特許第6411148号(P6411148)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 技研商事インターナショナル株式会社の特許一覧

特許6411148品目別消費支出シミュレーションシステム及びそのプログラム
<>
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000006
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000007
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000008
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000009
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000010
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000011
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000012
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000013
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000014
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000015
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000016
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000017
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000018
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000019
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000020
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000021
  • 特許6411148-品目別消費支出シミュレーションシステム及びそのプログラム 図000022
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6411148
(24)【登録日】2018年10月5日
(45)【発行日】2018年10月24日
(54)【発明の名称】品目別消費支出シミュレーションシステム及びそのプログラム
(51)【国際特許分類】
   G06Q 30/02 20120101AFI20181015BHJP
【FI】
   G06Q30/02 312
【請求項の数】8
【全頁数】16
(21)【出願番号】特願2014-192577(P2014-192577)
(22)【出願日】2014年9月22日
(65)【公開番号】特開2015-88183(P2015-88183A)
(43)【公開日】2015年5月7日
【審査請求日】2017年8月28日
(31)【優先権主張番号】特願2013-198768(P2013-198768)
(32)【優先日】2013年9月25日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】597062650
【氏名又は名称】技研商事インターナショナル株式会社
(74)【代理人】
【識別番号】100093104
【弁理士】
【氏名又は名称】船津 暢宏
(72)【発明者】
【氏名】井上 哲仁
【審査官】 小山 和俊
(56)【参考文献】
【文献】 特開2003−141325(JP,A)
【文献】 特開2004−118858(JP,A)
【文献】 特開2010−225103(JP,A)
【文献】 特開2005−284756(JP,A)
【文献】 特開2003−233767(JP,A)
【文献】 特開2002−123787(JP,A)
【文献】 米国特許出願公開第2012/0084118(US,A1)
【文献】 星田 侑久,IPF法を用いた小地域の品目ごとの市場規模の推定,第18回地理情報システム学会予稿集,日本,2009年10月15日,P243〜246
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00−99/00
