルチバンド画像群に含まれる画像を並べた場合に隣接する画像間の変換情報(変換パラメータ)を推定する。画像変換としては、具体的には、非剛体変換、平面射影変換、アフィン変換、線形変換、スケール変換、回転変換、及び平行移動のいずれか、又はこれらの変換の組み合わせが挙げられる。
【0049】
変形画像作成部145は、並び順設定部141により設定された並び順において、処理対象画像から基準画像に向け、変換情報を累積的に用いて画像変換を行うことにより、処理対象画像の変形画像を作成する。
【0050】
カラー画像作成部146は、マルチバンド画像群に含まれる基準画像以外の全ての画像からそれぞれ作成された変形画像と基準画像とを用いてカラー画像を作成する。
【0051】
入力部150は、例えば、キーボードやマウス、タッチパネル、各種スイッチ等の各種入力装置によって構成され、外部からなされる操作入力に応じた入力信号を制御部120に出力する。
【0052】
表示部160は、LCD(Liquid Crystal Display)やEL(Electro Luminescence)ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ等の表示装置によって構成され、制御部120から出力された表示信号をもとに各種画面を表示する。
【0053】
次に、撮像システム1の動作について説明する。
図3は、撮像システム1の動作を示すフローチャートである。また、
図4は、撮像システム1の動作を説明するための模式図である。
【0054】
まず、ステップS100において、演算部100は、4つ以上の波長帯域に分けて被写体を撮像することにより生成されたマルチバンド画像群を取得する。詳細には、面順次マルチバンド撮像制御部121の下で撮像装置10を動作させ、波長帯域の中心波長を400nm〜720nmの間で10nmずつシフトさせながら(
図4参照)、撮像周期1/33分(撮像フレームレート33枚/分)で順次撮像を行う。画像取得部110は、それによって生成された33バンドの画像の画像データを撮像装置10から順次取得し、画像データ記憶部132に記憶させる。演算部100は、画像データ記憶部132から画像データを読み出すことによりマルチバンド画像群を取得する。以下において、中心波長λの波長帯域の画像を、画像I(λ)と記す。
【0055】
続くステップS101において、演算部140は、マルチバンド画像群における画像の並び順を設定する。具体的には、画像処理装置100において静止画表示を行う場合、並び順設定部141は、隣接する画像間で波長帯域が隣り合うように並び順を設定する。なお、
図4の場合、波長帯域を短波長側から長波長側に順次シフトさせるので、撮像順に従って画像の並び順を設定すれば良い。
【0056】
続くステップS102において、変換情報推定部144は、ステップS101において設定された並び順で隣接する2つの画像に対して変換推定を行うことにより、これらの画像間の変換情報(変換パラメータ)を推定する。ここで、変換推定とは、2つの画像を重ねた場合に一致する変換情報を推定する処理である。変換推定の一例として、特開2007−257287号公報に開示されているように、濃度勾配情報に基づく平面射影変換等の変換情報の推定を繰り返すことにより、高精度な変換情報を取得する処理が挙げられる。推定される変換処理としては、非剛体変換、平面射影変換、アフィン変換、線形変換、スケール変換、回転変換、平行移動等の公知の画像変換、或いはこれらの組み合わせが挙げられる。
【0057】
変換情報推定部144は、このような変換推定を、マルチバンド画像群に含まれる全ての隣接する2つの画像の組み合わせに対して実行する。例えば、
図4の場合、画像I(400)と画像I(410)との間の変換情報tr(400)、画像I(410)と画像I(420)との変換情報tr(410)、…が推定される。
【0058】
続くステップS103において、基準画像選択部142は、マルチバンド画像群に含まれる任意の1つの画像を基準画像として選択する。
図4においては、一例として、中心波長550nmの波長帯域の画像I(550)を基準画像とする。以下、基準画像の波長帯域を基準波長帯域ともいう。
【0059】
続くステップS104において、処理対象画像選択部143は、マルチバンド画像群に含まれる画像のうちの基準画像以外の画像から、処理対象画像を選択する。
【0060】
続くステップS105において、変形画像作成部145は、処理対象画像から基準画像に向かって、変換情報を累積的に用いて処理対象画像に画像変換を施すことにより、変形画像を作成する。例えば
