(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
図1は、本発明にかかる一実施形態の三次元造形装置を示す図である。
【0014】
本実施形態の三次元造形装置1は、材料供給部としてのエネルギービーム照射部2と、材料供給部としての粉末供給部3と、造形物載置部4と、を備える。エネルギービーム照射部2、粉末供給部3、及び造形物載置部4は、支持フレーム11に支持される。また、支持フレーム11の中間部分には、支持フレーム11の一部としての基準フレーム12が形成されている。
【0015】
エネルギービーム照射部2は、エネルギービームEBを発生するビーム発生部21と、ビーム発生部21から照射されたエネルギービームEBの焦点位置を調整すると共に、2次元走査可能なビーム走査部22と、を有し、支持フレーム11上に載置される。なお、本実施形態では、ビーム操作部22は2次元走査するものであるが、ビームの焦点位置を上下方向にも動作可能な3次元走査するものであってもよい。
【0016】
ビーム発生部21は、レーザ光又は電子ビーム等を発生するものが好ましい。エネルギービームEBが光の場合、ビーム走査部22は、レンズ等の光学素子を移動させて、光を後述するテーブル上の金属粉末Mに集光させると共に、テーブル41上を2次元走査する。一例として、エネルギービーム照射部2は、特許文献1に記載されたレーザ照射ユニットのような構成でよい。また、エネルギービームEBが電子ビームの場合、ビーム走査部22は、電子ビームを電磁場の制御によってフォーカスさせると共に、テーブル41上を2次元走査する。一例として、エネルギービーム照射部2は、特許文献2に記載された電子線を照射し案内させる装置のような構成でよい。
【0017】
粉末供給部3は、金属粉末Mを一時的に貯留する粉末貯留部31と、金属粉末Mをテーブル上で均す均し部32と、外枠部33と、を有する。
【0018】
粉末貯留部31は、支持フレーム11に保持される容器からなり、上方に金属粉末Mを注入する注入部31aを有し、下方に金属粉末Mを排出する排出部31bを有する。排出部31bは、金属粉末Mの排出量を調整できることが好ましい。
【0019】
均し部32は、粉末貯留部31から排出された金属粉末Mをテーブル41上でスクレーパ等の部材を移動させることによって可能な限り高さが均等な平面を形成する部分である。なお、金属粉末Mを均す高さは調整できることが好ましい。
【0020】
外枠部33は、支持フレーム11に支持され、後述するテーブル41の外周に設置される。外枠部33には、均し部32が均した後の余分な金属粉末Mが移動してくる。これらの金属粉末Mは、粉末貯留部31に戻す図示しない循環部によって循環されることが好ましい。
【0021】
なお、粉末供給部3には、排出部31bから排出された後、造形されなかったテーブル41上の金属粉末Mを粉末貯留部31に戻す図示しない循環部が形成されてもよい。
【0022】
材料供給部は、本実施形態のようなエネルギービーム照射部2及び粉末供給部3に限らず、シート又はテープ状の樹脂、紙、又は金属等を接着する形態、液体を硬化させる形態、インクジェットヘッドを用いて固体又は液体を噴射して接着させる形態、フィラメントを堆積して溶接する形態、若しくは、金属粉末を溶接する形態等でもよい。
【0023】
図2は、本実施形態の三次元造形装置の造形載置部を示す拡大図である。
図3は、本実施形態の三次元造形装置の駆動伝達部の配置を示す概略図である。
図4は、本実施形態の三次元造形装置の造形載置部を示す概略斜視図である。
【0024】
造形物載置部4は、テーブル41と、スライダ42と、ボールねじ43と、減速部44と、テーブル駆動部45と、ロッド48と、リミットスイッチ49と、を有する。
【0025】
テーブル41は、スライダ42に支持される。テーブル41の上面は、平面で形成され、上面に
図1に示した金属粉末Mが排出され、載置される。造形物は、テーブル41の外形よりも小さい造形領域41aに形成されることが好ましい。
【0026】