(57)【特許請求の範囲】
【請求項1】
家計調査年報のデータを元に品目別の消費支出をシミュレーションする品目別消費支出シミュレーションシステムであって、
シミュレーション処理に用いられるコンピュータプログラムと、家計調査年報における消費支出のデータを記憶する記憶部と、
前記記憶部から前記プログラムを読み込んでシミュレーション処理を実行する制御部とを備え、
前記制御部が前記プログラムを読み込んで実現される機能実現手段として、
前記記憶部から前記データを読み込み、家計調査年報における調査項目の表毎に分散分析を行う分散分析手段と、
品目別消費に対する有意項目の分散分析表を作成する有意項目表作成手段と、
前記分散分析表の内で上位2位の項目の統計表を抽出する表抽出手段と、
マイクロシミュレーションであるIPF法により前記抽出した2つの統計表から品目別に、一方の統計表の小項目を縦に、他方の統計表の小項目を横に配置して、縦横の小項目毎に消費額のクロスデータを作成するクロスデータ作成手段と、
前記家計調査年報以外の統計データを元に母集団となる小地域単位の世帯数を推計する小地域単位の世帯数推計手段と、
前記クロスデータに前記推計した小地域単位の世帯数を乗じて小地域単位の品目別消費金額を推定する品目別消費金額推定手段とを有することを特徴とする品目別消費支出シミュレーションシステム。
【請求項2】
小地域単位の世帯数推計手段は、母集団となる小地域単位の世帯数を推計するのにIPF法を用いることを特徴とする請求項1記載の品目別消費支出シミュレーションシステム。
【請求項3】
小地域単位の世帯数推計手段は、クロスデータ作成手段によって作成されたクロスデータにおける縦横の全ての小項目に対応した世帯数をIPF法により演算して、小地域単位の世帯数を推計することを特徴とする請求項1又は2記載の品目別消費支出シミュレーションシステム。
【請求項4】
品目別消費金額推定手段は、クロスデータの縦横の小項目毎の消費額に、小地域単位の世帯数推計手段によって推計された小項目毎の世帯数を乗算して、小地域単位の品目別消費金額を推定することを特徴とする請求項1乃至3のいずれか記載の品目別消費支出シミュレーションシステム。
【請求項5】
家計調査年報のデータを元に品目別の消費支出をシミュレーションする品目別消費支出シミュレーションシステムで用いられるコンピュータプログラムであって、
制御部が記憶部に記憶された前記プログラムを読み込んで実現される機能実現手段として、
前記記憶部から家計調査年報における消費支出のデータを読み込み、家計調査年報における調査項目の表毎に分散分析を行う分散分析手段と、
品目別消費に対する有意項目の分散分析表を作成する有意項目表作成手段と、
前記分散分析表の内で上位2位の項目の統計表を抽出する表抽出手段と、
マイクロシミュレーションであるIPF法により前記抽出した2つの統計表から品目別に、一方の統計表の小項目を縦に、他方の統計表の小項目を横に配置して、縦横の小項目毎に消費額のクロスデータを作成するクロスデータ作成手段と、
前記家計調査年報以外の統計データを元に母集団となる小地域単位の世帯数を推計する小地域単位の世帯数推計手段と、
前記クロスデータに前記推計した小地域単位の世帯数を乗じて小地域単位の品目別消費金額を推定する品目別消費金額推定手段とを有することを特徴とする品目別消費支出シミュレーションプログラム。
【請求項6】
小地域単位の世帯数推計手段は、母集団となる小地域単位の世帯数を推計するのにIPF法を用いることを特徴とする請求項5記載の品目別消費支出シミュレーションプログラム。
【請求項7】
小地域単位の世帯数推計手段は、クロスデータ作成手段によって作成されたクロスデータにおける縦横の全ての小項目に対応した世帯数をIPF法により演算して、小地域単位の世帯数を推計することを特徴とする請求項5又は6記載の品目別消費支出シミュレーションプログラム。
【請求項8】
品目別消費金額推定手段は、クロスデータの縦横の小項目毎の消費額に、小地域単位の世帯数推計手段によって推計された小項目毎の世帯数を乗算して、小地域単位の品目別消費金額を推定することを特徴とする請求項5乃至7のいずれか記載の品目別消費支出シミュレーションプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地域特性、家族構成などを考慮した品目別消費支出シミュレーションシステムに係り、特に、店舗商圏などの狭小のエリアマーケティングに利用でき、更に消費に影響する要素を用いて品目別消費支出額を推計できる品目別消費支出シミュレーションシステム及びそのプログラムに関する。
【背景技術】
【0002】
[従来の技術]
