特許第6409494号(P6409494)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ JSR株式会社の特許一覧

特許6409494液晶配向剤、液晶配向膜及び液晶表示素子
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6409494
(24)【登録日】2018年10月5日
(45)【発行日】2018年10月24日
(54)【発明の名称】液晶配向剤、液晶配向膜及び液晶表示素子
(51)【国際特許分類】
   G02F 1/1337 20060101AFI20181015BHJP
   C08G 73/10 20060101ALI20181015BHJP
【FI】
   G02F1/1337 525
   C08G73/10
【請求項の数】5
【全頁数】25
(21)【出願番号】特願2014-214440(P2014-214440)
(22)【出願日】2014年10月21日
(65)【公開番号】特開2016-80969(P2016-80969A)
(43)【公開日】2016年5月16日
【審査請求日】2017年7月21日
(73)【特許権者】
【識別番号】000004178
【氏名又は名称】JSR株式会社
(74)【代理人】
【識別番号】100121821
【弁理士】
【氏名又は名称】山田 強
(74)【代理人】
【識別番号】100122390
【弁理士】
【氏名又は名称】廣田 美穂
(74)【代理人】
【識別番号】100139480
【弁理士】
【氏名又は名称】日野 京子
(72)【発明者】
【氏名】植阪 裕介
【審査官】 磯崎 忠昭
(56)【参考文献】
【文献】 特開平07−109438(JP,A)
【文献】 国際公開第2010/074261(WO,A1)
【文献】 特開2000−063699(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1337
C08G 73/10
(57)【特許請求の範囲】
【請求項1】
ポリアミック酸及びポリイミドよりなる群から選ばれる少なくとも一種の重合体(A)と、溶剤と、を含有し、
前記溶剤は、2−ブトキシ−1−プロパノールを、全溶剤量に対して0.1〜50重量%含む、液晶配向剤。
【請求項2】
前記重合体(A)として、窒素含有複素環、2級アミノ基及び3級アミノ基よりなる群から選ばれる少なくとも一種の窒素含有構造を有する重合体を含む、請求項1に記載の液晶配向剤。
【請求項3】
前記重合体(A)として、カルボキシル基を有するジアミン化合物を含むジアミン成分を用いて得られる重合体を含む、請求項1又は2に記載の液晶配向剤。
【請求項4】
請求項1〜3のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。
【請求項5】
請求項4に記載の液晶配向膜を具備する液晶表示素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。
【背景技術】
【0002】
従来、液晶表示素子としては、電極構造や、使用する液晶分子の物性等が異なる種々の駆動方式のものが開発されており、例えばTN(Twisted Nematic)型やSTN(Super Twisted Nematic)型、VA(Vertical Alignment)型、IPS(In-Plane Switching)型、FFS(fringe field switching)型、光学補償ベント型(OCB型)等の各種液晶表示素子が知られている。これら液晶表示素子は、液晶分子を配向させるための液晶配向膜を有する。液晶配向膜の材料としては、耐熱性、機械的強度、液晶との親和性等の各種特性が良好である点から、ポリアミック酸やポリイミド、ポリオルガノシロキサン等が使用されている。
【0003】
液晶配向剤は通常、重合体成分が溶剤に溶解された液状の組成物として調製され、この液状の組成物を基板に塗布し加熱することにより液晶配向膜が形成される。ここで、液晶配向剤の溶剤としては、重合体を均一に溶解させるべく、例えばN−メチル−2−ピロリドンやγ−ブチロラクトンなどの非プロトン性極性溶媒が一般に使用される。また、溶剤としては、液晶配向剤を基板に塗布する際の液晶配向剤の塗布性(印刷性)を良好にすることを目的として、非プロトン性極性溶媒と共に、例えばブチルセロソルブなどといった、表面張力が比較的低い有機溶媒が併用される(例えば特許文献1や特許文献2参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−97188号公報
【特許文献2】特開2010−156934号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
近年、液晶表示素子の高性能化に対する要求は更に高まっており、液晶配向剤の塗布性改善のために一般に使用されているブチルセロソルブよりも更に良好な塗布性を示し、しかも信頼性が良好な液晶表示素子を得ることができる液晶配向剤の開発が望まれている。
【0006】
本発明は上記課題に鑑みなされたものであり、塗布性が良好であるとともに、信頼性の高い液晶表示素子を得ることができる液晶配向剤を提供することを一つの目的とする。
【課題を解決するための手段】
【0007】
本発明者は、上記のような従来技術の課題を達成するべく鋭意検討した結果、液晶配向剤の溶剤成分として特定の化合物を含有させることにより上記課題を解決可能であることを見出し、本発明を完成するに至った。具体的には、本発明により以下の液晶配向剤、液晶配向膜及び液晶表示素子が提供される。
【0008】
本発明は、一つの側面において、ポリアミック酸、ポリアミック酸エステル、ポリイミド及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種の重合体(A)と、溶剤とを含有し、前記溶剤が、2−ブトキシ−1−プロパノールを、全溶剤量に対して0.1〜50重量%含む液晶配向剤を提供する。
【0009】
本発明は、別の一つの側面において、上記液晶配向剤を用いて形成された液晶配向膜を提供する。また、別の一つの側面において、上記液晶配向膜を具備する液晶表示素子を提供する。
【発明の効果】
【0010】
上記液晶配向剤は、基板に対する塗布性が良好である。しかも上記液晶配向剤によれば、信頼性の高い液晶表示素子を得ることができる。
【発明を実施するための形態】
【0011】
以下に、本発明に係る液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
【0012】
<重合体(A)>
本発明に係る液晶配向剤は、ポリアミック酸、ポリイミド、ポリアミック酸エステル及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種の重合体(A)を含有する。
[ポリアミック酸]
本発明に係るポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得ることができる。
【0013】
(テトラカルボン酸二無水物)
ポリアミック酸の合成に使用するテトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。これらの具体例としては、脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4−ブタンテトラカルボン酸二無水物などを;
脂環式テトラカルボン酸二無水物として、例えば1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、5−(2,5−ジオキソテトラヒドロフラン−3−イル)−3a,4,5,9b−テトラヒドロナフト[1,2−c]フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロフラン−3−イル)−8−メチル−3a,4,5,9b−テトラヒドロナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシメチルノルボルナン−2:3,5:6−二無水物、2,4,6,8−テトラカルボキシビシクロ[3.3.0]オクタン−2:4,6:8−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン、シクロヘキサンテトラカルボン酸二無水物などを;
芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、下記式(B−1)