図4において、画像I(410)が処理対象画像である場合、画像I(410)と、基準画像である画像I(550)との間に位置する画像I(420)〜画像I(540)に関する変換情報が利用される。具体的には、画像I(410)−画像I(420)間の変換情報tr(410)と、画像I(420)−画像I(430)間の変換情報tr(420)と、…、画像I(540)−画像I(550)間の変換情報tr(540)とを順次累積したトータルの変換情報(累積変換情報)を算出し、この累積変換情報を用いて、画像I(410)に画像変換を施す。
【0061】
ここで、変換情報を利用する順序は、処理対象画像から基準画像に向かう順とする。具体的には、処理対象画像の波長帯域が基準波長帯域よりも短波長帯域である場合(
図4においては、画像I(400)〜I(540)が処理対象画像である場合)、短波長側から長波長側に向かって変換情報を累積的に利用する。一方、処理対象画像の波長帯域が基準波長帯域よりも長波長帯域である場合(
図4においては、画像I(560)〜I(720)が処理対象画像である場合)、長波長側から短波長側に向かって変換情報を累積的に利用する。例えば、画像I(650)を処理対象画像とする場合、まず、画像I(650)−画像I(640)間の変換情報tr(650)と、画像I(640)−I(630)間の変換情報tr(640)と、…、画像I(560)−画像I(550)間の変換情報tr(560)とを順次累積したトータルの変換情報(累積変換情報)を算出し、この累積変換情報を用いて、画像I(650)に画像変換を施す。
【0062】
ステップS106において、変形画像作成部145は、基準波長帯域以外の全波長帯域の画像の変形画像を作成したか否かを判定する。基準波長帯域以外で未だ変形画像を作成していない波長帯域が残っている場合(ステップS106:No)、演算部140の動作はステップS104に戻る。
【0063】
一方、基準波長帯域以外の全波長帯域の変形画像を作成した場合(ステップS106:Yes)、続いてカラー画像作成部146は、基準画像及び全波長帯域の変形画像からカラー画像を作成する(ステップS107)。詳細には、カラー画像作成部146は、各変形画像を照明の分光特性で補正し、レンダリング照明の分光特性、等色関数、sRGB変換行列を乗算することでカラー画像を作成する。
【0064】
続くステップS108において、演算部140は、ステップS107において作成したカラー画像を出力する。これに応じて、制御部120は、カラー画像を表示部160に表示させると共に、カラー画像の画像データを画像データ記憶部132に記憶させる。
その後、撮像システム1の動作は終了する。
【0065】
以上説明したように、本発明の実施の形態1によれば、基準波長帯域に対して処理対象画像の波長帯域の相関が低い場合であっても、処理対象画像から基準画像に向かって変換情報を累積的に用いることにより処理対象画像を変形するので、煩雑な処理を要することなく、基準画像に対して処理対象画像を好適に補正することができる。従って、色収差に起因する色ずれが低減されたカラー画像を生成することが可能となる。
【0066】
なお、上記実施の形態1においては、マルチバンド撮像を行う際に、波長帯域を短波長側から長波長側に単調にシフトさせたが、長波長側から短波長側に単調にシフトさせても良いし、ランダムにシフトさせても良い。いずれにしても、静止画を表示する場合には、並び順設定部141がマルチバンド画像群における画像の並び順を設定するので、マルチバンド撮像を行う際の波長帯域の順序は特に考慮しなくても良い。
【0067】
また、上記実施の形態1においては、マルチバンド画像群における画像の並び順を一律に設定し、全ての処理対象画像に対し、この並び順に沿った順で変換情報を用いて変形画像を作成することとしたが、処理対象画像ごとに並び順を異ならせても良い。
【0068】
(変形例1)
次に、本発明の実施の形態1の変形例1について説明する。
図5は、本発明の実施の形態1の変形例1に係る撮像システムの動作を説明するための模式図である。
【0069】
上記実施の形態1においては、並び順設定部141が設定した並び順において隣接する2つの画像の全ての組み合わせについて変換情報を推定し(
図3のステップS102参照)、その後、必要な変形情報を用いて各処理対象画像の変形画像を作成した(ステップSS105)。しかしながら、各処理対象画像の変形画像を作成する際に、変換情報の推定を逐次行っても良い。
【0070】
例えば、
図5において画像I(400)を処理対象画像とする場合、変換情報推定部144は、まず、隣接する画像I(410)との間の変換情報tr400を推定し、変形画像作成部145は、この変換情報tr(400)を用いて画像I(400)を変換することにより、変形画像I(400)
410を作成する。続いて、変換情報推定部144は、並び順が次の画像I(420)と直前に作成された変形画像I(400)
410との間の変換情報tr(410)’を推定し、変形画像作成部145は、この変換情報tr(410)’を用いて、変形画像I(400)