総務省統計局による家計調査年報では、市町村を最小単位として品目別の消費支出額が公表されているが、小売店やメーカーでは、店舗商圏などの狭小エリア(小地域)における品目別の消費支出額を把握することはエリアマーケティングにおいて重要なことである。
【0003】
しかしながら、市町村より狭い小地域での品目別の消費支出額を知ることができないことが問題となっている。
そこで、小地域の品目毎の市場規模を推定することが行われている。この推定方法について、地理情報システム学会講演論文集「IPF法を用いた小地域の品目ごとの市場規模の推定」星田侑久、佐藤俊明、岡部篤行著、巻18,ページ243−246、2009年10月15日発行に記載されている(非特許文献1)。
【0004】
[従来の推定方法:図15図16図17
上記従来の小地域における品目別の市場規模の推定について図15図16図17を参照しながら説明する。図15は、2人以上世帯の総支出額(町丁字別)を求める処理フローであり、図16は、全世帯の総支出額(町丁字別)を求める処理フローであり、図17は、総支出額(町丁字別)を求める処理フローである。
総務省統計局がWebより提供する家計調査年報を基に、図15に示すように、2人以上世帯の1世帯あたりの支出額について、地方別と都市規模別でデータを取得し、2人以上世帯の総支出額を地方別と都市規模別でデータを演算する。
【0005】
そして、IPF(Iterative Proportional Fitting)法により2人以上世帯の総支出額(都市規模別×地方別)を算出する。それを世帯数で割ることにより、2人以上世帯の1世帯あたりの支出額(都市規模別×地方別)を算出する。更に、それに町丁字別の世帯数を掛け合わせると、2人以上世帯の総支出額(町丁字別)を求めることができる。
【0006】
また、図16に示すように、全世帯の1世帯あたりの支出額(都市規模別)と全世帯の1世帯あたりの支出額(地方別)から図15と同様の処理で全世帯の総支出額(町丁字別)を求める。
そして、図17に示すように、2人以上世帯の総支出額(町丁字別)と全世帯の総支出額(町丁字別)を比較し、大きい方を、その小地域の総支出額とする。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】地理情報システム学会講演論文集「IPF法を用いた小地域の品目ごとの市場規模の推定」星田侑久、佐藤俊明、岡部篤行著、巻18,ページ243−246、2009年10月15日発行
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上記従来の小地域における品目別の市場規模の推定では、小地域単位の推定はできるものの、消費に影響する要素を用いた推計を行うことができず、推定の精度を向上させることができないという問題点があった。
【0009】
本発明は上記実状に鑑みて為されたもので、消費に影響する要素を用いて小地域単位で品目別消費支出額を推計でき、精度の高い小地域の品目毎の市場規模を推定できる品目別消費支出シミュレーションシステム及びそのプログラムを提供することを目的とする。
【課題を解決するための手段】
【0010】
上記従来例の問題点を解決するための本発明は、家計調査年報のデータを元に品目別の消費支出をシミュレーションする品目別消費支出シミュレーションシステムであって、シミュレーション処理に用いられるコンピュータプログラムと、家計調査年報における消費支出のデータを記憶する記憶部と、記憶部からプログラムを読み込んでシミュレーション処理を実行する制御部とを備え、制御部がプログラムを読み込んで実現される機能実現手段として、記憶部からデータを読み込み、家計調査年報における調査項目の表毎に分散分析を行う分散分析手段と、品目別消費に対する有意項目の分散分析表を作成する有意項目表作成手段と、分散分析表の内で上位2位の項目の統計表を抽出する表抽出手段と、マイクロシミュレーションであるIPF法により抽出した2つの統計表から品目別に、一方の統計表の小項目を縦に、他方の統計表の小項目を横に配置して、縦横の小項目毎に消費額のクロスデータを作成するクロスデータ作成手段と、家計調査年報以外の統計データを元に母集団となる小地域単位の世帯数を推計する小地域単位の世帯数推計手段と、クロスデータに推計した小地域単位の世帯数を乗じて小地域単位の品目別消費金額を推定する品目別消費金額推定手段とを有することを特徴とする。
【0011】
本発明は、上記品目別消費支出シミュレーションシステムにおいて、小地域単位の世帯数推計手段が、母集団となる小地域単位の世帯数を推計するのにIPF法を用いることを特徴とする。
【0012】
本発明は、上記品目別消費支出シミュレーションシステムにおいて、小地域単位の世帯数推計手段が、クロスデータ作成手段によって作成されたクロスデータにおける縦横の全ての小項目に対応した世帯数をIPF法により演算して、小地域単位の世帯数を推計することを特徴とする。