スライダ42は、上面でテーブル41を支持する。下方では、ボールねじ43に支持される。ボールねじ43は、減速部44を介して駆動部45に連結される。駆動部45は、サーボモータ又はその他のアクチュエータ等からなり、駆動部45が駆動することで、ボールねじ43が回転し、ボールねじ43の回転によってスライダ42が上下することで、テーブル41も上下する。ボールねじ43は、基準フレーム12を貫通することが好ましい。
【0027】
本実施形態では、ボールねじ43、減速部44、及び駆動部45は、それぞれ4つ配設される。なお、ボールねじ43及び減速部44が伝達部を構成する。また、駆動部45と伝達部で駆動伝達部を構成する。なお、減速部44を用いず、駆動部45とボールねじ43の直動機構でもよい。直動機構の場合、バックラッシュを抑制できるので、より高精度に制御することが可能となる。
【0028】
図3に示すように、第1ボールネジ43a、第2ボールネジ43b、第3ボールネジ43c、及び第4ボールネジ43dは、造形領域41aの外側で4つの角に対応してスライダ42に連結される。
【0029】
図4に示すように、第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dは、それぞれ第1減速部44a、第2減速部44b、第3減速部44c、及び第4減速部44dを介して第1ボールネジ43a、第2ボールネジ43b、第3ボールネジ43c、及び第4ボールネジ43dに連結される。
【0030】
また、少なくとも第1ボールネジ43a、第2ボールネジ43b、第3ボールネジ43c、及び第4ボールネジ43dの1つには、ロッド48が取り付けられている。ロッド48は、テーブル41、スライダ42、及びボールねじ43と共に移動する。ロッド48の下方には、リミットスイッチ49が配設される。したがって、テーブル41、スライダ42、ボールねじ43、及びロッド48が下方への移動量が大きい場合或いは上方への移動量が大きいと、リミットスイッチ49が作動し、危険を知らせることが可能となる。
【0031】
次に、本実施形態の三次元造形装置1の制御システムについて説明する。
【0032】
図5は、本実施形態の三次元造形装置1の制御システムを示す図である。
【0033】
図5に示すように、本実施形態の三次元造形装置1は、入力部51及び記憶部52から入力されたそれぞれの信号を制御部50が第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dを独立制御するものである。
【0034】
入力部51は、成形形状、成形圧力、成形速度等の情報を予め入力する。記憶部52は、入力部51から入力された情報及び造形工程等を記憶しており、制御部50にそれらの情報を出力する。
【0035】
例えば、あらかじめモータの回転角度をストローク量に換算し、記憶部52に記憶させて、全軸並行になるようにオープン制御すればよい。また、オープン制御と共に、入力部51として図示しないモータエンコーダー等を用いて、モータの回転角度をストローク量に換算し制御部50に入力して、フィードバック制御してもよい。
【0036】
第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dは、電流、回転速度、及び回転トルク等の信号を制御部50にフィードバックすることが好ましい。
【0037】
次に、本実施形態の三次元造形装置1の作動について説明する。
【0038】
図6〜
図9は、本実施形態の三次元造形装置の造形テーブル部の作動を示す拡大図である。
【0039】
本実施形態の三次元造形装置1では、まず、
図4に示した各駆動部45を駆動し、
図6に示すように、テーブル41を下方に移動する。テーブル41の指示移動量は、
図5に示した入力部51にあらかじめ入力し、記憶部52に記憶しておけばよい。
【0040】
ここで、本実施形態の三次元造形装置1では、記憶部52に記憶した指示移動量の分だけテーブル41を移動させている間に、第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dの電流、回転速度、及び回転トルク等の信号が制御部50に入力される。
【0041】
制御部50は、これらの信号から第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dをそれぞれ独立して制御し、テーブル41を所定の姿勢に制御する。なお、本実施形態では、テーブル41を水平に制御する。
