【課題を解決するための手段】
【0008】
本発明は、
固体材料から生じる昇華ガスを後段のプロセスに供給するための昇華ガス供給システムであって、
固体材料を収納する容器と、
前記固体材料の昇華ガスを生じさせるように、前記容器を加温する容器加温部と、
前記容器内の圧力を測定する容器圧力計と、
前記容器圧力計で測定された圧力が、昇華ガスの飽和蒸気圧である場合に(または容器内の昇華ガス圧力が所定値以上である場合に)、前記容器から前記昇華ガスを、所定の負圧範囲の状態で(真空状態または所定負圧の状態で)導入するように構成される真空容器と、
前記真空容器に希釈用ガスを導入する希釈用ガスラインと、
前記真空容器内の圧力を測定する圧力計と、
(前記真空容器に前記昇華ガスを導入する前の初期圧力と、)前記真空容器に前記昇華ガスを導入している際の前記真空容器内の圧力に基づいて、前記真空容器内の前記希釈用ガス中の昇華ガスを所定濃度に制御するように、前記希釈用ガスの流量を制御する流量制御部(例えば、マスフローコントローラ)と、
前記希釈用ガス中の昇華ガスが前記所定濃度に達した場合に、前記昇華ガスを前記真空容器から後段のプロセスに導出する導出ラインと、
前記真空容器を真空状態にする真空ポンプと、を有する。
上記において、容器から真空容器に昇華ガスを1回送るごとに、真空容器に希釈用ガスを送り込んで昇華ガス濃度を調整し、所定濃度の昇華ガス(希釈用ガスを含む)を真空容器から後段のプロセスに送り込み、その後に真空容器を所定の負圧状態(例えば真空状態)にし、次の昇華ガスを容器から真空容器に送り込む構成でもよい。
また、上記おいて、容器から真空容器に昇華ガスを2回または2回以上送ってから、真空容器に希釈用ガスを送り込んで昇華ガス濃度を調整し、所定濃度の昇華ガス(希釈用ガスを含む)を真空容器から後段のプロセスに送り込み、その後に真空容器を所定の負圧状態(例えば真空状態)にし、次の昇華ガスを(2回または2回以上)容器から真空容器に送り込む構成でもよい。
【0009】
この構成によれば、固体材料を加温して生じた昇華ガスが、負圧状態の真空容器に送られる。真空容器内において、昇華ガスに希釈用ガスを加えることで所定濃度に希釈する。これにより、所定濃度で安定された昇華ガスを後段のプロセスに送ることができる。
【0010】
上記発明において、固体材料を収納する容器は、加温される前の状態において予め不活性ガス(例えば希釈用ガス)が封入されていてもよく、真空状態であってもよい。また、容器を加温することで固体材料から得られた昇華ガスを真空容器へ送った後において、そのまま加温を継続して固体材料を昇華させ、容器内圧力が所定値(例えば飽和蒸気圧)になったら真空容器へ昇華ガスを送る構成であり、この工程を繰り返す。
【0011】
上記発明において、
前記容器、前記容器加温部および容器圧力計がn(n=1以上)個、
前記真空容器がnの2倍または3倍以上の数、
前記圧力計がnの2倍または3倍以上の数であり、
前記流量制御部は、nの2倍または3倍以上の数の真空容器のそれぞれに導入される前記希釈用ガスの流量を制御する構成でもよい。
【0012】
この構成によれば、後段のプロセスに対応して必要数の装置で構成された供給システムを構築でき、安定した濃度の昇華ガスを連続供給できる。
【0013】
上記発明において、n=1の場合のシステム構成を示す。
昇華ガス供給システムは、
固体材料を収納する容器と、
前記固体材料の昇華ガスを生じさせるように、前記容器を加温する容器加温部と、
前記容器内の圧力を測定する容器圧力計と、
前記容器圧力計で測定された圧力が、昇華ガスの飽和蒸気圧である場合に(または容器内の昇華ガス圧力が所定値以上である場合に)、前記容器から前記昇華ガスを、所定の負圧範囲の状態で(真空状態または所定負圧の状態で)導入するように構成される第1真空容器と、
前記第1真空容器内の圧力を測定する第1圧力計と、
前記容器圧力計で測定された圧力が、昇華ガスの飽和蒸気圧である場合に(または容器内の昇華ガス圧力が所定値以上である場合に)、前記容器から前記昇華ガスを、所定の負圧範囲の状態で(真空状態または所定負圧の状態で)導入するように構成される第2真空容器と、
前記第2真空容器内の圧力を測定する第2圧力計と、
前容器から前記第1真空容器または前記第2真空容器に、前記昇華ガスの飽和蒸気を切り替え可能に導出する昇華ガス導出ラインと、
前記第1真空容器または前記第2真空容器に希釈用ガスを切り替え可能に導入する希釈用ガスラインと、
前記第1真空容器に前記昇華ガスを導入している際の前記第1真空容器内の圧力に基づいて、前記第1真空容器内の前記希釈用ガス中の昇華ガスを所定濃度に制御するように、前記希釈用ガスの流量を制御し、および前記第2真空容器に前記昇華ガスを導入している際の前記第2真空容器内の圧力に基づいて、前記第2真空容器内の前記希釈用ガス中の昇華ガスを所定濃度に制御するように、前記希釈用ガスの流量を制御する流量制御部と、