【0013】
本発明は、上記品目別消費支出シミュレーションシステムにおいて、品目別消費金額推定手段が、クロスデータの縦横の小項目毎の消費額に、小地域単位の世帯数推計手段によって推計された小項目毎の世帯数を乗算して、小地域単位の品目別消費金額を推定することを特徴とする。
【0014】
本発明は、家計調査年報のデータを元に品目別の消費支出をシミュレーションする品目別消費支出シミュレーションシステムで用いられるコンピュータプログラムであって、制御部が記憶部に記憶されたプログラムを読み込んで実現される機能実現手段として、記憶部から家計調査年報における消費支出のデータを読み込み、家計調査年報における調査項目の表毎に分散分析を行う分散分析手段と、品目別消費に対する有意項目の分散分析表を作成する有意項目表作成手段と、分散分析表の内で上位2位の項目の統計表を抽出する表抽出手段と、マイクロシミュレーションであるIPF法により抽出した2つの統計表から品目別に、一方の統計表の小項目を縦に、他方の統計表の小項目を横に配置して、縦横の小項目毎に消費額のクロスデータを作成するクロスデータ作成手段と、家計調査年報以外の統計データを元に母集団となる小地域単位の世帯数を推計する小地域単位の世帯数推計手段と、クロスデータに推計した小地域単位の世帯数を乗じて小地域単位の品目別消費金額を推定する品目別消費金額推定手段とを有することを特徴とする。
【0015】
本発明は、上記品目別消費支出シミュレーションプログラムにおいて、小地域単位の世帯数推計手段が、母集団となる小地域単位の世帯数を推計するのにIPF法を用いることを特徴とする。
【0016】
本発明は、上記品目別消費支出シミュレーションプログラムにおいて、小地域単位の世帯数推計手段が、クロスデータ作成手段によって作成されたクロスデータにおける縦横の全ての小項目に対応した世帯数をIPF法により演算して、小地域単位の世帯数を推計することを特徴とする。
【0017】
本発明は、上記品目別消費支出シミュレーションプログラムにおいて、品目別消費金額推定手段が、クロスデータの縦横の小項目毎の消費額に、小地域単位の世帯数推計手段によって推計された小項目毎の世帯数を乗算して、小地域単位の品目別消費金額を推定することを特徴とする。
【発明の効果】
【0018】
本発明によれば、分散分析手段が、記憶部からデータを読み込み、家計調査年報における調査項目の表毎に分散分析を行い、有意項目表作成手段が、品目別消費に対する有意項目の分散分析表を作成し、表抽出手段が、分散分析表の内で上位2位の項目の統計表を抽出し、クロスデータ作成手段が、マイクロシミュレーションであるIPF法により抽出した2つの統計表から品目別に、一方の統計表の小項目を縦に、他方の統計表の小項目を横に配置して、縦横の小項目毎に消費額のクロスデータを作成し、小地域単位の世帯数推計手段が、家計調査年報以外の統計データを元に母集団となる小地域単位の世帯数を推計し、品目別消費金額推定手段が、クロスデータに推計した小地域単位の世帯数を乗じて小地域単位の品目別消費金額を推定する品目別消費支出シミュレーションシステムとしているので、消費に影響する要素を用いて小地域単位で品目別消費支出額を推計でき、精度の高い小地域の品目毎の市場規模を推定できる効果がある。
【図面の簡単な説明】
【0019】
図1】本システムの概略図である。
図2】品目別消費支出シミュレーションの処理フローチャートである。
図3】分散分析表を示す図である。
図4】世帯主年齢の概要と分散分析表である。
図5】年収階級の概要と分散分析表である。
図6】世帯人員の概要と分散分析表である。
図7】利用する家計調査年報の2つの表を示す図である。
図8】穀物の消費額についてのクロスデータの例(例1)を示す図である。
図9】小地域の推計された世帯数の表を示す図である。
図10】小地域単位の推計された品目別消費金額の表を示す図である。
図11】穀物の消費額についてのクロスデータの例(例2)を示す図である。
図12】小地域の推計された世帯数の表を示す図である。
図13】小地域単位の推計された品目別消費金額の表を示す図である。
図14】1世帯あたりの消費額を比較したグラフである。
図15】2人以上世帯の総支出額(町丁字別)を求める処理フローである。
図16】全世帯の総支出額(町丁字別)を求める処理フローである。
図17】総支出額(町丁字別)を求める処理フローである。
【発明を実施するための形態】
【0020】
本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