【化1】
(式(B−1)中、X及びXは、それぞれ独立に単結合、酸素原子、硫黄原子、−CO−、*−COO−、*−OCO−、*−CO−NR−、*−NR−CO−(ただし、Rは水素原子又は炭素数1〜6の1価の炭化水素基である。「*」は、Rとの結合手を示す。)である。Rは、炭素数1〜10のアルカンジイル基、当該アルカンジイル基の炭素−炭素結合間に−O−を含む2価の基、シクロヘキシレン基、フェニレン基又はビフェニレン基である。)
などを;それぞれ挙げることができるほか、特開2010−97188号公報に記載のテトラカルボン酸二無水物を用いることができる。
【0014】
上記式(B−1)におけるRの炭素数1〜10のアルカンジイル基の具体例としては、例えばメチレン基、エチレン基、プロピレン基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基、ヘプタンジイル基、オクタンジイル基、ノナンジイル基、デカンジイル基等が挙げられる。アルカンジイル基の炭素−炭素結合間に−O−を含む2価の基において、酸素原子の数は1個でもよく、2個以上であってもよい。
上記式(B−1)で表される化合物の具体例としては、例えば下記式(B−1−1)〜(B−1−6)のそれぞれで表される化合物などを挙げることができる。
【化2】
なお、上記テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
【0015】
合成に使用するテトラカルボン酸二無水物としては、液晶との親和性等の観点から、1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、5−(2,5−ジオキソテトラヒドロフラン−3−イル)−3a,4,5,9b−テトラヒドロナフト[1,2−c]フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロフラン−3−イル)−8−メチル−3a,4,5,9b−テトラヒドロナフト[1,2−c]フラン−1,3−ジオン、ビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル無水物)、ピロメリット酸二無水物、及び上記式(B−1)で表される化合物よりなる群から選ばれる少なくとも一種の化合物を含むことが好ましい。これらの好ましいテトラカルボン酸二無水物の使用量(2種以上使用する場合にはその合計量)は、ポリアミック酸の合成に使用するテトラカルボン酸二無水物の全量に対して、5モル%以上とすることが好ましく、10モル%以上とすることがより好ましく、20モル%以上とすることがさらに好ましい。
【0016】
(ジアミン)
ポリアミック酸の合成に使用するジアミンとしては、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサンなどを挙げることができる。これらジアミンの具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3−ビス(アミノメチル)シクロヘキサンなどを;
脂環式ジアミンとして、例えば1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(シクロヘキシルアミン)などを;
【0017】
芳香族ジアミンとして、例えばドデカノキシジアミノベンゼン、テトラデカノキシジアミノベンゼン、ペンタデカノキシジアミノベンゼン、ヘキサデカノキシジアミノベンゼン、オクタデカノキシジアミノベンゼン、コレスタニルオキシジアミノベンゼン、コレステリルオキシジアミノベンゼン、ジアミノ安息香酸コレスタニル、ジアミノ安息香酸コレステリル、ジアミノ安息香酸ラノスタニル、3,6−ビス(4−アミノベンゾイルオキシ)コレスタン、3,6−ビス(4−アミノフェノキシ)コレスタン、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ブチルシクロヘキサン、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ヘプチルシクロヘキサン、1,1−ビス(4−((アミノフェノキシ)メチル)フェニル)−4−ヘプチルシクロヘキサン、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−(4−ヘプチルシクロヘキシル)シクロヘキサン、N−(2,4−ジアミノフェニル)−4−(4−ヘプチルシクロヘキシル)ベンズアミド、下記式(E−1)
【化3】
(式(E−1)中、XI及びXIIは、それぞれ独立に、単結合、−O−、*−COO−又は*−OCO−(ただし、「*」はXとの結合手を示す。)であり、Rは炭素数1〜3のアルカンジイル基であり、RIIは単結合又は炭素数1〜3のアルカンジイル基であり、aは0又は1であり、bは0〜2の整数であり、cは1〜20の整数であり、dは0又は1である。但し、a及びbが同時に0になることはない。)
で表される化合物などの配向性基含有ジアミン:
【0018】
p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、4−アミノフェニル−4’−アミノベンゾエート、4,4’−ジアミノアゾベンゼン、1,5−ビス(4−アミノフェノキシ)ペンタン、1,7−ビス(4−アミノフェノキシ)ヘプタン、ビス[2−(4−アミノフェニル)エチル]ヘキサン二酸、N,N−ビス(4−アミノフェニル)メチルアミン、1,5−ジアミノナフタレン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、2,7−ジアミノフルオレン、4,4’−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、9,9−ビス(4−アミノフェニル)フルオレン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−(p−フェニレンジイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンジイソプロピリデン)ビスアニリン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニルなどを;
ジアミノオルガノシロキサンとして、例えば、1,3−ビス(3−アミノプロピル)−テトラメチルジシロキサンなどを;それぞれ挙げることができるほか、特開2010−97188号公報に記載のジアミンを用いることができる。
【0019】
上記式(E−1)における「−X−(R−XII−」で表される2価の基としては、炭素数1〜3のアルカンジイル基、*−O−、*−COO−又は*−O−C−O−(ただし、「*」を付した結合手がジアミノフェニル基と結合する。)であることが好ましい。基「−C2c+1」としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基などを挙げることができ、これらは直鎖状であることが好ましい。ジアミノフェニル基における2つのアミノ基は、他の基に対して2,4−位又は3,5−位にあることが好ましい。
【0020】
上記式(E−1)で表される化合物の具体例としては、例えば下記式(E−1−1)〜(E−1−4)のそれぞれで表される化合物などを挙げることができる。
【化4】
【0021】
TN型、STN型又は垂直配向型の液晶表示素子用の液晶配向剤に適用する場合、ポリアミック酸の側鎖に、塗膜に液晶配向能を付与可能な基(液晶配向性基)を導入してもよい。液晶配向性基としては、例えば炭素数4〜20のアルキル基、炭素数4〜20のフルオロアルキル基、炭素数4〜20のアルコキシ基、炭素数17〜51のステロイド骨格を有する基、多環構造を有する基などが挙げられる。液晶配向性基を有するポリアミック酸は、例えば配向性基含有ジアミンをモノマー組成に含む重合によって得ることができる。配向性基含有ジアミンを使用する場合、その配合量は、液晶配向性の観点から、合成に使用する全ジアミンに対して、3モル%以上とすることが好ましく、5〜70モル%とすることがより好ましい。
【0022】
ポリアミック酸の合成に使用するジアミンとしては、上記のほか、窒素含有複素環、2級アミノ基及び3級アミノ基よりなる群から選ばれる少なくとも一種の構造(以下「窒素含有構造」とも称する。)を有するジアミン;カルボキシル基を有するジアミン、等が挙げられる。窒素含有構造を有するジアミンを原料の少なくとも一部に用いた重合体によれば、液晶表示素子の信頼性の改善効果を高くできる点で好適である。また、カルボキシル基含有ジアミンを原料の少なくとも一部に用いた重合体によれば、液晶配向剤の塗布性(印刷性)の改善効果を高くできる点で好適である。