【0042】
続いて、粉末貯留部31の排出部31bから金属粉末Mをテーブル41上に排出する。次に、均し部32によって金属粉末Mをテーブル41上で表面が水平になるように均等に均す。続いて、
図1に示したエネルギービーム照射部2がエネルギービームEBを照射し、
図7に示すように、金属粉末Mを焼結し、造形物M’の一部を形成する。
【0043】
次に、再び
図4に示した各駆動部45を駆動し、
図8に示すように、テーブル41を下方に移動する。テーブル41の移動量は、
図5に示した入力部51にあらかじめ入力し、記憶部52に記憶しておけばよい。
【0044】
ここで、先ほどと同様に、本実施形態の三次元造形装置1では、記憶部52に記憶した指示移動量の分だけテーブル41を移動させている間に、第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dの電流、回転速度、及び回転トルク等の信号が制御部50に入力される。
【0045】
制御部50は、これらの信号から第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dをそれぞれ独立に制御して、テーブル41を所定の姿勢に制御する。なお、本実施形態では、テーブル41を水平に制御する。
【0046】
続いて、粉末貯留部31の排出部31bから金属粉末Mをテーブル41上に排出する。次に、均し部32によって金属粉末Mをテーブル41上で表面が水平になるように均等に均す。続いて、
図1に示したエネルギービーム照射部2がエネルギービームEBを照射し、
図9に示すように、金属粉末Mを焼結し、造形物M’の一部を形成する。
【0047】
図10は、本実施形態の三次元造形装置によって造形物が形成された状態を示す図である。
【0048】
本実施形態の三次元造形装置を
図6〜
図9に示したように作動させることで、
図10に示すように、造形物M’が形成される。
【0049】
このように、第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dをそれぞれ独立に配設したので、テーブル41の姿勢を多くのパターンに設定することができ、多種類の造形物M’を形成することが可能となる。
【0050】
また、第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dをそれぞれ独立に制御して、テーブル41を所定の姿勢に制御することが可能なので、他種類の造形物M’を高精度に形成することが可能となる。
【0051】
さらに、制御部50は、第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dをそれぞれ独立に制御して、テーブル41を水平に制御するので、より高精度の造形物M’を形成することが可能となる。
【0052】
図11は、本発明にかかる他の実施形態の三次元造形装置を示す図である。
図12は、他の実施形態の三次元造形装置の駆動伝達部の配置を示す概略図である。
【0053】
図11及び
図12に示す三次元造形装置1の他の実施形態では、テーブル41の中央の下方に第5駆動部45e、第5減速部44e、及び第5ボールネジ43eを配設する。そして、5つの各駆動部45をすべて独立して制御することが好ましい。
【0054】
このようにテーブル41を5つの位置で支持し、5つの駆動部45で駆動することで、さらに高精度に造形物M’を形成することが可能となる。また、テーブル41の水平度をより高精度に維持することができ、より高精度の造形物M’を形成することが可能となる。さらに、高重量、大面積の大型造形物を載置することが可能となる。
【0055】
図13は、
参考例の三次元造形装置の駆動伝達部の配置を示す概略図である。
なお、この参考例は、本発明には含まれない。
【0056】
図13に示す三次元造形装置1の
参考例では、1つの第1ボールネジ43aを配設する
。
【0057】
このように、テーブル41を1つの位置で支持し、図示しない1つの駆動部45で駆動することで、ボールねじ43、減速部44、及び駆動部45の数を減らすことができ、低コストで造形物M’を形成することが可能となる。
【0058】
なお、テーブル41を支持する第1ボールネジ43aをテーブル41の重心位置に配置すると、テーブル41が安定するので好ましい。