410をさらに変形することにより、変形画像I(400)
420を作成する。このように、画像の並び順に沿って、もとの画像と、直前に作成された変形画像との変換情報を推定し、この変換情報を用いて直前に作成された変形画像をさらに変換するという処理を累積的に繰り返す。そして、最後に、画像I(550)と変形画像I(400)
540との間の変形情報tr(540)’を用いて変形画像I(400)
540を変換することで、画像I(410)の最終的な変形画像I(400)
550を取得する。
【0071】
(実施の形態2)
次に、本発明の実施の形態2について説明する。
図6は、本発明の実施の形態2に係る撮像システムの構成を示すブロック図である。
図6に示すように、本実施の形態2に係る撮像システム2は、撮像装置10と画像処理装置200とを備える。撮像装置10の構成及び動作は、実施の形態1と同様である。
【0072】
画像処理装置200は、
図1に示す制御部120及び演算部140の代わりに、制御部210及び演算部220をそれぞれ備える。制御部210及び演算部220以外の画像処理装置200の各部の構成及び動作は、実施の形態1と同様である。
【0073】
制御部210は、撮像装置10における面順次方式によるマルチバンド撮像動作を制御する面順次マルチバンド撮像制御部211と、このマルチバンド撮像の動作を撮像装置10に連続して繰り返し実行させる連続撮像制御部212とを備える。
【0074】
演算部220は、
図1に示す基準画像選択部142〜カラー画像作成部146に加え、動画作成部221をさらに備える。動画作成部221は、撮像装置10から連続的に入力される画像データに基づき順次作成されるカラー画像を用いて動画を作成する。なお、ここでいう動画は、MPEGやAVI等の標準フォーマットの動画であっても良いし、画像処理装置200独自のフォーマットの動画であっても良い。また、基準画像選択部142〜カラー画像作成部146の動作は、実施の形態1と同様である。
【0075】
次に、撮像システム2の動作について説明する。
図7は、撮像システム2における撮像動作を示すフローチャートである。
図8は、撮像システム2における画像処理を示すフローチャートである。
図9は、撮像システム2の動作を説明するための模式図である。
【0076】
まず、ステップS200において、面順次マルチバンド撮像制御部211は、4つ以上の波長帯域に対して撮像を行う順序を設定する。本実施の形態2においては、連続して撮像される画像間において波長帯域が隣接するように、波長帯域の順序を設定する。具体的には、
図9に示すように、波長帯域の中心波長を、最短波長の400nmから最長波長の720nmに向かって10nmずつシフトさせる。
【0077】
続くステップS201において、面順次マルチバンド撮像制御部211は、マルチバンド撮像を開始する際の波長帯域の初期値を設定する。本実施の形態2においては、
図9に示すように、中心波長が400nmの波長帯域からマルチバンド撮像を開始する。
【0078】
ステップS202において、撮像装置10は、ステップS201において設定された波長帯域で被写体を撮像し、画像データを生成する。続くステップS203において、撮像装置10は、生成した画像データを画像処理装置200に出力する。
【0079】
ステップS204において、撮像装置10は、連続撮像制御部212から撮像終了の制御信号が入力されたか否かを判定する。撮像終了の制御信号が入力されない場合(ステップS204:No)、撮像装置10は、ステップS200において設定された順に波長帯域を変更する(ステップS205)。その後、撮像装置10の動作はステップS202に移行する。このような動作を繰り返すことにより、各波長帯域の画像の画像データが順次画像処理装置200に出力される。なお、波長帯域が最長波長の720nmに至った場合には最短波長の400nmに戻り、再び短波長側から長波長側に向かった波長帯域をシフトさせる。
【0080】
一方、連続撮像制御部212から撮像終了の制御信号が入力された場合(ステップS204:Yes)、撮像装置10の撮像動作は終了する。
【0081】
画像処理装置200は、撮像装置10から画像データが出力されると(
図7のステップS203参照)、画像データの取り込みを開始し、画像データ記憶部132に順次記憶させる(
図8のステップS210参照)。
【0082】
続くステップS211において、演算部220は任意の基準時刻を設定する。
図9においては、まず、時刻t1が基準時刻に設定されたものとする。
【0083】
ステップS212において、演算部220は、画像データ記憶部132に順次記憶された画像データに基づいて、基準時刻の前後所定時間内に生成された画像群(マルチバンド画像群)を撮像時刻順に取得する。画像群を取得する範囲は、全ての波長帯域がカバーされていれば任意であり、いくつかの波長帯域が重複していても構わない。例えば