【0023】
窒素含有構造を有するジアミンにおいて、該ジアミンが有していてもよい窒素含有複素環としては、例えばピロール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、インドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、ナフチリジン、キノキサリン、フタラジン、トリアジン、カルバゾール、アクリジン、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミン等が挙げられる。中でも、ピリジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、キノリン、カルバゾール及びアクリジンよりなる群から選ばれる少なくとも一種を有することが好ましい。
窒素含有構造を有するジアミンが有していてもよい2級アミノ基及び3級アミノ基は、例えば下記式(N−1)で表される。
【化5】
(式(N−1)中、Rは水素原子又は炭素数1〜10の1価の炭化水素基である。「*」は炭化水素基に結合する結合手である。)
【0024】
上記式(N−1)において、Rの1価の炭化水素基としては、例えばメチル基、エチル基、プロピル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、メチルフェニル基等のアリール基等が挙げられる。Rは、好ましくは水素原子又はメチル基である。
【0025】
窒素含有構造を有するジアミンの具体例としては、例えば2,6−ジアミノピリジン、3,4−ジアミノピリジン、2,4−ジアミノピリミジン、3,6−ジアミノカルバゾール、N−メチル−3,6−ジアミノカルバゾール、1,4−ビス−(4−アミノフェニル)−ピペラジン、3,6−ジアミノアクリジン、N−エチル−3,6−ジアミノカルバゾール、N−フェニル−3,6−ジアミノカルバゾール、N,N’−ビス(4−アミノフェニル)−ベンジジン、N,N’−ビス(4−アミノフェニル)−N,N’−ジメチルベンジジン、下記式(D−2−1)〜式(D−2−6)のそれぞれで表される化合物等が挙げられる。
【化6】
【0026】
ポリアミック酸の合成に際し、窒素含有構造を有するジアミンの使用割合は、液晶表示素子の信頼性の改善効果を十分に得る観点から、合成に使用するジアミンの全体量に対して0.1モル%以上とすることが好ましく、1モル%以上とすることがより好ましく、2モル%以上とすることがさらに好ましい。また、当該使用割合の上限は、60モル%以下とすることが好ましく、50モル%以下とすることがより好ましく、40モル%以下とすることがさらに好ましい。なお、窒素含有構造を有するジアミンは1種を単独で又は2種以上を組み合わせて使用することができる。
【0027】
カルボキシル基含有ジアミンとしては、例えば下記式(C−1)で表される化合物を好ましく用いることができる。
【化7】
(式(C−1)中、Xは単結合、酸素原子又は炭素数1〜3のアルカンジイル基である。m1及びm2は、それぞれ独立に0又は1である。)
【0028】
上記式(C−1)で表される化合物の具体例としては、例えば3,5−ジアミノ安息香酸、2,4−ジアミノ安息香酸、2,5−ジアミノ安息香酸、4,4’−ジアミノビフェニル−3−カルボン酸、4,4’−ジアミノジフェニルメタン−3−カルボン酸、4,4’−ジアミノジフェニルエタン−3−カルボン酸などのモノカルボン酸;
4,4’−ジアミノビフェニル−3,3’−ジカルボン酸、4,4’−ジアミノビフェニル−2,2’−ジカルボン酸、3,3’−ジアミノビフェニル−4,4’−ジカルボン酸、3,3’−ジアミノビフェニル−2,4’−ジカルボン酸、4,4’−ジアミノジフェニルメタン−3,3’−ジカルボン酸、4,4’−ジアミノジフェニルエタン−3,3’−ジカルボン酸、4,4’−ジアミノジフェニルエーテル−3,3’−ジカルボン酸などのジカルボン酸;などを挙げることができる。
【0029】
ポリアミック酸の合成に際してカルボキシル基含有ジアミンの使用割合は、当該ジアミンの使用による塗布性の改善効果を十分に得る観点から、合成に使用するジアミンの全体量に対して1モル%以上とすることが好ましく、5モル%以上とすることがより好ましく、10モル%以上とすることが更に好ましい。また、当該使用割合の上限値は特に制限しないが、電圧保持率の観点から、合成に使用するジアミンの全体量に対して、80モル%以下とすることが好ましく、70モル%以下とすることがより好ましい。なお、カルボキシル基含有ジアミンは、上記のうちの1種を単独で又は2種以上を適宜選択して使用することができる。
【0030】
液晶配向剤により形成した塗膜に対して光配向法により液晶配向能を付与する場合、重合体(A)の少なくとも一部として、光配向性構造を有する重合体を使用してもよい。光配向性構造の具体例としては、光異性化や光二量化、光分解等によって光配向性を示す基を採用することができる。具体的には、例えばアゾ化合物又はその誘導体を基本骨格として含有するアゾ含有基、桂皮酸又はその誘導体を基本骨格として含有する桂皮酸含有基、カルコン又はその誘導体を基本骨格として含有するカルコン含有基、ベンゾフェノン又はその誘導体を基本骨格として含有するベンゾフェノン含有基、クマリン又はその誘導体を基本骨格として含有するクマリン含有基、シクロブタン又はその誘導体を基本骨格として含有するシクロブタン含有構造、ビシクロ[2.2.2]オクテン又はその誘導体を基本骨格として含有するビシクロ[2.2.2]オクテン含有構造、下記式(4)
【化8】
(式(4)中、Xは、硫黄原子、酸素原子又は−NH−である。「*」はそれぞれ結合手を示す。但し、2つの「*」のうち少なくとも一つは芳香環に結合している。)
で表される部分構造を基本骨格として含有するエステル基含有構造、等が挙げられる。
【0031】
光配向性構造を有するポリアミック酸は、例えば光配向性構造を有するテトラカルボン酸二無水物、及び光配向性構造を有するジアミンの少なくともいずれかを原料に含む重合により得ることができる。この場合、光配向性構造を有するモノマーの使用割合は、光反応性の観点から、重合体の合成に使用するモノマーの全体量に対して20モル%以上とすることが好ましく、30〜80モル%とすることがより好ましい。
【0032】
(ポリアミック酸の合成)
ポリアミック酸は、上記のようなテトラカルボン酸二無水物とジアミンとを、必要に応じて分子量調整剤とともに反応させることにより得ることができる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2〜2当量となる割合が好ましく、0.3〜1.2当量となる割合がより好ましい。
【0033】
分子量調整剤としては、例えば無水マレイン酸、無水フタル酸、無水イタコン酸などの酸一無水物、アニリン、シクロヘキシルアミン、n−ブチルアミンなどのモノアミン化合物、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物等を挙げることができる。分子量調整剤の使用割合は、使用するテトラカルボン酸二無水物及びジアミンの合計100重量部に対して、20重量部以下とすることが好ましく、10重量部以下とすることがより好ましい。
【0034】
ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は、−20℃〜150℃が好ましく、0〜100℃がより好ましい。また、反応時間は、0.1〜24時間が好ましく、0.5〜12時間がより好ましい。
反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。これらの有機溶媒のうち、非プロトン性極性溶媒及びフェノール系溶媒よりなる群(第一群の有機溶媒)から選択される1種以上、又は、第一群の有機溶媒から選択される1種以上と、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素及び炭化水素よりなる群(第二群の有機溶媒)から選択される1種以上との混合物を使用することが好ましい。後者の場合、第二群の有機溶媒の使用割合は、第一群の有機溶媒及び第二群の有機溶媒の合計量に対して、好ましくは50重量%以下であり、より好ましくは40重量%以下であり、更に好ましくは30重量%以下である。
【0035】