本発明の実施の形態に係る品目別消費支出シミュレーションシステムは、家計調査年報を元に調査項目の表毎に分散分析を行い、品目別消費に対する有意項目の分散分析表を作成し、上位2位の項目の統計表を抽出してIPF法によりクロスデータを作成し、更に家計調査年報以外の統計データを元にIPF法により母集団となる小地域単位の世帯数を推計し、クロスデータを小地域単位の世帯数に乗じて小地域単位の品目別消費金額を推定するようにしているので、消費に影響する項目(要素)を用いて小地域単位で品目別消費支出額を推計でき、精度の高い小地域の品目毎の市場規模を推定できるものである。
【0021】
[本システム:図1
本発明の実施の形態に係る品目別消費支出シミュレーションシステム(本システム)について図1を参照しながら説明する。図1は、本システムの概略図である。
本システムは、図1に示すように、シミュレーション装置1と、ネットワーク4と、統計データ提供サーバ5とを有している。
【0022】
[シミュレーション装置1]
シミュレーション装置1は、コンピュータ装置であり、制御部11と、記憶部12と、インタフェース部13とを備えており、インタフェース部13には、表示部2と入力部3が接続し、更にインタフェース部13はネットワーク4に接続している。
記憶部12には処理プログラムを記憶しており、制御部11に読み込まれて処理が実現可能となる。
表示部2は、シミュレーションの状況及び結果を表示する。
入力部3は、シミュレーション処理の指示を入力する。
【0023】
ネットワーク4は、インターネットを想定しているが、専用のネットワークであってもよい。
また、ネットワーク4は、有線ネットワークに限らず、無線ネットワークであってもよい。
【0024】
[統計データ提供サーバ5]
統計データ提供サーバ5は、具体的には総務省統計局のWebサイトであり、家計調査年報のデータや国勢調査のデータ、住民基本台帳等の統計データを提供するコンピュータである。
また、総務省統計局のWebサイトから家計調査年報等のデータをダウンロードして記憶し、アクセスによってそのデータを提供するサーバを統計データ提供サーバ5としてもよい。
更に、ダウンロードした統計データをシミュレーション装置1の記憶部2に記憶しておき、ネットワーク4を介さずにシミュレーション装置1の内部で処理が完結するように構成してもよい。
【0025】
[別のシステム]
本システムでは、シミュレーション装置1が処理を実行するようにしているが、シミュレーション処理サーバで処理を実行するようにし、当該シミュレーション処理サーバにネットワークを介してスマートフォン、タブレット、パーソナルコンピュータ等の端末が接続し、当該端末からの要求によって処理を実行させ、処理結果を端末に表示させるようにしてもよい。
その際、所望の処理を行うために必要な情報は端末から入力する。例えば、特定店舗エリアの小地域の品目別消費金額を推定するためには、少なくともエリアを特定する情報を入力する。
【0026】
[シミュレーション処理の実現手段]
シミュレーション装置1の記憶部12に記憶されたシミュレーション処理のコンピュータプログラムを制御部11が読み込んで実現される機能実現手段として、分散分析手段と、有意項目表作成手段と、表抽出手段と、クロスデータ作成手段と、小地域単位の世帯数推計手段と、品目別消費金額推定手段とがある。
【0027】
分散分析手段は、記憶部12から家計調査年報における1世帯当たり1か月間の収入と支出のデータを読み込み、家計調査年報における調査項目の統計表毎に分散分析を行う。
有意項目表作成手段は、品目別消費に対する有意項目の分散分析表を作成する。
表抽出手段は、有意項目の分散分析表の内で上位2位の項目の統計表を抽出する。
【0028】
クロスデータ作成手段は、マイクロシミュレーションであるIPF法によりクロスデータを作成する。
小地域単位の世帯数推計手段は、IPF法により母集団となる小地域単位の世帯数を推計する。
品目別消費金額推定手段は、作成されたクロスデータに小地域単位の世帯数を乗じて小地域単位の品目別消費金額を推定する。
以上の各手段の具体的な処理は、次の処理フローにて説明する。
【0029】
[処理フロー:図2
次に、本システムのシミュレーション装置1における処理について図2を参照しながら説明する。図2は、品目別消費支出シミュレーションの処理フローチャートである。
制御部11は、記憶部12から処理プログラムを読み込んで処理を実行すると、統計データ提供サーバ5から家計調査年報のデータをダウンロードして記憶部12に記憶する。
【0030】
制御部11は、記憶部12に記憶された総務省統計局提供の家計調査年報のデータ(1世帯当たり1か月間の収入と支出のデータ)から、都市階級・地方・都道府県庁所在地別の総世帯、勤労者世帯、勤労者世帯以外の世帯の項目(表番号2:都市規模分類)、年間収入五分位・十分位階級別の総世帯・勤労者世帯の項目(表番号3:世帯年収)、世帯人員・世帯主の年齢階級別の総世帯・勤労者世帯の項目(表番号4:世帯主の年齢)、世帯主の職業別の総世帯の項目(表番号5:世帯主の職業)、住居の所有関係別の総世帯・勤労者世帯の項目(表番号7:住宅所有)等の統計の表データを抽出する(S1)。
