(58)【調査した分野】(Int.Cl.,DB名)
(A)珪素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得る珪素含有基を有する有機重合体がオキシアルキレン系重合体である請求項1または2に記載の導電性接着剤。
【発明を実施するための形態】
【0014】
本発明の導電性接着剤中、(A)成分の有機重合体における架橋性珪素基は珪素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋しうる基である。代表例としては、式(1):
【0016】
(式中、R
1は、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基またはR
23SiO−で示されるトリオルガノシロキシ基(R
2は、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基)を示し、R
1が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Xは加水分解性基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を、bは0、1または2を、それぞれ示す。またn個の式(2):
【0018】
におけるbは同一である必要はない。nは0〜19の整数を示す。但し、a+(bの和)≧1を満足するものとする。)で表わされる基があげられる。
【0019】
該加水分解性基は1個の珪素原子に1〜3個の範囲で結合することができ、a+(bの和)は1〜5の範囲が好ましい。加水分解性基や水酸基が架橋性珪素基中に2個以上結合する場合には、それらは同一であってもよく、異なっていてもよい。
【0020】
架橋性珪素基を形成する珪素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結された珪素原子の場合には、20個程度あってもよい。
なお、式(3):
【0022】
(式中、R
1,X,aは前記と同じ)で表わされる架橋性珪素基が、入手が容易である点から好ましい。また、式(3)の架橋性珪素基においてaが2又は3である場合が好ましい。aが3の場合、aが2の場合よりも硬化速度が大きくなる。
【0023】
上記R
1の具体例としては、たとえばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R
23SiO−で示されるトリオルガノシロキシ基等があげられる。これらの中ではメチル基が好ましい。
【0024】
上記Xで示される加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、たとえば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等があげられる。これらの中では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、アルコキシ基、アミド基、アミノオキシ基がさらに好ましい。加水分解性が穏やかで取扱やすいという観点からアルコキシ基が特に好ましい。アルコキシ基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなるほどに反応性が低くなる。目的や用途に応じて選択できるが、通常メトキシ基やエトキシ基が使用される。式(3)で示される架橋性珪素基の場合、硬化性を考慮するとaは2以上が好ましい。
【0025】
架橋性珪素基の具体的な例としては、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基、−Si(OR)
3、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基、−SiR
1(OR)
2、があげられる。ここでR
1は前記と同じであり、Rはメチル基やエチル基のようなアルキル基である。
【0026】
また、架橋性珪素基は1種で使用しても良く、2種以上併用してもかまわない。架橋性珪素基は、主鎖または側鎖あるいはいずれにも存在しうる。硬化物の引張特性等の硬化物物性が優れる点で架橋性珪素基が分子鎖末端に存在するのが好ましい。
【0027】
架橋性珪素基は重合体1分子中に平均して少なくとも1個、好ましくは1.1〜5個存在するのがよい。分子中に含まれる架橋性珪素基の数が1個未満になると、硬化性が不充分になり、また多すぎると網目構造があまりに密となるため良好な機械特性を示さなくなる。特に、フタル酸エステル系可塑剤のような分子量800以下、さらには分子量1000以下、の低分子量の可塑剤を含有しない、いわゆる無可塑配合の硬化性組成物を製造する場合には架橋性珪素基は重合体1分子中に平均して1.1〜1.5個、さらに好ましくは1.1〜1.3個存在するのがよい。また、無可塑配合の硬化性組成物の場合には直鎖状の重合体を使用するのが好ましい。