特に好ましい有機溶媒は、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m−クレゾール、キシレノール及びハロゲン化フェノールよりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と他の有機溶媒との混合物を、上記割合の範囲で使用することが好ましい。このとき使用する他の有機溶媒としては、例えばブチルセロソルブ、2−ブトキシ−1−プロパノール、ジエチレングリコールジエチルエーテルなどが挙げられる。有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミンの合計量(b)が、反応溶液の全量(a+b)に対して、0.1〜50重量%になる量とすることが好ましい。
【0036】
以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリアミック酸を精製したうえで液晶配向剤の調製に供してもよい。ポリアミック酸の単離及び精製は公知の方法に従って行うことができる。
【0037】
[ポリアミック酸エステル]
本発明に係るポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などによって得ることができる。
なお、本明細書において「テトラカルボン酸ジエステル」とは、テトラカルボン酸が有する4個のカルボキシル基のうち2個がエステル化され、残りの2個がカルボキシル基である化合物を意味する。「テトラカルボン酸ジエステルジハロゲン化物」とは、テトラカルボン酸が有する4個のカルボキシル基のうち2個がエステル化され、残りの2個がハロゲン化された化合物を意味する。
【0038】
方法[I]で使用するエステル化剤としては、例えば水酸基含有化合物、アセタール系化合物、ハロゲン化物、エポキシ基含有化合物等が挙げられる。これらの具体例としては、水酸基含有化合物として、例えばメタノール、エタノール、プロパノール等のアルコール類、フェノール、クレゾール等のフェノール類などを;アセタール系化合物として、例えばN,N−ジメチルホルムアミドジエチルアセタール、N,N−ジエチルホルムアミドジエチルアセタールなどを;ハロゲン化物として、例えば臭化メチル、臭化エチル、臭化ステアリル、塩化メチル、塩化ステアリル、1,1,1−トリフルオロ−2−ヨードエタンなどを;エポキシ基含有化合物として、例えばプロピレンオキシドなどを、それぞれ挙げることができる。
【0039】
方法[II]で使用するテトラカルボン酸ジエステルは、例えば上記ポリアミック酸の合成で例示したテトラカルボン酸二無水物を、メタノールやエタノール等のアルコール類を用いて開環することにより得ることができる。また、方法[II]で使用するジアミンとしては、ポリアミック酸の合成で例示したジアミンを挙げることができる。方法[II]の反応は、有機溶媒中、適当な脱水触媒の存在下で行うことが好ましい。有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水触媒としては、例えば4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムハライド、カルボニルイミダゾール、リン系縮合剤などが挙げられる。このときの反応温度は、−20〜150℃が好ましく、0〜100℃がより好ましい。反応時間は、0.1〜24時間が好ましく、0.5〜12時間がより好ましい。
【0040】
方法[III]で使用するテトラカルボン酸ジエステルジハロゲン化物は、例えば上記の如くして得たテトラカルボン酸ジエステルを、塩化チオニル等の適当な塩素化剤と反応させることにより得ることができる。また、方法[III]で使用するジアミンとしては、ポリアミック酸の合成で例示したジアミンを挙げることができる。方法[III]の反応は、有機溶媒中、適当な塩基の存在下で行うことが好ましい。有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。塩基としては、例えばピリジン、トリエチルアミン等の3級アミン;水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム、ナトリウム、カリウム等のアルカリ金属類などを好ましく使用することができる。このときの反応温度は、−20〜150℃が好ましく、0〜100℃がより好ましい。反応時間は、0.1〜24時間が好ましく、0.5〜12時間がより好ましい。
【0041】
液晶配向剤に含有させるポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。なお、ポリアミック酸エステルを溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリアミック酸エステルを精製したうえで液晶配向剤の調製に供してもよい。ポリアミック酸エステルの単離及び精製は公知の方法に従って行うことができる。
【0042】
[ポリイミド]
ポリイミドは、例えば上記の如くして合成されたポリアミック酸を脱水閉環してイミド化することにより得ることができる。
【0043】
ポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。反応に使用するポリイミドは、そのイミド化率が20%以上であることが好ましく、30〜99%であることがより好ましく、40〜99%であることが更に好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
【0044】
ポリアミック酸の脱水閉環は、好ましくはポリアミック酸を加熱する方法により、又はポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。このうち、後者の方法によることが好ましい。
【0045】
ポリアミック酸の溶液中に脱水剤及び脱水閉環触媒を添加する方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01〜20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01〜10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0〜180℃であり、より好ましくは10〜150℃である。反応時間は、好ましくは1.0〜120時間であり、より好ましくは2.0〜30時間である。
【0046】
このようにしてポリイミドを含有する反応溶液が得られる。この反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリイミドを精製したうえで液晶配向剤の調製に供してもよい。これらの精製操作は公知の方法に従って行うことができる。その他、ポリイミドは、ポリアミック酸エステルのイミド化により得ることもできる。
【0047】
以上のようにして得られる重合体(A)としてのポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10重量%の溶液としたときに、10〜800mPa・sの溶液粘度を持つものであることが好ましく、15〜500mPa・sの溶液粘度を持つものであることがより好ましい。なお、ポリアミック酸、ポリアミック酸エステル及びポリイミドの溶液粘度(mPa・s)は、これら重合体の良溶媒(例えばγ−ブチロラクトン、N−メチル−2−ピロリドンなど)を用いて調製した濃度10重量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
【0048】
ポリアミック酸、ポリアミック酸エステル及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000〜500,000であり、より好ましくは2,000〜300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。
【0049】
[ポリオルガノシロキサン]
本発明に係るポリオルガノシロキサンは、例えば加水分解性のシラン化合物を加水分解・縮合することにより得ることができる。
【0050】
ポリオルガノシロキサンの合成に使用するシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のアルコキシシラン化合物;3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(3−シクロヘキシルアミノ)プロピルトリメトキシシラン等の窒素・硫黄含有アルコキシシラン化合物;