【0031】
次に、家計調査年報のデータを元に調査項目の統計表毎に全ての消費品目について分散分析手段によって分散分析を行い、有意項目表作成手段により品目別消費に対する有意項目の表を作成する(S2)。この有意項目の表は、後述する分散分析表のことである。
そして、表抽出手段により消費品目別に上位2位の項目を抽出し、品目別に上位2位(2項目)の統計表を抽出し(S3)、記憶部12に記憶する。
尚、非特許文献1では、家計調査年報の調査項目の表について分散分析を行っていない。
【0032】
更に、マイクロシミュレーションであるIPF法(第1回目のIPF法の演算処理)を用いて、クロスデータ作成手段により抽出した上位2位の統計表のクロスデータを作成する(S4)。例えば、特定の消費品目について上位2位の項目が都市規模分類(表番号2)と世帯主の年齢(表番号4)であるとすると、都市規模分類×世帯主の年齢のクロスデータが作成される。
【0033】
例えば、都市規模分類の小項目を縦軸に並べ、世帯主の年齢の小項目を横軸に並べて、縦軸の小項目と横軸の小項目が交差(クロス)する部分に対応する数値を演算して書き込んでクロスデータを生成する。クロスデータは記憶部12に記憶される。クロスデータの具体例は後述する。
尚、非特許文献1では、都市規模分類における[都市規模別×地方別]のクロスデータを一律全ての調査項目にて作成しているが、分散分析にて抽出された上位2表についてクロスデータを作成するものではない。
【0034】
分散分析の結果として、上位2位の統計表として、例えば、[世帯年収×世帯主の年齢]等の統計表が抽出され、クロスデータが生成された場合に、小地域単位での[世帯年収×世帯主の年齢]等のクロスデータが得られない場合が多い。そのため、IPF法(第2回目のIPF法の演算処理)を用いて、小地域単位の世帯数推計手段により母集団となる小地域単位の世帯数を推計加工する(S5)。
上位2位の統計表として、都市規模分類等の都道府県別のデータが用いられた場合は、都道府県の世帯数の代わりに特定の小地域での世帯数を用いることになる。
尚、非特許文献1では、[都市規模別×地方別]のみを使用しているため、小地域単位の母集団は世帯総数を使用している。
【0035】
そして、品目別消費金額推定手段によりクロスデータを小地域単位の世帯数に乗じて小地域単位の品目別消費金額(品目別消費支出)を推定する(S6)。
これにより、品目別消費支出シミュレーションの処理が為される。小地域単位の世帯数を推計する例と、小地域単位の品目別消費金額を推定する例については後述する。
【0036】
[分散分析:図3
次に、分散分析について図3を参照しながら説明する。図3は、分散分析表を示す図である。
2つの平均の有意差の検定には、t検定が用いられるが、3つ以上の平均の有意差の検定には、分散分析が用いられる。
分散分析の構造モデルは、以下の式1に示すとおりである。
【0037】
【数1】
【0038】
また、分散分析表は図3に示すように、データの分散成分の平方和(SS)を分解し、誤差(Error)による変動から要因(A)効果による変動を分離する。次に、平方和(SS)を自由度(df)で割ることで平均平方(MS)を算出する。そして、要因効果によって説明される平均平方を分子、誤差によって説明される平均平方を分母とすることでF値を計算する。
【0039】
[IPF法]
IPF法は、周辺和の情報を利用して多次元のクロス表を推定する方法である。
本システムでは、2次元のクロス表を対象にするので、以下、2次元のクロス表の推定を説明する。2次元のクロス表を推定するためには以下の式2、式3を用いる。
【0040】
【数2】
【0041】
【数3】
【0042】
ここで、pijkは、k回数目におけるi行とj列からなるクロス表の要素を表す。QiとQjはそれぞれ行と列の周辺分布である。
つまり、IPF法とは、既知の周辺和と推定された周辺分布の比率を繰り返し適用することで、クロス表の収束値を得るもので、その終了条件が以下の式4となる。
【0043】
【数4】
【0044】
以上のように、IPF法は、マイクロシミュレーションの手法の一つであり、小地域データを推計する手法の一つとされている。複数のモデル世帯を仮定し、拡大計算させることで、推定・試算を行うものである。
【0045】
[分散分析結果:図4〜6]
次に、分散分析の結果の例について図4〜6を参照しながら説明する。図4は、世帯主年齢の概要と分散分析表であり、図5は、年収階級の概要と分散分析表であり、図6は、世帯人員の概要と分散分析表である。