【0028】
架橋性珪素基を有する有機重合体の主鎖骨格は特に制限はなく、各種の主鎖骨格を持つものを使用することができる。具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体、ポリオキシプロピレン−ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン−プロピレン系共重合体、ポリイソブチレン等の飽和炭化水素系重合体、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリル、および/またはスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸、テレフタル酸、琥珀酸等の多塩基酸とビスフェノールA、エチレングリコール、ネオペンチルグリコール等の多価アルコールとの縮合重合体やラクトン類の開環重合体等のポリエステル系重合体;ε−カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε−アミノウンデカン酸の縮重合によるナイロン11、ε−アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;エチルアクリレート、ブチルアクリレート等のモノマーをイオン重合やラジカル重合して得られるポリアクリル酸エステル、エチルアクリレート、ブチルアクリレート等のアクリル酸エステルと、酢酸ビニル、アクリロニトリル、メチルメタクリレート、スチレン等とのアクリル酸エステル共重合体等のアクリル酸エステル系重合体;前記有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;たとえばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。
【0029】
上記主鎖骨格をもつ重合体のうち、ポリエステル系重合体、アクリル酸エステル系重合体、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、ポリカーボネート系重合体等が好ましい。特に、架橋性珪素基を分子鎖末端に導入させ易く、比較的低粘度で安価でもあり、ガラス転移温度が低く、得られる硬化物が耐寒性に優れるオキシアルキレン系重合体、耐熱性、耐候性や接着性に優れるアクリル酸アルキルエステル系重合体や電気特性に優れる飽和炭化水素系重合体が好ましい。
【0030】
更には、ポリオキシアルキレン系重合体と(メタ)アクリル酸アルキルエステル系重合体の混合物が硬化物の機械強度に優れ、且つ、耐熱性や基材との接着性にも優れる特性を有するため、本発明に特に適している。架橋性珪素基を有するオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体の混合物を使用する場合、オキシアルキレン系重合体100重量部に対し、(メタ)アクリル酸エステル系重合体を5〜200重量部使用することが好ましく、5〜50重量部使用することがさらに好ましい。
【0031】
架橋性珪素基を有する有機重合体は、直鎖状でもよくまたは分岐を有してもよく、数平均分子量で500〜50,000程度が好ましく、1,000〜30,000がさらに好ましい。分子量が大きくなると、硬度が小さくなる傾向にある。
【0032】
上記重合体の中でポリオキシアルキレン系重合体は本質的に式(4)で示される繰り返し単位を有する重合体である。
【0034】
(式中、R
3は2価の有機基)
式(4)におけるR
3は、炭素数1〜14の、さらには2〜4の、直鎖状もしくは分岐状アルキレン基が好ましい。式(4)で示される繰り返し単位の具体例としては、例えば、
【0036】
等があげられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にオキシプロピレンを主成分とする重合体から成るのが好ましい。
【0037】
ポリオキシアルキレン系重合体を使用する場合、その分子量は硬化物の引張特性である引張モジュラスを小さくし破断時伸びを大きくするため大きいほうが好ましい。本発明においては、数平均分子量の下限としては5,000が好ましく、10,000がさらに好ましい。また、数平均分子量の上限は50,000が好ましく、30,000がさらに好ましい。なお、本発明でいう数平均分子量はゲルパーミエーションクロマトグラフィーによるポリスチレン換算分子量をいう。数平均分子量が5,000未満の場合、引張モジュラスや破断時伸びが十分でない場合があり、50,000を超えると組成物の粘度が大きくなり作業性が低下することがある。