図9に示すように、1分間に全33バンドの画像が生成される場合、基準時刻を含む少なくとも1分間に生成された画像を取得すれば良い。
図9においては、時刻t1を中心とする前後30秒間に生成された画像I(400)
1〜I(720)
1を取得している。なお、画像を取得する期間に対して基準時刻は必ずしも中心である必要はない。
【0084】
ステップS212に続くステップS102〜S107の動作は、実施の形態1と同様である。このうち、ステップS102においては、撮像時刻順に並べられた画像間における変換情報が推定される。また、ステップS103においては、ステップS211において設定された基準時刻における画像(
図9においては、時刻t1に対応する画像I(550)
1)が基準画像に設定される。それにより、画像I(400)
1〜I(720)
1に基づき、カラー画像が作成される(ステップS107参照)。
【0085】
ステップS107に続くステップS213において、動画作成部221は、ステップS107において作成されたカラー画像を基準時刻におけるフレーム画像として動画を作成する。例えば、画像I(400)
1〜I(720)
1に基づいて作成されたカラー画像は、基準時刻t1に対応するフレーム1の画像となる。
【0086】
これに応じて、演算部220は作成された動画を出力し、制御部210はカラー画像による動画を表示部160に表示させる(ステップS214)。
【0087】
ステップS215において、撮像装置10から新たな画像データの入力がある場合(ステップS215:Yes)、演算部220は、基準時刻を変更する(ステップS216)。基準時刻の周期は任意であるが、高フレームレートの動画を作成するためには、基準時刻の周期を短くすると良い。例えば
図9においては、時刻t1に続いて、撮像周期と等しい1/33分後の時刻t2を基準時刻に設定している。その後、演算部220の動作はステップS212に戻る。
【0088】
このような動作を繰り返すことにより、基準時刻を含む所定時間内に生成されたマルチバンド画像群に基づいて、動画の各フレーム画像としてのカラー画像が順次作成される。例えば、基準時刻t2の前後30秒間に生成された画像I(410)
1〜I(400)
2に基づいてフレーム2のカラー画像が作成され、基準時刻t3の前後30秒間に生成された画像I(420)
1〜I(410)
2に基づいてフレーム3のカラー画像が作成される。
【0089】
一方、ステップS215において、撮像装置10からの画像データの入力が終了した場合(ステップS215:No)、画像処理装置200の動作は終了する。
【0090】
以上説明したように、本発明の実施の形態2によれば、連続して撮像される画像間において波長帯域が隣接するように各波長帯域の撮像順を設定するので、色収差に起因する色ずれと撮像時刻の差に起因するぶれとの両方が精度良く補正されたカラー画像を作成することができる。従って、このようなカラー画像を用いることにより、画質の良いカラーの動画を作成することが可能となる。
【0091】
なお、上記ステップS213、S214においては、撮像装置10から順次入力される画像データを用いて、リアルタイムで動画を作成及び表示することとしたが、ステップS107において作成されたカラー画像を記憶し、蓄積されたカラー画像を繋げて動画を作成することとしても良い。
【0092】
(実施の形態3)
次に、本発明の実施の形態3について説明する。
図10は、本発明の実施の形態3に係る撮像システムの構成を示すブロック図である。
図10に示すように、本実施の形態3に係る撮像システム3は、撮像装置10と画像処理装置300とを備える。この画像処理装置300は、
図6に示す制御部210の代わりに、制御部310を備える。なお、撮像装置10の構成及び動作は、実施の形態1と同様である。また、制御部310以外の画像処理装置300の構成及び動作は、実施の形態2と同様である。
【0093】
制御部310は、撮像装置10における面順次方式によるマルチバンド撮像動作を制御する面順次マルチバンド撮像制御部311と、このマルチバンド撮像動作を撮像装置10に連続して繰り返し実行させる連続撮像制御部212とを備える。面順次マルチバンド撮像制御部311は、撮像装置10にマルチバンド撮像を実行させる際に、波長帯域の変更動作の制御、及び波長帯域を変更させる方向の制御を行う。なお、連続撮像制御部212の動作は、実施の形態2と同様である。
【0094】
ここで、実施の形態2のように、波長帯域を短波長側から長波長側に単調にシフトさせる場合、基準時刻をもとにマルチバンド画像群を取得する時間帯に、波長帯域が最長波長から最短波長にジャンプするタイミングが含まれてしまう場合がある。具体的には、