前記希釈用ガス中の昇華ガスが前記所定濃度に達した場合に、前記昇華ガスを前記第1真空容器または前記第2真空容器から後段のプロセスに切り替え可能に導出する導出ラインと、
真空ポンプが設けられ、かつ前記第1真空容器または前記第2真空容器を切り替え可能に真空状態にする真空ポンプラインと、を有する。
【0014】
この構成によれば、後段のプロセスに対応して、容器1つに対し真空容器を2つとして、昇華ガスを容器から第1真空容器と第2真空容器へ交互に送り込むことができる。また単一の流量制御部で、希釈用ガスを第1、第2真空容器へ送り込み、第1、第2真空容器内の昇華ガスの濃度を調整できる。また、単一の真空ポンプで第1、第2真空容器を真空状態にできる。
【0015】
上記発明において、前記希釈用ガスラインに配置され、前記希釈用ガスの温度を制御するガス加温部(例えば、熱交換器)を有していてもよい。
【0016】
この構成によれば、希釈用ガスの温度をコントロールし、真空容器の温度および真空容器内の昇華ガス温度の低下を防止または抑制し、昇華した固体材料の析出を効果的に防止でき、昇華ガスの濃度を安定化させることができる。ガス加温部は、希釈用ガスの温度を昇華ガスの温度と同じになるように温度コントロールすることが好ましい。
【0017】
上記発明において、システムの構成装置(例えば、真空容器、昇華ガスが移動する配管など)を温度制御してもよい。これによって、昇華ガスの温度低下による固体材料の析出をより効果的に防止でき、昇華ガスの濃度を安定化させることができる。
【0018】
上記発明において、前記圧力計で測定された真空容器内の圧力から、真空容器内の希釈用ガス中の昇華ガス濃度を算出する昇華ガス濃度算出部と、
前記昇華ガス算出部で算出された昇華ガス濃度を監視する監視部とを有していてもよい。
【0019】
別実施形態として、前記導出ラインに配置される濃度計測部(例えば熱伝導検出器(TCD))で、希釈用ガス中の昇華ガス濃度を検出し、昇華ガス濃度を監視する監視部とを有していてもよい。
【0020】
上記の発明において、
容器加温部の温度を制御する温度調節器(TIC)と、
前記導出ラインに配置され、かつ昇華ガスの流量を制御する流量計と、を有していてもよい。
【0021】
他の発明は、
固体材料から生じる昇華ガスを後段のプロセスに供給するための昇華ガス供給方法であって、
容器に収容されている固体材料の昇華ガスを生じさせるように、前記容器を加温する容器加温工程と、
前記容器内の圧力を測定する容器圧力測定工程と、
前記容器圧測定工程で測定された圧力が、昇華ガスの飽和蒸気圧である場合に(または容器内の昇華ガス圧力が所定値以上である場合に)、前記容器から前記昇華ガスを、所定の負圧範囲の状態にある(真空状態または所定負圧の状態にある)真空容器に導入するバッファ工程と、
前記真空容器に前記昇華ガスを導入している際の前記真空容器内の圧力に基づいて、前記真空容器内の前記希釈用ガス中の昇華ガスを所定濃度に制御するように、前記希釈用ガスの流量を制御する流量制御工程と、
前記希釈用ガス中の昇華ガスが前記所定濃度に達した場合に、前記昇華ガスを前記真空容器から後段のプロセスに導出する導出工程と、
前記真空容器を真空状態にする真空工程と、を含む。
上記において、容器から真空容器に昇華ガスを1回送るごとに(バッファ工程が1回ごとに)、真空容器に希釈用ガスを送り込んで昇華ガス濃度を調整し、所定濃度の昇華ガス(希釈用ガスを含む)を真空容器から後段のプロセスに送り込み、その後に真空容器を所定の負圧状態(例えば真空状態)にし、次の昇華ガスを容器から真空容器に送り込む構成でもよい。
また、上記おいて、容器から真空容器に昇華ガスを2回または2回以上送ってから(バッファ工程を2回または2回以上した後で)、真空容器に希釈用ガスを送り込んで昇華ガス濃度を調整し、所定濃度の昇華ガス(希釈用ガスを含む)を真空容器から後段のプロセスに送り込み、その後に真空容器を所定の負圧状態(例えば真空状態)にし、次の昇華ガスを(2回または2回以上)容器から真空容器に送り込む構成でもよい。
【0022】
上記の発明において、
前記容器が1つ、前記真空容器が2つである場合に、一方の真空容器で前記導出工程が完了する前に、他方の真空容器で前記流量制御工程が完了するように実行してもよい。
【0023】
上記の発明において、
前記希釈用ガスの温度を制御するガス加温工程を含んでいてもよい。
【0024】
上記の発明において、
前記真空容器内の圧力から、真空容器内の希釈用ガス中の昇華ガス濃度を算出する濃度算出工程と、
濃度算出工程で算出された昇華ガス濃度を監視する監視工程を含んでいてもよい。
別実施形態として、前記真空容器から後段のプロセスに導出する導出ラインに配置される濃度計測部(例えば熱伝導検出器(TCD))で、希釈用ガス中の昇華ガス濃度を検出し、昇華ガス濃度を監視する監視工程を含んでいてもよい。