【0059】
図14は、他の実施形態の三次元造形装置の駆動伝達部の配置を示す概略図である。
【0060】
図14に示す三次元造形装置1の他の実施形態では、少なくとも2つの第1ボールネジ43a及び第2ボールネジ43bを配設する。そして、図示しない2つの各駆動部45をすべて独立して制御することが好ましい。
【0061】
このように、テーブル41を2つの位置で支持し、図示しない2つの駆動部45で駆動することで、ボールねじ43、減速部44、及び駆動部45の数を減らすことができ、低コストで造形物M’を形成することが可能となる。
【0062】
なお、テーブル41を支持する第1ボールネジ43a及び第2ボールネジ43bを結ぶ直線がテーブル41の重心を含むように、第1ボールネジ43a及び第2ボールネジ43bを配置すると、テーブル41が安定するので好ましい。
【0063】
図15は、他の実施形態の三次元造形装置の駆動伝達部の配置を示す概略図である。
【0064】
図15に示す三次元造形装置1の他の実施形態では、第1ボールネジ43a及び第2ボールネジ43bと三角形を形成するように、第3ボールネジ43cを配設する。そして、図示しない3つの各駆動部45をすべて独立して制御することが好ましい。
【0065】
このように、テーブル41を3つの位置で支持し、図示しない3つの駆動部45で駆動することで、平面が確定し安定すると共に、ボールねじ43、減速部44、及び駆動部45の数を減らすことができ、低コストで造形物M’を形成することが可能となる。
【0066】
なお、テーブル41を支持する第1ボールネジ43a、第2ボールネジ43b、及び第3ボールネジ43cで形成される三角形がテーブル41の重心を含むように、第1ボールネジ43a、第2ボールネジ43b、及び第3ボールネジ43cを配置すると、テーブル41が安定するので好ましい。
【0067】
図16は、本実施形態の三次元造形装置の駆動伝達部の構造を示す概略図である。
【0068】
図16に示す本実施形態では、駆動部45の駆動力によってボールねじ43のねじ部432を回転させ、ナット部431を上下動させることで、スライダ42を介して、テーブル41を上下動させる。なお、ナット部431とテーブル41を直接連結してもよい。
【0069】
ナット部431は、内側にナット431aが収容され、スライダ42に外側のケース431bが固定される。ナット431aは、ケース431bに対して回転可能である。ねじ部432は、上方でスライダ42に回転可能に固定され、スライダ42の直下でナット431aと螺合し、下方でカップリングを介して減速器44に連結される。また、ねじ部432は、基準フレーム12に固定されるスプラインナット433を貫通する。
【0070】
駆動部45から発生された駆動力は、減速部44を介してねじ部432を回転させる。ねじ部432が回転すると、ナット部431のナット431aが回転する。ナット部431は、ねじ部432に沿って上下動可能なので、ナット431aが回転すると、スライダ42が上下動し、テーブル41が上下動する。
【0071】
図17は、他の実施形態の三次元造形装置の駆動伝達部の構造を示す概略図である。
【0072】
図17に示す実施形態では、駆動部45の駆動力によってボールねじ43のねじ部432を回転させ、ナット部431を上下動させることで、可動フレーム411を上下動させ、ロッド412及びスライダ42を介して、テーブル41を上下動させる。なお、ロッド412とテーブル41を直接連結してもよい。
【0073】
ナット部431は、内側にナット431aが収容され、外側のケース431bが可動フレーム411に一体に取り付けられる。ねじ部432は、上方で支持フレーム11に固定され、可動フレーム411を貫通し、可動フレーム411直下でナット431aと螺合し、下方でカップリングを介して減速器44に連結される。
【0074】
駆動部45から発生された駆動力は、減速部44を介してねじ部432を回転させる。ねじ部432が回転すると、ナット部431のナット431aが回転する。ナット部431は、ねじ部432に沿って上下動可能なので、ナット431aが回転すると、可動フレーム411及びロッド412を介してスライダ42が上下動し、テーブル41が上下動する。