図11に示すように、中心波長400nm〜720nmの8バンドのマルチバンド撮像を行う場合基準時刻t0に対しては、マルチバンド画像群として画像I(550)
1〜I(450)
2が取得される。このマルチバンド画像群においては、波長帯域の相関が低い画像I(720)
1と画像I(400)
2とが連続しているため、両画像間における変換推定精度が低くなる。それにより、画像I(720)
1と画像I(400)
2との変換情報を利用して作成された変形画像の精度が低下してしまう。例えば
図11の場合、画像I(450)
2から基準画像I(700)
1に向かって作成される変形画像や、画像I(400)
2から基準画像I(700)
1に向かって作成される変形画像の精度が低下する。その結果、適切なカラー画像を作成することが困難になるおそれがある。
【0095】
そこで、本実施の形態3においては、
図12に示すように、連続して撮像を行う際に波長帯域を1段階以上空けてシフトさせ、1サイクルのマルチバンド撮像において、最短波長帯域と最長波長帯域との間で波長帯域を少なくとも1往復させることにより、最短波長帯域と最長波長帯域とが直接隣り合わない(即ち、間に別の波長帯域が挿入されている)ようにする。具体的には、
図12の場合、まず、中心波長を400nm→500nm→600nm→700nmの順にシフトさせて、各波長帯域の画像を取得した後、最長波長帯域の画像を取得する。即ち、往路においては、中心波長450nm、550nm、650nmの波長帯域をスキップする。その後、中心波長を650nm→550nm→450nmの順にシフトさせて、各波長帯域の画像を取得する。即ち、復路においては、中心波長700nm、600nm、500nmの波長帯域をスキップする。
【0096】
なお、1サイクルのマルチバンド撮像においては、同じ波長帯域を重複して撮像しても良い。この場合、画像処理装置300における画像処理の効率の観点から、重複分の撮像回数は、1サイクルの撮像回数の半分以下にすることが好ましい。
【0097】
このようなサイクルで波長帯域をシフトさせてマルチバンド撮像を行う場合、設定される基準時刻によらず、マルチバンド画像群内で撮像順が隣接する全ての画像の組み合わせにおいて、波長帯域の相関を、高いレベルで維持することができる。具体的には、基準時刻t1をもとに抽出されたマルチバンド画像群I(400)
3〜I(450)
3、基準時刻t2をもとに抽出されたマルチバンド画像群I(500)
3〜I(400)
4、基準時刻t3をもとに抽出されたマルチバンド画像群I(600)
3〜I(500)
4のいずれにおいても、撮像順が隣接する画像間において、波長帯域の相関が大幅に低い画像の組合せは発生していない。
【0098】
面順次マルチバンド撮像制御部311は、このように、撮像装置10に対して、撮像を1回行うごとに波長帯域を1段階以上空けてシフトさせることにより、1サイクルのマルチバンド撮像において、最短波長帯域と最長波長帯域との間で波長帯域を少なくとも1往復させる制御を行う。
【0099】
図13は、撮像システム3における撮像動作を示すフローチャートである。まず、ステップS300において、面順次マルチバンド撮像制御部311は、マルチバンド撮像を行う4つ以上の波長帯域を設定する。本実施の形態3においては、
図11に示すように、中心波長が400nm〜720nmの8つの波長帯域のマルチバンド撮像を行うこととする。
【0100】
続くステップS301において、面順次マルチバンド撮像制御部311は、波長帯域及び波長帯域を変更する方向の初期値を設定する。本実施の形態3においては、波長帯域の初期値として、中心波長400nmの最短波長帯域を初期値として設定すると共に、波長帯域を変更する方向の初期値を昇順に設定する。
【0101】
ステップS302において、撮像装置10は、ステップS301において設定された波長帯域で被写体を撮像し、画像データを生成する。続くステップS303において、撮像装置10は、生成した画像データを画像処理装置300に出力する。
【0102】
ステップS304において、撮像装置10は、ステップS301において設定された方向に、波長帯域を1段階以上空けて変更する。具体的には、中心波長400nmの波長帯域に対し、中心波長450nmの波長帯域をスキップして、中心波長500nmの波長帯域に変更される。
【0103】
ステップS305において、面順次マルチバンド撮像制御部311は、変更後の波長帯域が、ステップS300において設定された波長帯域の最端(上端又は下端)波長帯域であるか否かを判定する。変更後の波長帯域が最端波長帯域である場合(ステップS305:Yes)、面順次マルチバンド撮像制御部311は、波長帯域を変更する方向を切り換える(ステップS306)。例えば、ステップS304において変更された後の波長帯域の中心波長が720nm(上端波長帯域)であった場合、波長帯域を変更する方向を降順に切り換える。一方、変更後の波長帯域が最端波長帯域でない場合(ステップS305:No)、動作はそのままステップS307に移行する。