【0038】
ポリオキシアルキレン系重合体は直鎖状でもよくまたは分岐を有してもよいが、硬化物の引張モジュラスを小さくし破断時伸びを大きくできるため直鎖状の重合体が好ましい。また、架橋性珪素基を有するポリオキシアルキレン系重合体の分子量分布は2以下、特には1.6以下が好ましい。
【0039】
ポリオキシアルキレン系重合体の合成法としては、たとえばKOHのようなアルカリ触媒による重合法、たとえば特開昭61−197631号、同61−215622号、同61−215623号、同61−215623号に示されるような有機アルミニウム化合物とポルフィリンとを反応させて得られる、有機アルミニウム−ポルフィリン錯体触媒による重合法、たとえば特公昭46−27250号および特公昭59−15336号などに示される複金属シアン化物錯体触媒による重合法等があげられるが、特に限定されるものではない。有機アルミニウム−ポルフィリン錯体触媒による重合法や複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いオキシアルキレン系重合体を得ることができる。
【0040】
上記ポリオキシアルキレン類の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、たとえばトルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン類との反応から得られるものをあげることができる。
【0041】
ポリオキシアルキレン系重合体への架橋性珪素基の導入は、分子中に不飽和基、水酸基、エポキシ基やイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を示す官能基および架橋性珪素基を有する化合物を反応させることにより行うことができる。この方法(以下、高分子反応法という)はポリエステル系重合体、ポリアミド系重合体、リビング重合により得られる不飽和単量体の重合体にも好適に使用される。これらの重合体は分子鎖末端に水酸基等の官能基を有しているので、末端に架橋性珪素基を導入しやすいためである。
【0042】
高分子反応法の具体例として、不飽和基含有オキシアルキレン系重合体に架橋性珪素基を有するヒドロシランや架橋性珪素基を有するメルカプト化合物を作用させてヒドロシリル化やメルカプト化し、架橋性珪素基を有するオキシアルキレン系重合体を得る方法をあげることができる。不飽和基含有オキシアルキレン系重合体は水酸基等の官能基を有する有機重合体に、不飽和ハロゲン化合物のような、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有するオキシアルキレン系重合体を得ることができる。
【0043】
また、高分子反応法の他の具体例として、末端に水酸基を有するオキシアルキレン系重合体とイソシアネート基および架橋性珪素基を有する化合物を反応させる方法や末端にイソシアネート基を有するオキシアルキレン系重合体と水酸基やアミノ基等の活性水素基および架橋性珪素基を有する化合物を反応させる方法をあげることができる。イソシアネート化合物を使用すると、容易に架橋性珪素基を有するオキシアルキレン系重合体を得ることができる。高分子反応法はオキシアルキレン系重合体以外の他の重合体にも適用することが可能である。
【0044】
架橋性珪素基を有するオキシアルキレン重合体の具体例としては、特公昭45−36319号、同46−12154号、特開昭50−156599号、同54−6096号、同55−13767号、同57−164123号、特公平3−2450号、特開2005−213446号、同2005−306891号、国際公開特許WO2007−040143号、米国特許3,632,557号、同4,345,053号、同4,960,844号等の各公報に提案されているものをあげることができる。
【0045】
架橋性珪素基を有する(メタ)アクリル酸アルキルエステル系重合体は本質的に式(5)で示される繰り返し単位を有する重合体である。
【0047】
(式中、R
4は水素原子またはメチル基、R
5はアルキル基を示す)
式(5)におけるR
5はアルキル基であり、炭素数1〜30のアルキル基が好ましい。R
5は直鎖状であってもよく、分岐状であってもよい。また、ハロゲン原子やフェニル基等を有する置換アルキル基でもよい。R
5の例としては、メチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基、2−エチルヘキシル基、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基、グリシジル基等のエポキシ基置換アルキル基、ジエチルアミノエチル基等のアミノ基置換アルキル基等をあげることができる。