【0075】
図18は、本実施形態の三次元造形装置の駆動伝達部の構造を示す概略図である。
【0076】
図18に示すように、本実施形態では、駆動部45の駆動力によってナット部431のナット431aを回転させ、ボールねじ43のねじ部432を上下動させることで、スライダ42を介して、テーブル41を上下動させる。なお、ねじ部432とテーブル41を直接連結してもよい。
【0077】
ナット部431は、内側にナット431aが収容され、基準フレーム12に固定されたナット支持部41bに外側のケース431bが固定され、上下動不能である。ナット431aは、ケース431bに対して回転可能である。ねじ部432は、上方でテーブル41に回転可能に固定され、下方でナット431aと螺合する。また、ねじ部432は、基準フレーム12に固定されるスプラインナット433を貫通する。
【0078】
減速部44の出力軸44aには、第1プーリ401が固定される。ナット431aには、第2プーリ402が固定される。第1プーリ401と第2プーリ402は、連結ベルト401で連結される。第2プーリ402は、ナット部431のナット431aと共に回転し、ねじ部432を貫通させる。
【0079】
駆動部45から発生された駆動力は、減速部44の出力軸44aを介して第1プーリ401に出力される。第1プーリ401が回転すると、連結ベルト401を介して第2プーリ402が回転する。第2プーリ402が回転すると、ナット部431のナット431aが回転する。ナット部431は、上下動不能なので、ナット431aが回転すると、ねじ部432が上下動する。したがって、テーブル41が上下動する。
【0080】
図19は、他の実施形態の三次元造形装置の駆動伝達部の構造を示す概略図である。
【0081】
図19に示す実施形態では、駆動部45の駆動力によってナット部431のナット431aを回転させ、ボールねじ43のナット部431をねじ部432に対して上下動させることで、可動フレーム411を上下動させ、ロッド412及びスライダ42を介して、テーブル41を上下動させる。なお、ロッド412とテーブル41を直接連結してもよい。
【0082】
ナット部431は、内側にナット431aが収容され、可動フレーム411に固定されたナット支持部41bに外側のケース431bが固定され、可動フレーム411に一体に取り付けられる。また、駆動部45及び減速部44も可動フレーム411に一体に取り付けられ、可動フレーム411と共に上下動する。
【0083】
ねじ部432は、上方で支持フレーム11に固定され、下方でナット431aと螺合する。また、ねじ部432は、可動フレーム411に固定されるスプラインナット433を貫通する。
【0084】
減速部44の出力軸44aには、第1プーリ401が固定される。ナット431aには、第2プーリ402が固定される。第1プーリ401と第2プーリ402は、連結ベルト401で連結される。第2プーリ402は、ナット部431のナット431aと共に回転し、ねじ部432を貫通させる。
【0085】
駆動部45から発生された駆動力は、減速部44の出力軸44aを介して第1プーリ401に出力される。第1プーリ401が回転すると、連結ベルト401を介して第2プーリ402が回転する。第2プーリ402が回転すると、ナット部431のナット431aが回転する。ナット431aが回転すると、ねじ部432が上下動不能なので、ナット431aが上下動する。したがって、ナット部431と共に可動フレーム411が上下動し、ロッド412で連結されたスライダ42及びテーブル41が上下動する。
【0086】
図20は、他の実施形態の三次元造形装置の駆動伝達部の構造を示す概略図である。
【0087】
図20に示す実施形態では、駆動部45として中空のダイレクトドライブモータを用いて、ナット431aを回転させ、ボールねじ43のねじ部432を上下動させることで、スライダ42を介して、テーブル41を上下動させる。なお、ねじ部432とテーブル41を直接連結してもよい。
【0088】
駆動部45は、中空のダイレクトドライブモータでナット431aを駆動させ、中心にねじ部432を貫通させる。
【0089】