【0104】
ステップS307において、撮像装置10は、連続撮像制御部212から撮像終了の制御信号が入力されたか否かを判定する。撮像終了の制御信号が入力されない場合(ステップS307:No)、撮像装置10の動作はステップS302に移行する。この場合、ステップS304において変更された波長帯域での撮像が行われる。一方、撮像終了の制御信号が入力された場合(ステップS307:Yes)、撮像装置10の動作は終了する。
【0105】
以上説明したように、本発明の実施の形態3によれば、基準時刻の設定によらず、マルチバンド画像群において、撮像順が隣接する画像の全ての組み合わせにおける波長帯域の相関を高いレベルで維持し、局所的な波長帯域の相関の低下を防ぐことができる。従って、色収差に起因する色ずれと撮像時刻の差に起因するぶれとの両方が精度良く補正されたカラー画像を、常に生成することが可能となる。従って、このようなカラー画像を用いることにより、高品質なカラーの動画を作成することが可能となる。
【0106】
なお、撮像装置において、液晶チューナブルフィルタ等を用いた電気的な制御により波長帯域を変化させる場合、1サイクルで波長帯域の中心波長が例えば400nm→500nm→600nm→700nm→720nm→650nm→550nm→450nmの順で変化するように、制御プログラムを作成すれば良い。
【0107】
(実施の形態4)
次に、本発明の実施の形態4について説明する。
図14は、本発明の実施の形態4に係る撮像システムの構成を示すブロック図である。
図14に示すように、本実施の形態4に係る撮像システム4は、撮像装置10と画像処理装置400とを備える。撮像装置10の構成及び動作は、実施の形態4と同様である。
【0108】
画像処理装置400は、
図6に示す演算部220の代わりに、演算部410を備える。演算部410は、
図6に示す演算部220の構成に加えて、内挿画像作成部411及び内挿画像列作成部412を備える。なお、演算部410以外の画像処理装置400の構成及び動作は、実施の形態2と同様である。
【0109】
内挿画像作成部411は、基準時刻の前後において生成された同一の波長帯域の画像から、基準時刻における内挿画像を作成する。
【0110】
内挿画像列作成部412は、内挿画像作成部411が作成した各波長帯域の内挿画像を、所定の並び順で並べる。
【0111】
撮像システム4の動作は、全体として実施の形態2(
図7及び
図8参照)と同様であり、
図8のステップS212における基準時刻の前後所定時間内に生成された画像群を取得する動作が実施の形態2と異なる。
図15は、ステップS212において演算部410が実行する詳細な動作を示すフローチャートである。また、
図16及び
図17は、ステップS212における演算部410の詳細な動作を説明するための模式図である。
【0112】
まず、ステップS400において、内挿画像作成部411は、
図8のステップS211において設定された基準時刻における波長帯域以外の波長帯域から、処理対象の波長帯域を選択する。続くステップS401において、内挿画像作成部411は、基準時刻の前後に生成された処理対象の波長帯域の画像対を選択する。例えば
図16において、処理対象の波長帯域の中心波長が400nmである場合、基準時刻t5の前後に生成された画像I(400)
5及びI(400)
6の画像対が選択される。
【0113】
続くステップS402において、内挿画像作成部411は、ステップS401において選択された画像対から、被写体の動きを推定する。動きの推定には、ブロックマッチング法、勾配法等の公知の技術を用いることができる。
【0114】
ステップS403において、内挿画像作成部411は、被写体の動きから、基準時刻における被写体の位置を推定する。
【0115】
ステップS404において、内挿画像作成部411は、被写体の位置に基づいて、基準時刻における内挿画像を作成する(例えば、特開2012−142817号公報参照)。この際、動きの推定に用いた画像対のいずれを用いても良い。例えば、画像I(400)
5から基準時刻t5における内挿画像I(400)
t5を作成しても良いし、画像I(400)
6から内挿画像I(400)
t5を作成しても良い。画像I(400)
5と画像I(400)
6とのいずれを用いるかについては、例えば、撮像時刻が早い方の画像、撮像時刻が遅い方の画像、撮像時刻がより基準時刻に近い方の画像というように、適宜設定すれば良い。或いは、画像I(400)
5とI(400)
6との両方を用いて内挿画像I(400)
t5を作成しても良い。
【0116】