【0046】
世帯主年齢(世帯主の年齢)、年収階級(世帯年収)、世帯人員(世帯主の年齢)の各項目について、それぞれグループに分けられ、各グループについて合計、平均、分散が演算される。この合計、平均、分散は、対象とする「米」「食料」等の消費品目を選択して演算されるものである。
そして、分散分析表では、変動要因として、グループ間、グループ内について、変動、自由度、分散、観測された分散比(F値)、P−値、F境界値が演算される。
ここで、P−値は、帰無仮説の下で、実際にデータから計算された統計量よりも極端な統計量が観測される確率をいう。
また、F境界値は、F値の有効な範囲を定めた限界値であり、F値においてP−値(確率)となるときの値がF境界値となる。
【0047】
帰無仮説「各項目(都市規模分類、世帯年収、世帯主の年齢、世帯主の職業、住宅所有)において、差はない」を元に、項目毎に一元配置の分散分析を実施する。
分散分析表において、(1)P−値が5%以下、(2)「観測された分散比−F境界値」の値が大きい場合に、帰無仮説が棄却され、項目間での差があると判断される。
【0048】
このことを応用して、分散分析の結果を元に、P−値が5%以下であって、「観測された分散比−F境界値」の値が最も大きいものを有意性の高い項目として採用することにする。
図4〜6では、「世帯人員」が最も有意な項目であると判断される。このように、各項目について一元配置の分散分析を実施し、有意項目を2つ抽出するものである。
【0049】
[クロスデータ生成例:図7,8]
次に、クロスデータの生成例について図7,8を参照しながら説明する。図7は、利用する家計調査年報の2つの表を示す図であり、図8は、穀物の消費額についてのクロスデータの例(例1)を示す図である。
調査項目の表毎に分散分析を行って分散分析表を作成し、上位2位の表を抽出したのが、図7である。図7では、世帯主の年齢階級(世帯主年齢)と世帯人員の表が抽出されたものである。
【0050】
そして、抽出された上位2位の家計調査の統計表について、IPF法を用いて図8のクロスデータを生成する。図8では、穀類の消費額について、縦軸に世帯人員、横軸に世帯主年齢の小項目(年齢区分)を配置して、縦軸の小項目と横軸の小項目に該当する穀物の消費額をIPF法で演算する。
【0051】
図7の統計データに基づいて、図8に示すクロスデータを生成する際の処理について説明する。
図8において、周辺和、つまり縦軸の小項目(世帯人員)毎の合計(1行目消費額合計、2行目消費額合計、...)と、横軸の小項目(世帯主年齢)毎の合計(1列目消費額合計、2列目消費額合計、...)と、総消費額合計は、図7の統計データから既知である。
そこで、IPF法を用いて、各消費合計額に最も近くなるよう(誤差が最小となるよう)、クロスデータの組み合わせ(ここでは36個の消費額)を推定し、図8の表とする。
【0052】
[小地域単位の世帯数を推計する例:図9
次に、小地域単位の世帯数を推計する例について図9を参照しながら説明する。図9は、小地域の推計された世帯数の表を示す図である。
小地域の世帯数は、図9に示すように、図8のクロスデータの縦軸と横軸の小項目(世帯人員と世帯主年齢)を用いて、小地域の国勢調査の統計データに基づいて対象の小地域内の世帯数をIPF法で演算する。
【0053】
例えば、小地域を、○○町全体、又は1丁目〜3丁目程度の広さとした場合には、統計データから得られる各小地域の国勢調査の「世帯主年齢×世帯人員別世帯数」のデータに基づいてIPF法により世帯人員と世帯主年齢による世帯数のクロスデータを推定する。
すなわち、図9に示すように、縦軸に各小地域の世帯人員、横軸に世帯主年齢を配置して、既知である縦軸及び横軸の各項目毎の合計及び総合計との誤差が最小となるよう、36個の世帯数の組み合わせを求め、図9の表とする。
【0054】
[小地域単位の品目別消費金額を推定する例:図10
そして、小地域単位の推計された品目別消費金額について図10を参照しながら説明する。図10は、小地域単位の推計された品目別消費金額の表を示す図である。ここでの品目は、「穀類」ということになる。
小地域単位の推計された品目別消費金額は、図10に示すように、図8の穀類の消費額のクロスデータに図9の小地域の推計された世帯数を小項目毎に乗算したものである。
【0055】
例えば、図8から、穀類の消費額が、世帯数2人について世帯主年齢が30〜39歳の消費額が「4,900円」であるので、図9から、世帯数2人について世帯主年齢が30〜39歳の小地域の推計された世帯数が「5」であるので、消費額に世帯数を乗算する(4,900円×5=24,500円)。
乗算結果の「24,500円」を図10の世帯数2人で世帯主年齢30〜39歳の欄に設定する。縦横の全ての小項目について、上記と同様の演算を行い、図10を生成する。