3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン化合物;
3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン、3−(メタ)アクリロキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p−スチリルトリメトキシシラン等の不飽和結合含有アルコキシシラン化合物;トリメトキシシリルプロピルコハク酸無水物などを挙げることができる。加水分解性シラン化合物は、これらのうちの1種を単独で又は2種以上を組み合わせて使用することができる。なお、「(メタ)アクリロキシ」は、「アクリロキシ」及び「メタクリロキシ」を含む意味である。
【0051】
上記の加水分解・縮合反応は、上記の如きシラン化合物の1種又は2種以上と水とを、好ましくは適当な触媒及び有機溶媒の存在下で反応させることにより行うことができる。加水分解・縮合反応に際し、水の使用割合は、シラン化合物(合計量)1モルに対して、好ましくは0.5〜100モルであり、より好ましくは1〜30モルである。
【0052】
加水分解・縮合反応の際に使用する触媒としては、例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物などを挙げることができる。触媒の使用量は、触媒の種類、温度などの反応条件などにより異なり、適宜に設定されるべきであるが、例えばシラン化合物の合計量に対して、好ましくは0.01〜3倍モルであり、より好ましくは0.05〜1倍モルである。
上記の加水分解・縮合反応の際に使用する有機溶媒としては、例えば炭化水素、ケトン、エステル、エーテル、アルコールなどを挙げることができる。これらのうち、非水溶性又は難水溶性の有機溶媒を用いることが好ましい。有機溶媒の使用割合は、反応に使用するシラン化合物の合計100重量部に対して、好ましくは10〜10,000重量部であり、より好ましくは50〜1,000重量部である。
【0053】
上記の加水分解・縮合反応は、例えば油浴などにより加熱して実施することが好ましい。加水分解・縮合反応時には、加熱温度を130℃以下とすることが好ましく、40〜100℃とすることがより好ましい。加熱時間は、0.5〜12時間とすることが好ましく、1〜8時間とすることがより好ましい。加熱中は、混合液を撹拌してもよいし、還流下に置いてもよい。また、反応終了後において、反応液から分取した有機溶媒層を水で洗浄することが好ましい。この洗浄に際しては、少量の塩を含む水(例えば、0.2重量%程度の硝酸アンモニウム水溶液など)を用いて洗浄することにより、洗浄操作が容易になる点で好ましい。洗浄は、洗浄後の水層が中性になるまで行い、その後、有機溶媒層を、必要に応じて無水硫酸カルシウム、モレキュラーシーブなどの乾燥剤で乾燥した後、溶媒を除去することにより、目的とするポリオルガノシロキサンを得ることができる。なお、ポリオルガノシロキサンの合成方法は上記の加水分解・縮合反応に限らず、例えば加水分解性シラン化合物をシュウ酸及びアルコールの存在下で反応させる方法などにより行ってもよい。
【0054】
上記の縮合反応に際し、原料の少なくとも一部にエポキシ基含有シラン化合物を用いることにより、エポキシ基を側鎖に有するポリオルガノシロキサン(以下、「エポキシ基含有ポリシロキサン」ともいう。)を得ることができる。また、得られたエポキシ基含有ポリシロキサンにつき、更に、液晶配向性基を有するカルボン酸と反応させてもよい。この反応により、液晶配向性基を側鎖に有するポリオルガノシロキサンを得ることができる。エポキシ基含有ポリシロキサンとカルボン酸との反応は公知の方法に従って行うことができる。あるいは、液晶配向性基を有する加水分解性のシラン化合物をモノマーに含む反応によって、液晶配向性基を側鎖に有するポリオルガノシロキサンを合成してもよい。
【0055】
本発明に係るポリオルガノシロキサンにつき、GPCで測定したポリスチレン換算の重量平均分子量(Mw)は、100〜50,000の範囲にあることが好ましく、200〜10,000の範囲にあることがより好ましい。ポリシロキサンの重量平均分子量が上記範囲にあると、液晶配向膜を製造する際に取り扱いやすく、また得られた液晶配向膜は十分な材料強度及び特性を有するものとなる。
【0056】
本発明に係る液晶配向剤は、重合体(A)として、ポリアミック酸、ポリイミド、ポリアミック酸エステル及びポリオルガノシロキサンよりなる群から選ばれる重合体を、1種単独で又は2種以上を組み合わせて含有する。液晶配向剤中における重合体(A)の含有態様は、使用する用途や環境によって適宜選択することができるが、例えば下記[1]〜[3]の態様などが挙げられる。
[1]重合体(A)が、ポリアミック酸、ポリイミド及びポリアミック酸エステルよりなる群から選ばれる少なくとも一種である態様。
[2]重合体(A)として、ポリアミック酸、ポリイミド及びポリアミック酸エステルよりなる群から選ばれる少なくとも一種と、ポリオルガノシロキサンとを含有する態様。
[3]重合体(A)がポリオルガノシロキサンである態様。
これらのうち、本発明の効果をより好適に得る観点において、[1]又は[2]の態様が好ましく、[1]の態様がより好ましい。上記[2]の場合、ポリアミック酸、ポリイミド及びポリアミック酸エステルの合計の含有量を、液晶配向剤に含有される重合体(A)の全体量に対して5重量%以上とすることが好ましく、10重量%以上とすることがより好ましい。
【0057】
<その他の成分>
本発明に係る液晶配向剤は、上記重合体(A)以外に、必要に応じてその他の成分を含有していてもよい。当該液晶配向剤に配合してもよいその他の成分としては、例えば、上記重合体(A)以外のその他の重合体、分子内に少なくとも一つのエポキシ基を有する化合物(以下、「エポキシ基含有化合物」という。)、官能性シラン化合物等を挙げることができる。
【0058】
[その他の重合体]
上記その他の重合体は、溶液特性や電気特性の改善のために使用することができる。かかるその他の重合体の具体例としては、例えばポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン−フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを主骨格とする重合体を挙げることができる。
その他の重合体を液晶配向剤に配合する場合、その配合割合は、液晶配向剤中に含まれる重合体の合計100重量部に対して、30重量部以下とすることが好ましく、0.1〜20重量部とすることがより好ましく、0.3〜10重量部とすることが更に好ましい。
【0059】
[エポキシ基含有化合物]
エポキシ基含有化合物は、液晶配向膜における基板表面との接着性や電気特性を向上させるために使用することができる。このようなエポキシ基含有化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N−ジグリシジル−ベンジルアミン、N,N−ジグリシジル−アミノメチルシクロヘキサン、N,N−ジグリシジル−シクロヘキシルアミン等を好ましいものとして挙げることができる。その他、エポキシ基含有化合物の例としては、国際公開第2009/096598号記載のエポキシ基含有ポリオルガノシロキサンを用いることができる。
これらエポキシ化合物を液晶配向剤に添加する場合、その配合割合は、液晶配向剤中に含まれる重合体の合計100重量部に対して、40重量部以下とすることが好ましく、0.1〜30重量部とすることがより好ましい。
【0060】
[官能性シラン化合物]
上記官能性シラン化合物は、液晶配向剤の印刷性の向上を目的として使用することができる。このような官能性シラン化合物としては、例えば3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリメトキシシリル−3,6−ジアザノナン酸メチル、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、グリシドキシメチルトリメトキシシラン、2−グリシドキシエチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン等を挙げることができる。
これら官能性シラン化合物を液晶配向剤に添加する場合、その配合割合は、液晶配向剤中に含まれる重合体の合計100重量部に対して、2重量部以下とすることが好ましく、0.02〜0.2重量部とすることがより好ましい。
【0061】