【0048】
(メタ)アクリル酸アルキルエステル系重合体の分子鎖は本質的に式(5)の単量体単位からなるが、ここでいう本質的にとは該重合体中に存在する式(5)の単量体単位の合計が50重量%をこえることを意味する。式(5)の単量体単位の合計は好ましくは70重量%以上である。
【0049】
式(5)以外の単量体単位の例としては、アクリル酸、メタクリル酸等の(メタ)アクリル酸;アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド等のアミド基、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α−メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。
【0050】
架橋性珪素基を有する(メタ)アクリル酸アルキルエステル系重合体は上記したように、オキシアルキレン系重合体と混合して使用されることがある。この場合、架橋性珪素基を有するオキシアルキレン系重合体との相溶性が大きい点で、架橋性珪素基を有し分子鎖が、下記式(6):
【0052】
(式中、R
4は前記に同じ、R
6は炭素数1〜5のアルキル基を示す)で表される(メタ)アクリル酸エステル単量体単位と、下記式(7):
【0054】
(式中、R
4は前記に同じ、R
7は炭素数6以上のアルキル基を示す)で表される(メタ)アクリル酸エステル単量体単位からなる共重合体が好ましい。
【0055】
前記式(6)のR
6としては、たとえばメチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基等の炭素数1〜5、好ましくは1〜4、さらに好ましくは1〜2のアルキル基があげられる。なお、R
6は一種でもよく、2種以上混合していてもよい。
【0056】
前記式(7)のR
7としては、たとえば2−エチルヘキシル基、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素数6以上、通常は7〜30、好ましくは8〜20の長鎖のアルキル基があげられる。なお、R
7は一種でもよく、2種以上混合したものであってもよい。また、式(6)の単量体単位と式(7)の単量体単位の存在比は、重量比で95:5〜40:60が好ましく、90:10〜60:40がさらに好ましい。
【0057】
架橋性珪素基を有する(メタ)アクリル酸アルキルエステル系重合体は通常、(メタ)アクリル酸アルキルエステルと架橋性珪素基を有する(メタ)アクリル酸アルキルエステルをラジカル共重合して得ることができる。また、架橋性珪素基を有する開始剤や架橋性珪素基を有する連鎖移動剤を使用すると分子鎖末端に架橋性珪素基を導入することができる。
【0058】
特開2001−040037号公報、特開2003−048923号公報および特開2003−048924号公報には架橋性珪素基を有するメルカプタンおよびメタロセン化合物を使用して得られる架橋性珪素基を有する(メタ)アクリル酸アルキルエステル系重合体が記載されている。また、特開2005−082681号公報合成例には高温連続重合による架橋性珪素基を有する(メタ)アクリル酸アルキルエステル系重合体が記載されている。
【0059】
特開2000−086999号公報等にあるように、架橋性珪素基を有する(メタ)アクリル酸アルキルエステル系重合体であって架橋性珪素基が分子鎖末端に高い割合で導入された重合体も知られている。このような重合体はリビングラジカル重合によって製造されているため、高い割合で架橋性珪素基を分子鎖末端に導入することができる。本発明では以上に述べたような(メタ)アクリル酸アルキルエステル系重合体を使用することができる。
【0060】
架橋性珪素基を有する(メタ)アクリル酸エステル系重合体やこの重合体と架橋性珪素基を有するオキシアルキレン重合体の混合物の具体例は、特開昭59−122541号、同63−112642号、同特開平6−172631号等の各公報に記載されている。また、特開昭59−78223号、特開昭59−168014号、特開昭60−228516号、特開昭60−228517号等の各公報には、架橋性珪素基を有するオキシアルキレン重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行い、架橋性珪素基を有するオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸アルキルエステル系重合体の混合物を得る方法が記載されている。
【0061】