ステップS405において、内挿画像作成部410は、基準時刻における波長帯域以外の全ての波長帯域の内挿画像を作成したか否かを判定する。基準時刻における波長帯域以外で未だ内挿画像を作成していない波長帯域が残っている場合(ステップS405:No)、演算部410の動作はステップS400に移行する。この処理を繰り返すことにより、
図17に示すように、中心波長400nm、450nm、500nm、550nm、600nm、650nm、720nmの各波長帯域について、基準時刻t5における内挿画像I(400)
t5、I(450)
t5、I(500)
t5、I(550)
t5、I(600)
t5、I(650)
t5、I(720)
t5が作成される。
【0117】
基準時刻における波長帯域以外の全ての波長帯域の内挿画像を作成した場合(ステップS405:Yes)、内挿画像列作成部412は、全ての内挿画像と基準時刻における画像とからなる画像セットに対し、隣接する画像間で波長帯域が隣り合うように、画像の並び順を設定する(ステップS406)。その後、演算部410の動作はメインルーチンに戻る。
【0118】
ステップS212に続くステップS102以降においては、ステップS406において並び順が設定された画像セットをマルチバンド画像群とみなし、実施の形態2と同様に画像処理が実行される。この際、ステップS103においては、基準時刻に撮像された画像が基準画像として選択される。従って、
図17の場合、画像I(700)
5が基準画像として選択され、処理対象画像として選択された各内挿画像(400)
t5、I(450)
t5、I(500)
t5、I(550)
t5、I(600)
t5、I(650)
t5、I(720)
t5は、当該処理対象画像から基準画像(画像I(700)
5)に向かって、隣接する内挿画像間で推定された変換情報を累積的に利用して変形画像に変換される(ステップS105参照)。
【0119】
以上説明したように、本発明の実施の形態4によれば、基準時刻の前後に生成された各波長帯域の画像を用いて作成された内挿画像をマルチバンド画像群として扱うので、撮像を行う波長帯域の順序によらず、色収差に起因する色ずれと撮像時刻の差に起因するぼけとの両方が精度良く補正されたカラー画像を作成することが可能となる。従って、そのようなカラー画像を用いることにより、高品質な動画を作成することが可能となる。
【0120】
(実施の形態5)
次に、本発明の実施の形態5について説明する。
図18は、本発明の実施の形態5に係る撮像システムの構成例を示す図である。
図18に示すように、本実施の形態5に係る撮像システム5は、撮像装置10が設けられた顕微鏡装置500と、画像処理装置100とを備える。なお、画像処理装置100の代わりに、
図6に示す画像処理装置200、
図10に示す画像処理装置300、又は
図14に示す画像処理装置400を設けても良い。
【0121】
顕微鏡装置500は、落射照明ユニット501及び透過照明ユニット502が設けられた略C字形のアーム500aと、該アーム500aに取り付けられ、観察対象である被写体SPが載置される標本ステージ503と、鏡筒505の一端側に三眼鏡筒ユニット507を介して標本ステージ503と対向するように設けられた対物レンズ504と、標本ステージ503を移動させるステージ位置変更部506とを有する。三眼鏡筒ユニット507は、対物レンズ504から入射した被写体SPの観察光を、鏡筒505の他端側に設けられた撮像装置10と後述する接眼レンズユニット508とに分岐する。接眼レンズユニット508は、ユーザが被写体SPを直接観察するためのものである。
【0122】
落射照明ユニット501は、落射照明用光源501a及び落射照明光学系501bを備え、被写体SPに対して落射照明光を照射する。落射照明光学系501bは、落射照明用光源501aから出射した照明光を集光して観察光路Lの方向に導く種々の光学部材(フィルタユニット、シャッタ、視野絞り、開口絞り等)を含む。
【0123】
透過照明ユニット502は、透過照明用光源502a及び透過照明光学系502bを備え、被写体SPに対して透過照明光を照射する。透過照明光学系502bは、透過照明用光源502aから出射した照明光を集光して観察光路Lの方向に導く種々の光学部材(フィルタユニット、シャッタ、視野絞り、開口絞り等)を含む。
【0124】
対物レンズ504は、倍率が互いに異なる複数の対物レンズ(例えば、対物レンズ504、504’)を保持可能なレボルバ509に取り付けられている。このレボルバ509を回転させて、標本ステージ503と対向する対物レンズ504、504’を変更することにより、撮像倍率を変化させることができる。
【0125】
鏡筒505の内部には、複数のズームレンズと、これらのズームレンズの位置を変化させる駆動部(いずれも図示せず)とを含むズーム部が設けられている。ズーム部は、各ズームレンズの位置を調整することにより、撮像視野内の被写体像を拡大又は縮小させる。