なお、その他の成分としては、上記のほか、液晶配向剤の調製に使用可能な添加剤を用いることができる。具体的には、例えば分子内に少なくとも一つのオキセタニル基を有する化合物、酸化防止剤、界面活性剤、光増感剤、光重合性化合物などが挙げられる。
【0062】
<溶剤>
本発明に係る液晶配向剤は、重合体(A)及び必要に応じて配合されるその他の成分が、有機溶媒中に分散又は溶解してなる液状の組成物として調製される。特に、本発明に係る液晶配向剤は、2−ブトキシ−1−プロパノールを、全溶剤量に対して0.1〜50重量%含む。基板に対する塗布性及び液晶表示素子の信頼性の改善効果を更に高める観点からすると、2−ブトキシ−1−プロパノールの含有割合を、全溶剤量に対して0.3〜40重量%とすることがより好ましく、0.5〜35重量%とすることがさらに好ましく、1〜30重量%とすることが特に好ましい。
【0063】
2−ブトキシ−1−プロパノールと共に液晶配向剤に含有させるその他の溶剤としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール(2−ブトキシ−1−プロパノールを除く。)、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。これらの中でも、非プロトン性極性溶媒及びフェノール系溶媒よりなる群(第一群の有機溶媒)から選択される1種以上か、又は第一群の有機溶媒から選択される1種以上と、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素及び炭化水素よりなる群(第二群の有機溶媒)から選択される1種以上との混合物をその他の溶剤として使用することが好ましい。
【0064】
その他の溶剤の具体例としては、例えばN−メチル−2−ピロリドン、N−エチル−2−ピロリドン、γ−ブチロラクトン、γ−ブチロラクタム、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、4−ヒドロキシ−4−メチル−2−ペンタノン、1−ブトキシ−2−プロパノール、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ−ト、エチルエトキシプロピオネ−ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール−n−プロピルエーテル、エチレングリコール−i−プロピルエーテル、エチレングリコール−n−ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート、ダイアセトンアルコール、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチル―プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート等を挙げることができる。
2−ブトキシ−1−プロパノールと併用するその他の溶剤として特に好ましくは、エチレングリコール−n−ブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、1−ブトキシ−2−プロパノール、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、及びγ−ブチロラクトンよりなる群から選ばれる少なくとも一種である。なお、その他の溶剤は、これらのうちの一種を単独で又は2種以上を混合して使用することができる。
【0065】
液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計重量が液晶配向剤の全重量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1〜10重量%の範囲である。すなわち、液晶配向剤は、後述するように基板表面に塗布され、好ましくは加熱されることにより、液晶配向膜である塗膜又は液晶配向膜となる塗膜が形成される。このとき、固形分濃度が1重量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10重量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。
【0066】
特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンナー法を用いる場合には、固形分濃度(液晶配向剤中の溶媒以外の全成分の合計重量が液晶配向剤の全重量に占める割合)が1.5〜4.5重量%の範囲であることが特に好ましい。印刷法による場合には、固形分濃度を3〜9重量%の範囲とし、それにより溶液粘度を12〜50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1〜5重量%の範囲とし、それにより、溶液粘度を3〜15mPa・sの範囲とすることが特に好ましい。液晶配向剤を調製する際の温度は、好ましくは10〜50℃であり、より好ましくは20〜30℃である。
【0067】
[液晶配向膜及び液晶表示素子]
上記に説明した液晶配向剤を用いることにより液晶配向膜を製造することができる。また、本発明に係る液晶表示素子は、上記液晶配向剤を用いて形成された液晶配向膜を具備する。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN型、STN型、VA型(VA−MVA型、VA−PVA型などを含む。)、IPS型、FFS型、OCB型など種々の動作モードに適用することができる。
【0068】
本発明に係る液晶表示素子は、例えば以下の工程(1−1)〜(1−3)を含む工程により製造することができる。工程(1−1)は、所望の動作モードによって使用基板が異なる。工程(1−2)及び工程(1−3)は各動作モード共通である。
【0069】
[工程(1−1):塗膜の形成]
先ず、基板上に本発明の液晶配向剤を塗布し、次いで塗布面を加熱することにより基板上に塗膜を形成する。
(1−1A)例えばTN型、STN型又はVA型の液晶表示素子を製造する場合、まず、パターニングされた透明導電膜が設けられている基板二枚を一対として、その各透明性導電膜形成面上に、上記で調製した液晶配向剤を、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法によりそれぞれ塗布する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム−酸化スズ(In−SnO)からなるITO膜などを用いることができる。パターニングされた透明導電膜を得るには、例えばパターンなし透明導電膜を形成した後、フォト・エッチングによりパターンを形成する方法;透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法;などによることができる。液晶配向剤の塗布に際しては、基板表面及び透明導電膜と塗膜との接着性をさらに良好にするために、基板表面のうち塗膜を形成する面に、官能性シラン化合物、官能性チタン化合物などを予め塗布する前処理を施しておいてもよい。
【0070】
液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30〜200℃であり、より好ましくは40〜150℃であり、特に好ましくは40〜100℃である。プレベーク時間は、好ましくは0.25〜10分であり、より好ましくは0.5〜5分である。その後、溶剤を完全に除去し、必要に応じて重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80〜300℃であり、より好ましくは120〜250℃である。ポストベーク時間は、好ましくは5〜200分であり、より好ましくは10〜100分である。このようにして形成される膜の膜厚は、好ましくは0.001〜1μmであり、より好ましくは0.005〜0.5μmである。
【0071】
(1−1B)IPS型又はFFS型の液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板の電極形成面と、電極が設けられていない対向基板の一面とに液晶配向剤をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。このとき使用される基板及び透明導電膜の材質、塗布方法、塗布後の加熱条件、透明導電膜又は金属膜のパターニング方法、基板の前処理、並びに形成される塗膜の好ましい膜厚については上記(1−1A)と同様である。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。