このようにして、小地域単位の推計された品目別消費金額が求められる。
【0056】
[別のクロスデータ生成例]
別のクロスデータ生成例について説明する。
別のクロスデータ生成例では、上述したように、家計調査年報のデータを元に分散分析を行い、品目別消費に対する有意項目の表を作成し、消費品目別に上位2位の項目を抽出し、上位2位の統計表を作成する。ここで、上位2位の2項目が「都市階級区分」と「世帯年収」(都市階級区分×世帯年収)である。
【0057】
[穀物の消費額:図11
穀物の消費額について図11を参照しながら説明する。図11は、穀物の消費額についてのクロスデータの例(例2)を示す図である。
本システムでは、分散分析を行って上位2位の表として抽出した「都市階級区分」と「世帯年収」の2つの項目を用いて、IPF法により、世帯年収を縦軸とし、都市階級区分を横軸として、消費額についてのクロスデータの組み合わせを推定し、図11に示すような消費額(都市階級区分×世帯年収)の表を作成する。
【0058】
[小地域の推計された世帯数:図12
次に、小地域の推計された世帯数について、図12を参照しながら説明する。図12は、小地域の推計された世帯数の表を示す図である。
本システムでは、国勢調査、住民基本台帳等の統計データを用いて、特定の小地域についてIPF法により、「都市階級区分」と「世帯年収」を用いてクロスデータの組み合わせを推定し、図12に示すような小地域の推計された世帯数の表を作成する。特定の小地域は、例えば、東京都心店舗Aなどの仮想店舗を作り、その仮想店舗の商圏エリアを小地域とするものである。
尚、国勢調査、住民基本台帳等の統計データにおける世帯年収の区分(a)と家計調査年報における世帯年収の区分(b)が異なる場合には、区分(a)を区分(b)に合わせて、世帯数の配分を調整する。
【0059】
[小地域単位の推計された品目別消費金額:図13
次に、小地域単位の推計された品目別消費金額について、図13を参照しながら説明する。図13は、小地域単位の推計された品目別消費金額の表を示す図である。
本システムでは、更に、小地域について推計された小項目毎の世帯数を、消費額(都市階級区分×世帯年収)の表における小項目の消費額に掛け合わせると、図13に示すような小地域単位の推計された品目別消費金額を求めることができる。つまり、世帯の年収調整された推計データということになる。
【0060】
[1世帯あたりの消費額:図14
次に、1世帯あたりの消費額について、図14を参照しながら説明する。図14は、1世帯あたりの消費額を比較したグラフである。具体的に、図14では、1世帯あたりの消費額について、従来の推定手法で算出したデータ(現状データ)と本システムによって推計されたデータ(年収調整したデータ)とを比較したグラフである。尚、従来の推計データは、図15〜17で説明した手法で求めたものである。
【0061】
図14の例では、規模の異なる都市にある複数の店舗について、「都市階級区分」と「世帯年収」の2項目を用いて、世帯年収で調整して、各店舗の商圏内における1世帯毎の消費額をIPF法で推定(年収調整)し、それを都市規模に応じてプロットしている。
図14に示すように、点線で示される従来手法のデータでは都心部の店舗と地方都市の店舗との差は5万円程度の差であったが、本システムによって年収調整したデータでは、13万円程度の差が生じる結果となり、都市規模による消費額の差異が明確になっている。
【0062】
[実施の形態の効果]
本システムによれば、家計調査年報の統計データを元に調査項目の表毎に分散分析を行い、品目別消費に対する有意項目の分散分析表を作成し、上位2位の統計表を抽出してマイクロシミュレーションのIPF法によりクロスデータを作成し、更に家計調査年報以外の統計データを元にIPF法により母集団となる小地域単位の世帯数を推計し、クロスデータを小地域単位の世帯数に乗じて小地域単位の品目別消費金額を推定するようにしているので、消費に影響する要素を用いて小地域単位で品目別消費支出額を推計でき、精度の高い小地域の品目毎の市場規模を推定できる効果がある。
【産業上の利用可能性】
【0063】
本発明は、消費に影響する要素を用いて小地域単位で品目別消費支出額を推計でき、精度の高い小地域の品目毎の市場規模を推定できる品目別消費支出シミュレーションシステム及びそのプログラムに好適である。
【符号の説明】
【0064】
1...シミュレーション装置、 2...表示部、 3...入力部、 4...ネットワーク、 5...統計データ提供サーバ、 11...制御部、 12...記憶部、 13...インタフェース部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17