有機重合体の中で飽和炭化水素系重合体は、芳香環以外の炭素−炭素不飽和結合を実質的に含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、1−ブテン、イソブチレンなどのような炭素原子数2〜6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。
【0062】
主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、及び、湿気遮断性に優れる特徴を有する。イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよいが、ゴム特性の面からイソブチレンに由来する繰り返し単位を50質量%以上含有するものが好ましく、80質量%以上含有するものがより好ましく、90〜99質量%含有するものが特に好ましい。
【0063】
飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されているが、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J. P. Kennedyら、 J. Polymer Sci., Polymer Chem.Ed.1997年、15巻、2843頁)を用いることにより容易に製造することが可能であり、分子量500〜100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。
【0064】
架橋性珪素基を有する飽和炭化水素系重合体の製法としては、たとえぱ、持公平4ー69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特開平1−197509号、特許公報第2539445号、特許公報第2873395号、特開平7−53882号の各明細書などに記載されているが、特にこれらに限定されるものではない。
【0065】
上記の架橋性珪素基を有する飽和炭化水素系重合体は、単独で使用してもよいし2種以上併用してもよい。
【0066】
本発明に使用する(B)成分の導電性金属粒子は結晶成長させた金属粒子であって結晶成長後の形状が複数の桿状及び/又は鱗片状の小片が互いに結合している形状の金属粒子である。以下、(B)成分の導電性金属粒子を単に凹凸状導電性粒子ともいう。ここで桿状の小片は棒状小片及び線状小片を含む。(B)成分の凹凸状導電性粒子は
図1のように金属粒子が一本の桿状の主軸を有し、該主軸から複数の桿状の枝が分岐している金属粒子であってもよい。この場合、長径が2μm未満の桿状小片は小片の個数として数えないものとする。小さい小片は導電性に与える影響が小さいと考えられるからである。(B)成分の凹凸状導電性粒子は
図2のように金属粒子が複数の桿状の主軸を有し、該主軸から複数の桿状の枝が分岐している金属粒子であってもよい。
【0067】
(B)成分の凹凸状導電性粒子は
図3のように金属粒子が1以上の桿状の主軸を有し、該主軸から複数の桿状の枝が分岐して、桿状の枝に鱗片状の小片が結合している金属粒子であってもよい。この場合、主軸の数、枝の数及び鱗片状の小片の数の合計が小片の合計数になる。主軸の太さは0.3μm以上5.0μm以下が好ましく、主軸から伸びた枝の中で最も長い枝の長さが0.6μm以上10.0μm以下が好ましい。
【0068】
また、(B)成分の凹凸状導電性粒子は
図4のように一つの核から桿状の小片が放射状に結晶成長している金属粒子であってもよい。さらに
図5のように一つの核から鱗片状の小片が放射状に結晶成長している金属粒子であってもよい。小片、特に鱗片状の小片、は切れ目がない小片であってもよいし切れ目がある小片であってもよく、のこぎり刃状の小片であってもよい。また、複数の鱗片は全体として一つの鱗片になるような形状は(B)成分の凹凸状導電性粒子の形状ではない。
【0069】
一つの(B)成分の凹凸状導電性粒子における小片の個数は2以上であればよいが5以上が好ましく、10以上がさらに好ましい。小片の長径が2μm未満の場合、小片の個数として計算しないものとする。
【0070】
(B)成分の凹凸状導電性粒子の粒径は中心粒径(D50)、すなわちレーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50として、3.0μm〜30.0μmであるのが好ましい。導電性粒子として大きな粒子であると、ペースト中の導電性粒子のネットワークが少なくなるため、導電性能が低下するおそれがある。また、粒子径が小さ過ぎても、導電性粒子のネットワークが少なくなるため、導電性能が低下するおそれがある。中心粒径(D50)は3.0μm〜30.0μmであるのが好ましく、中でも4.0μm以上或いは25.0μm以下、その中でも特に20.0μm以下であるのがさらに好ましい。また、タップ密度が0.3〜2.0g/cm