【0072】
上記(1−1A)及び(1−1B)のいずれの場合も、基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって液晶配向膜又は液晶配向膜となる塗膜が形成される。このとき、塗膜形成後に更に加熱することによって、本発明の液晶配向剤に配合されるポリアミック酸、ポリアミック酸エステル及びポリイミドの脱水閉環反応を進行させ、よりイミド化された塗膜としてもよい。
【0073】
[工程(1−2):配向能付与処理]
TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程(1−1)で形成した塗膜に液晶配向能を付与する処理を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向能付与処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。一方、VA型液晶表示素子を製造する場合には、上記工程(1−1)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。
【0074】
光配向処理により塗膜に液晶配向能を付与する場合、塗膜に照射する放射線としては、例えば150〜800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合、照射の方向は斜め方向とする。
使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザーなどを使用することができる。好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。放射線の照射量は、好ましくは100〜50,000J/mであり、より好ましくは300〜20,000J/mである。また、塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。加温の際の温度は、通常30〜250℃であり、好ましくは40〜200℃であり、より好ましくは50〜150℃である。
【0075】
なお、ラビング処理後の液晶配向膜に対して更に、液晶配向膜の一部に紫外線を照射することによって液晶配向膜の一部の領域のプレチルト角を変化させる処理や、液晶配向膜表面の一部にレジスト膜を形成した上で先のラビング処理と異なる方向にラビング処理を行った後にレジスト膜を除去する処理を行い、液晶配向膜が領域ごとに異なる液晶配向能を持つようにしてもよい。この場合、得られる液晶表示素子の視界特性を改善することが可能である。VA型の液晶表示素子に好適な液晶配向膜は、PSA(Polymer sustained alignment)型の液晶表示素子にも好適に用いることができる。
【0076】
[工程(1−3):液晶セルの構築]
上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより液晶セルを製造する。第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより液晶セルを製造する。いずれの方法による場合でも、上記のようにして製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
【0077】
シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。
液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネートなどのコレステリック液晶;商品名「C−15」、「CB−15」(メルク社製)として販売されているようなカイラル剤;p−デシロキシベンジリデン−p−アミノ−2−メチルブチルシンナメートなどの強誘電性液晶などを、添加して使用してもよい。
【0078】
そして、液晶セルの外側表面に偏光板を貼り合わせることにより、本発明に係る液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
【0079】
本発明に係る液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。
【実施例】
【0080】
以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
【0081】
以下の例において、ポリイミドのイミド化率及び重合体溶液の溶液粘度は以下の方法により測定した。
[ポリイミドのイミド化率]
ポリイミドの溶液を純水に投入し、得られた沈殿を室温で十分に減圧乾燥した後、重水素化ジメチルスルホキシドに溶解し、テトラメチルシランを基準物質として室温でH−NMRを測定した。得られたH−NMRスペクトルから、下記数式(1)によりイミド化率[%]を求めた。
イミド化率[%]=(1−A/A×α)×100 …(1)
(数式(1)中、Aは化学シフト10ppm付近に現れるNH基のプロトン由来のピーク面積であり、Aはその他のプロトン由来のピーク面積であり、αは重合体の前駆体(ポリアミック酸)におけるNH基のプロトン1個に対するその他のプロトンの個数割合である。)
[重合体溶液の溶液粘度]
重合体溶液の溶液粘度[mPa・s]は、所定の溶媒を用い、重合体濃度10重量%に調製した溶液について、E型回転粘度計を用いて25℃で測定した。
【0082】
<重合体の合成>
[合成例1:ポリイミド(PI−1)の合成]
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物100モル部、ジアミンとしてp−フェニレンジアミン60モル部、及びコレスタニルオキシ−2,4−ジアミノベンゼン20モル部を、N−メチル−2−ピロリドン(NMP)に溶解し、60℃で6時間反応を行い、ポリアミック酸を20重量%含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10重量%の溶液として測定した溶液粘度は56mPa・sであった。
次いで、得られたポリアミック酸溶液に、NMPを追加してポリアミック酸濃度7重量%の溶液とし、ピリジン及び無水酢酸を、使用したテトラカルボン酸二無水物の全体量に対してそれぞれ2.0倍モルずつ添加して、110℃で4時間、脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなNMPで溶媒置換(本操作によって脱水閉環反応に使用したピリジン及び無水酢酸を系外に除去した。以下同じ。)することにより、イミド化率約85%のポリイミド(PI−1)を26重量%含有する溶液を得た。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI−1)を得た。
【0083】
[合成例2,3]
使用するテトラカルボン酸二無水物及びジアミンの種類及び量、並びにイミド化に際して使用するピリジン及び無水酢酸の量を下記表1のとおり変更した以外は合成例1と同様にしてポリイミド(PI−2),(PI−3)をそれぞれ合成した。得られた重合体のイミド化率の測定結果を下記表1に合わせて示した。
【0084】
【表1】
【0085】
表1中、テトラカルボン酸二無水物及びジアミンの括弧内の数値は、重合体の合成に使用したテトラカルボン酸二無水物の合計100モル部に対する使用割合[モル部]を表す。ピリジン及び無水酢酸の数値は、使用したテトラカルボン酸二無水物の合計量に対する各化合物の使用割合[倍モル]を示す。表1中の略称はそれぞれ以下の意味である。
<テトラカルボン酸二無水物>
t−1:2,3,5−トリカルボキシシクロペンチル酢酸二無水物
t−2:2,4,6,8−テトラカルボキシビシクロ[3.3.0]オクタン−2:4,6:8−二無水物
t−3:1,2,3,4−シクロブタンテトラカルボン酸二無水物
t−4:上記式(B−1−1)で表される化合物
<ジアミン>
d−1:p−フェニレンジアミン
d−2:コレスタニルオキシ−2,4−ジアミノベンゼン
d−3:3,5−ジアミノ安息香酸
d−4:上記式(E−1−4)で表される化合物
d−5:上記式(D−2−6)で表される化合物
d−6:下記式(d−6)で表される化合物
【化9】
【0086】
[合成例4:ポリアミック酸(PA−1)の合成]