ナット部431は、内側にナット431aが収容され、基準フレーム12に対して上下動不能に固定される。ナット431aは、ケース431bに対して回転可能である。ねじ部432は、上方でテーブル41に回転可能に固定され、下方でナット431aと螺合する。
【0090】
駆動部45が駆動力を発生させると、ナット部431のナット431aが回転する。ナット部431は、上下動不能なので、ナット431aが回転すると、ねじ部432が上下動する。したがって、テーブル41が上下動する。
【0091】
図21は、他の実施形態の三次元造形装置の駆動伝達部の構造を示す概略図である。
【0092】
図21に示す実施形態では、駆動部45として中空のダイレクトドライブモータを用いて、ナット431aを回転させ、ボールねじ43のねじ部432を上下動させることで、可動フレーム411を上下動させ、ロッド412及びスライダ42を介して、テーブル41を上下動させる。なお、ロッド412とテーブル41を直接連結してもよい。
【0093】
駆動部45は、中空のダイレクトドライブモータでナット431aを駆動させ、中心にねじ部432を貫通させる。
【0094】
ナット部431は、内側にナット431aが収容され、外側のケース431bが可動フレーム411に対して固定される。ナット431aは、ケース431bに対して回転可能である。ねじ部432は、上方でフレーム11に固定され、下方でナット431aと螺合する。
【0095】
駆動部45が駆動力を発生させると、ナット部431のナット431aが回転する。ナット部431は、ナット431aが回転すると、ねじ部432に沿ってナット431aが上下動する。したがって、ナット部431と共に可動フレーム411が上下動し、ロッド412で連結されたスライダ42及びテーブル41が上下動する。
【0096】
ここで、他の実施形態の三次元造形装置1の駆動伝達部の配置及び構造における制御システムは、
図5で説明したものと同様でよい。
【0097】
本実施形態の三次元造形装置1によれば、支持フレーム11と、支持フレーム11に支持される材料供給部3と、支持フレーム11に支持され、材料供給部3から供給される材料が載置される造形物載置部4と、テーブル41の指示移動量をあらかじめ入力する入力部51と、入力部41から入力された指示移動量を記憶する記憶部52と、材料供給部3及び造形物載置部4を制御する制御部50と、を備え、造形物載置部4は、上面に造形物が載置されるテーブル41と、テーブル41を駆動する駆動部45と、を有し、記憶部52に記憶した指示移動量の分だけテーブル41を移動させるので、精度及び生産性の高い三次元造形装置を提供することが可能となる。
【0098】
本実施形態の三次元造形装置1では、制御部50は、駆動部45の状態信号がフィードバックされるので、より高精度に制御することが可能となる。
【0099】
本実施形態の三次元造形装置1では、駆動部45は、独立して駆動可能な第1駆動部45a及び第2駆動部45bを有し、制御部50は、第1駆動部45a及び第2駆動部45bをそれぞれ独立して制御するので、精度及び生産性の高い三次元造形装置を提供することが可能となる。
【0100】
本実施形態の三次元造形装置1では、造形物載置部4は、第1駆動部45a及び第2駆動部45bの各駆動力をテーブル41にそれぞれ伝達する第1ボールねじ43a及び第2ボールねじ43bを有する伝達部43をさらに備えるので、テーブル41を円滑に移動させることが可能となる。
【0101】
本実施形態の三次元造形装置1では、駆動部45は、四角形を形成する位置に配置される第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dを有し、制御部50は、第1駆動部45a、第2駆動部45b、第3駆動部45c、及び第4駆動部45dをそれぞれ独立して制御可能であるので、より高精度に制御することが可能となる。
【0102】
本実施形態の三次元造形装置1は、テーブル41と共に移動するロッド48と、ロッド48が所定の位置に到達した場合に接触するリミットスイッチ49と、を備えるので、テーブル41の過度な移動を防止することが可能となる。
【0103】
なお、本発明は、この実施形態によって限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、これらの詳細な内容に色々なバリエーションや変更を加えてもよい。