3のものが好ましい。また、BET比表面積(SSA)は、0.30〜1.50m
2/gであるのが好ましい。なお、タップ密度はJISK5101−12−2に準じた方法による測定値である。
【0071】
(B)成分の凹凸状導電性粒子は結晶成長後の形状が複数の桿状及び/又は鱗片状の小片が互いに結合している形状であることが必要である。結晶成長後の形状でなく一次粒子が凝集した状態において、複数の桿状及び/又は鱗片状の小片が互いに結合している形状は本発明の(B)成分の凹凸状導電性粒子に含まれるものではない。一次粒子が凝集した状態において、複数の桿状及び/又は鱗片状の小片が互いに結合している形状の場合、接着剤を製造する工程で混練操作などでそのような形状が崩れやすいからである。
【0072】
(B)成分の凹凸状導電性粒子としては、銀粒子や銅粒子に銀を被覆したものが好ましい。被覆方法としては置換メッキ被覆法が好ましい。(B)成分の凹凸状導電性粒子は特許文献5や特許文献6に記載されている。また、三井金属鉱業(株)よりACAX−2、ACAX−3あるいはACBY−3として販売されている。
【0073】
本発明に使用する(C)成分である1個の鱗片からなる鱗片状導電性粒子は鱗状あるいはフレーク状導電性粒子ともよばれる。鱗片の平面形状は円状、楕円状や長方形などいかなる形状であってもよい。また、円状や楕円状のものが複数結合した団子状であってもよいが全体として鱗片状であることが必要である。鱗片状導電性粒子における扁平度はこの粒子の平均粒径の平均厚さに対する比(粒子の平均粒径/粒子の平均厚さ)が5〜1000が好ましく、10〜500がさらに好ましく、10〜200が特に好ましい。なお、(B)成分の凹凸状導電性粒子の扁平度は5未満が好ましい。平均径及び平均厚さは、適当な倍率、例えば1,000倍程度、の電子顕微鏡において観測される粒子から無作為に抽出した30個の粒子の粒径及び厚さを平均したものをいう。粒径は、粒子を平面上に置いて安定状態とした際の、この平面と垂直方向の投影による投影像を一定方向の平行線で挟んだときの間隔であり、厚さは、平面から最も高い部位までの高さである。
【0074】
(C)成分の鱗片状導電性粒子中心粒径(D50)が1〜20μm、比表面積が0.1〜5m
2/gでタップ密度が1〜10g/cm
3のものが好ましい。中心粒径(D50)が1.0〜10μmが好ましく、比表面積が0.1〜1.5m
2/gが好ましく、タップ密度1.0〜7.0g/cm
3が好ましい。
【0075】
また、鱗片状導電性粒子(C)としてはレーザー回折散乱式粒度分布測定法による10%粒子径をD10、50%粒子径をD50、90%粒子径をD90及び粒径の標準偏差をSDとしたとき、SD/D50が0.5以下であり、且つ、D90/D10が4.0以下の鱗片状導電性粒子を使用することが好ましい。鱗片状導電性粒子(C)としては50%粒子径(D50)が1.0〜10.0μmが好ましく、比表面積が0.3〜1.5m
2/gが好ましく、タップ密度1.0〜7.0g/cm
3が好ましい。
【0076】
本発明においては凹凸状導電性粒子(B)と鱗片状導電性粒子(C)の質量比(B)/(C)=30/60〜95/5の混合物を用いる。30/60未満であるとデンドライト状導電性粒子(B)が少なく導電性が低下する恐れがあり、95/5を超えるとデンドライト状導電性粒子(B)が多すぎてペースト状(液状物)にならない場合がある。
【0077】
また、凹凸状導電性粒子(B)と鱗片状導電性粒子(C)の合計量は揮発性成分を除く導電性接着剤中65質量%以上85質量%以下である。65質量%未満であると導電性が低下する場合があり、85質量%を超えると流動性がある接着剤を得るのが困難になる場合がある。揮発性成分には溶剤や希釈剤がある。反応性希釈剤や希釈剤であっても使用状況により揮発しないものは接着剤成分とする。本発明の接着剤には凹凸状導電性粒子(B)と鱗片状導電性粒子(C)以外の導電性粒子を含んでいてもよい。
【0078】
本発明に使用する(D)成分であるシラノール縮合触媒は(A)成分である架橋性珪素基を有する有機重合体を架橋硬化するための触媒である。本発明の導電性接着剤にシラノール縮合触媒が存在しないとしまりは発生しない。シラノール縮合触媒の例としては、アルキルチタン酸塩、有機珪素チタン酸塩、ビスマストリス2−エチルヘキソエート、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫ジアセテート、ジオクチル錫ジジバーサテート、ジオクチル錫ジラウレート、ジオクチル錫マレエート、ジオクチル錫ジアセテート、オクチル酸錫、ナフテン酸錫等の如きカルボン酸の金属塩:ジブチルアミン−2−エチルヘキソエート等の如きアミン塩:並びに他の酸性触媒および塩基性触媒をあげることができる。これらの中では有機錫化合物が好ましく、4価の錫化合物がさらに好ましく、ジオクチル錫ジバーサテート等の4価の錫化合物であるジオクチル錫化合物が特に好ましい。シラノール縮合触媒を使用する場合、(A)成分100質量部に対し、通常0.1〜20質量部の範囲、好ましくは0.2〜10質量部の範囲で使用するのが良い。