テトラカルボン酸二無水物として上記式(B−1−1)で表される化合物100モル部、ジアミンとして上記式(D−2−6)で表される化合物20モル部、及び上記式(d−6)で表される化合物80モル部を、NMP及びγ−ブチロラクトン(γBL)(NMP:γBL=10:90(重量比))の混合溶媒に溶解し、40℃で3時間反応を行い、ポリアミック酸(PA−1)を10重量%含有する溶液を得た。得られたポリアミック酸溶液を少量分取して測定した溶液粘度は180mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることによりポリアミック酸(PA−1)を得た。
【0087】
[実施例1]
(1)液晶配向剤の調製
重合体として上記合成例1で得たポリイミド(PI−1)に、溶剤としてNMP、ブチルセロソルブ(BC)及び2−ブトキシ−1−プロパノール(X)を加え、溶媒組成がNMP:BC:(X)=50:20:30(重量比)、固形分濃度6.5重量%の溶液とした。この溶液を孔径1μmのフィルターを用いてろ過することにより液晶配向剤(S1)を調製した。
【0088】
(2)ハジキ評価
直径6インチのシリコンウェハを0.1重量%のポリジメチルシロキサン水溶液に30分間浸漬した後、エアーブローして100℃で30分乾燥させた。得られた基板の表面に、液晶配向膜印刷機(日本写真印刷機(株)製、オングストローマー形式「S40L−532」)により液晶配向剤(S1)を塗布した。このとき基板表面に発生したハジキの個数により塗布性を評価した。ここでは、ハジキの個数が0〜1個であった場合に塗布性「優良(◎)」、ハジキの個数が2〜5個であった場合に塗布性「良好(〇)」、ハジキの個数が6〜10個であった場合に塗布性「可(△)」、ハジキの個数が11個以上であった場合に塗布性「不良(×)」と評価した。この実施例では、ハジキの個数が6個であり、塗布性「可」の評価であった。
【0089】
(3)VA型液晶セルの製造
上記で調製した液晶配向剤(S1)を、ITO膜からなる透明電極付きガラス基板(厚さ1mm)の透明電極面上に、液晶配向膜印刷機(日本写真印刷(株)製)を用いて塗布し、80℃のホットプレート上で1分間加熱(プレベーク)し、さらに200℃のホットプレート上で60分間加熱(ポストベーク)して、平均膜厚800Åの塗膜(液晶配向膜)を形成した。この操作を繰り返し、透明導電膜上に液晶配向膜を有するガラス基板を一対(2枚)得た。次に、上記一対の基板のうちの一方の基板につき、液晶配向膜を有する面の外縁に直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、一対の基板を液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化させた。次いで、液晶注入口より一対の基板間にネマチック液晶(メルク社製、MLC−6608)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することによりVA型液晶セルを製造した。
【0090】
(4)信頼性の評価
上記で製造した液晶セルを用いて液晶表示素子の信頼性を評価した。評価は以下のようにして行った。まず、上記の液晶セルに、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率(VHR1)を測定した。次いで、液晶セルを、LEDランプ照射下の80℃オーブン中で200時間静置した後、室温中に静置して室温まで自然冷却した。冷却後、液晶セルに5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率(VHR2)を測定した。なお、測定装置は(株)東陽テクニカ製「VHR−1」を使用した。このときのVHRの変化率(ΔVHR)を下記数式(2)により算出し、ΔVHRによって信頼性を評価した。
ΔVHR[%]=(VHR1−VHR2)/(VHR1)×100 …(2)
評価は、ΔVHRが1%未満であった場合を信頼性「優良(◎)」、1%以上2%未満であった場合を信頼性「良好(○)」、2%以上3%未満であった場合を信頼性「可(△)」、3%以上であった場合を信頼性「不良(×)」とした。その結果、実施例1ではΔVHR=2.5[%]であり、信頼性「可」であった。
【0091】
[実施例2及び比較例1]
液晶配向剤の組成を下記表2に示すとおり変更した以外は実施例1と同様にして液晶配向剤をそれぞれ調製した。また、調製した液晶配向剤をそれぞれ用いて、実施例1と同様にしてハジキ評価、VA型液晶セルの製造及び信頼性の評価を行った。それらの評価結果を下記表3に示した。
【0092】
【表2】
【0093】
表2中、溶剤比率の欄の数値は、液晶配向剤の調製に使用した溶剤の合計100重量部に対する各溶剤の使用割合[重量部]を表す。表2中の略称はそれぞれ以下の意味である。
<溶剤>
NMP:N−メチル−2−ピロリドン
BC:ブチルセロソルブ
NEP:N−エチル−2−ピロリドン
DPM:ジプロピレングリコールモノメチルエーテル
DEDG:ジエチレングリコールジエチルエーテル
PG:1−ブトキシ−2−プロパノール
(X):2−ブトキシ−1−プロパノール
【0094】
【表3】
【0095】
[実施例3]
(1)液晶配向剤の調製
液晶配向剤の組成を上記表2に示すとおり変更した以外は実施例1と同様にして液晶配向剤(S3)を調製した。
(2)ハジキ評価
液晶配向剤(S1)の代わりに液晶配向剤(S3)を用いた点、及び液晶配向剤の塗布方式を印刷方式からインクジェット方式に変更した点以外は実施例1と同様にしてハジキ評価を行った。なお、装置はインクジェット塗布装置(芝浦メカトロニクス(株)製)を用い、塗布条件は、ヘッド数64、ディスペンス量0.2g/ヘッド・秒にて二往復塗布(4回塗布)とした。その結果、この実施例ではハジキの個数が0個であり、「優良」の評価であった。
(3)VA型液晶セルの製造及び信頼性の評価
液晶配向剤(S1)の代わりに液晶配向剤(S3)を用いた点、及び液晶配向剤の塗布方式を印刷方式からインクジェット方式に変更した点以外は実施例1と同様にしてVA型液晶セルを製造するとともに、得られた液晶セルを用いて信頼性の評価を行った。その結果、この実施例では、ΔVHR=0.6[%]であり、信頼性は「優良」の評価であった(表3参照)。
【0096】
[実施例4]
(1)液晶配向剤の調製
液晶配向剤の組成を上記表2に示すとおり変更した以外は実施例1と同様にして液晶配向剤(S4)を調製した。
(2)ハジキ評価
液晶配向剤(S3)の代わりに液晶配向剤(S4)を用いた以外は実施例3と同様にしてハジキ評価を行った。その結果、この実施例ではハジキの個数が3個であり、「良好」の評価であった。
(3)光配向法を用いたIPS/FFS型液晶セルの製造
上記で調製した液晶配向剤(S4)を、インクジェット塗布装置(芝浦メカトロニクス(株)製)を用いてITO膜からなる透明電極付きガラス基板の透明電極面に塗布した。なお、塗布条件は「(2)ハジキ評価」と同じとした。次いで、80℃のホットプレート上で1分間加熱(プレベーク)して溶媒を除去した。その後、Hg−Xeランプを用いて、254nmの輝線を含む偏光の紫外線を700mJ/cmの照射量で基板法線から照射した後、200℃のホットプレート上で10分間加熱(ポストベーク)して、液晶配向膜を付与した平均膜厚800Åの塗膜を形成した。また、上記の操作を繰り返し、液晶配向膜を有する基板を一対(2枚)得た。
次に、上記一対の基板のうちの一方の基板につき、液晶配向膜を有する面の外縁に直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、偏光紫外線の偏光面を基板へ投影した方向が平行になるように、一対の基板を液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間にネマチック液晶(メルク社製、MLC−6221)を充填した後、アクリル系光硬化型接着剤で液晶注入口を封止することにより、IPS/FFS型液晶セルを製造した。
【0097】
(4)信頼性の評価
上記で製造したIPS/FFS型液晶セルを用い、上記実施例1と同様の方法により信頼性を評価したところ、ΔVHR=0.8[%]であり、信頼性は「優良」の評価であった。
【0098】
表3に示すように、実施例1〜4では塗布方式に関わらず塗布性及び信頼性が「優良」〜「可」のいずれかの評価であった。また、塗布性に関しては、特定溶剤(2−ブトキシ−1−プロパノール)と共に、カルボキシル基含有ジアミンを原料に含む重合体を用いることで更に改善でき、信頼性に関しては、特定溶剤と共に、窒素含有構造を有するジアミンを原料に含む重合体を用いることで更に改善できることが分かった。これに対し、比較例1では塗布性が「不良」、信頼性が「可」の評価であり、実施例1〜4の方が優れていた。