【0126】
ステージ位置変更部506は、例えばステッピングモータ等の駆動部506aを含み、標本ステージ503の位置をXY平面内で移動させることにより、撮像視野を変化させる。また、ステージ位置変更部506には、標本ステージ503をZ軸に沿って移動させることにより、対物レンズ504の焦点を被写体SPに合わせる。
【0127】
このような顕微鏡装置500において生成された被写体SPの拡大像を撮像装置10においてマルチバンド撮像することより、被写体SPのカラー画像が表示部160に表示される。
【0128】
(実施の形態6)
次に、本発明の実施の形態6について説明する。
図19は、本発明の実施の形態6に係る撮像システムの構成例としての内視鏡システムを示す模式図である。
図19に示す内視鏡システム6は、画像処理装置100と、生体の管腔内に先端部を挿入して撮像を行うことにより管腔内の画像を生成する内視鏡600と、内視鏡600の先端から出射する照明光を発生する光源装置700とを備える。画像処理装置100は、内視鏡600が生成した画像に所定の画像処理を施すとともに(実施の形態1参照)、内視鏡システム6全体の動作を統括的に制御する。なお、画像処理装置100の代わりに、実施の形態2〜4に係る画像処理装置200、300、400を適用しても良い。また、
図19においては、画像処理装置100が備える表示部160(
図1参照)を本体の外部に図示している。
【0129】
内視鏡600は、可撓性を有する細長形状をなす挿入部61と、挿入部61の基端側に接続され、各種の操作信号の入力を受け付ける操作部62と、操作部62から挿入部61が延びる方向と異なる方向に延び、画像処理装置100及び光源装置700と接続する各種ケーブルを内蔵するユニバーサルコード63とを備える。
【0130】
挿入部61は、先端部64と、複数の湾曲駒によって構成された湾曲自在な湾曲部65と、湾曲部65の基端側に接続され、可撓性を有する長尺状の可撓管66とを有する。この挿入部61の先端部64に、外部から入射する光を集光する光学系や撮像素子が設けられている。
【0131】
操作部62と先端部64との間には、画像処理装置100との間で電気信号の送受信を行う複数の信号線が束ねられた集合ケーブルが接続されている。複数の信号線には、撮像素子が出力した映像信号(画像データ)を画像処理装置100に伝送する信号線及び画像処理装置100が出力する制御信号を撮像素子へ伝送する信号線等が含まれる。
【0132】
操作部62は、湾曲部65を上下方向及び左右方向に湾曲させる湾曲ノブ621と、生検針、生体鉗子、レーザメス、及び検査プローブ等の処置具を挿入する処置具挿入部622と、画像処理装置100や光源装置700の他、送気手段、送水手段、送ガス手段等の周辺機器に対して操作指示信号を入力する操作入力部である複数のスイッチ623と、を有する。
【0133】
ユニバーサルコード63は、ライトガイド及び集合ケーブルを少なくとも内蔵している。また、ユニバーサルコード63の操作部62に連なる側と異なる側の端部には、光源装置700に着脱自在なコネクタ部67と、コイル状をなすコイルケーブル670を介してコネクタ部67と電気的に接続され、画像処理装置100と着脱自在な電気コネクタ部68とが設けられている。
【0134】
画像処理装置100は、先端部64に設けられた撮像素子から出力された画像データをもとに、表示部160に表示する画像を生成する。
【0135】
光源装置700は、制御部120(
図1参照)の制御の下で、可視光領域を4つ以上の波長帯域に分離した波長帯域ごとの光を順次発生し、ライトガイドを経由して先端部64の先端から管腔内を照射する。
【0136】
なお、上記実施の形態6においては、
図1、
図6、
図10、又は
図14に示す撮像システムを生体用の内視鏡システムに適用する例を説明したが、工業用の内視鏡システムに適用しても良い。或いは、
図1、
図6、
図10、又は
図14に示す撮像システムを、生体内に導入されて該生体内を移動しつつ撮像を行うカプセル型内視鏡に適用しても良い。
【0137】
また、光源装置700の代わりに白色光を発生する光源装置を設けると共に、内視鏡600の先端部64に分光特性が互いに異なる複数の光学フィルタを設け、管腔内に白色光を照射し、管腔内からの反射光を光学フィルタを介して受光することにより、マルチバンド撮像を行っても良い。
【0138】
本発明は、上述した各実施の形態1〜6そのままに限定されるものではなく、各実施の形態1〜6に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、実施の形態1〜5に示される全構成要素からいくつかの構成要素を除外して形成してもよい。或いは、異なる実施の形態に示した構成要素を適宜組み合わせて形成してもよい。