【0079】
本発明の導電性接着剤には、さらに、充填剤、接着性付与剤、脱水剤、酸化防止剤、光安定剤、希釈剤、可塑剤、滑剤、顔料、発泡剤、エポキシ樹脂やエポキシ樹脂硬化剤などを必要に応じて添加することができる。
【0080】
充填剤の例としては、フュームシリカ、沈降性シリカ、無水ケイ酸およびカーボンブラックの如き補強性充填剤;炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、硬化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、酸化亜鉛、活性亜鉛華、水添ヒマシ油およびシラスバルーン、などの如き充填剤;石綿、ガラス繊維およびフィラメントの如き繊維状充填剤等が使用できる。
【0081】
これらの充填剤の使用により強度の高い硬化物を得たい場合には、主にフュームシリカ、沈降性シリカ、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤を使用すれば好ましい結果が得られる。また、低強度で伸びが大である硬化物を得たい場合には、主に酸化チタン、炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を使用すれば好ましい結果が得られる。もちろんこれらの充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。充填剤を使用する場合、(A)成分100質量部に対し、通常1〜300質量部の範囲、好ましくは5〜300質量部の範囲、さらに好ましくは5〜250質量部で使用するのが良い。
【0082】
接着性付与剤は基材に対する接着性を向上させるためのものである。接着性付与剤としては、シランカップリング剤、チタンカップリング剤、アルミカップリング剤等が挙げられるが、好ましくはシランカップリング剤である。シランカップリング剤は架橋性珪素基と他の官能基を有する化合物である。
【0083】
このようなシラン化合物としては、ビニルアルキル(炭素数1〜4)アルコキシ(炭素数1〜4)シラン(例えばビニルトリメトキシシラン、ビニルトリエトキシシラン等)、(メタ)アクリロイロキシアルキル(炭素数1〜4)アルコキシ(炭素数1〜4)シラン(例えばγ−メタクリロキシプロピルトリメトキシシラン等)、アルキル(炭素数1〜4)アルコキシ(炭素数1〜4)シラン(例えばメチルトリメトキシシラン、メチルトリエトキシシラン等)、アミノ(分子中に1〜4個)アルキル(炭素数2〜15)アルコキシ(炭素数1〜4)シラン(例えばγ−(2−アミノエチル)アミノプロピルトリメトキシシラン、アミノプロピルトリメトキシシラン、N−フェニルアミノプロピルメチルジメトキシシラン等)、エポキシ(分子中に1〜4個)アルキル(炭素数1〜4)アルコキシ(炭素数1〜4)シラン(例えばγ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等)、メルカプト(分子中に1〜4個)アルキル(炭素数1〜4)アルコキシ(炭素数1〜4)シラン(例えばγ−メルカプトプロピルトリメトキシシラン等)等が挙げられる。
【0084】
これらの中ではアミノ基と架橋性珪素基を有するシランカップリング剤(以下、アミノシランともいう)が接着性改善効果が大きいので好ましい。また、アミノ基をケチミン化したケチミノシランのように、水と反応して、1分子中に少なくとも1個のアルコキシシリル基を有するアミン化合物を生成するアルコキシシラン化合物を使用することができる。水と反応して、1分子中に少なくとも1個のアルコキシシリル基を有するアミン化合物を生成するアルコキシシラン化合物はKBE−9103(信越化学工業株式会社製)、サイラエースS340(チッソ株式会社製)、Z−6860(東レ・ダウコーニング株式会社製)等として市販されている。
【0085】
接着性付与剤の使用量は、(A)成分の架橋性珪素基を有する有機重合体100質量部に基づいて0.1〜20質量部が好ましく、1〜10質量部がさらに好ましい。これらの接着性付与剤は、2種以上併用して使用しても差し支えがない。
【0086】
本発明の導電性接着剤は、脱水剤をさらに含むことができる。脱水剤は(A)成分の架橋性珪素基を有する有機重合体が保存中に架橋することを防止する。脱水剤としてシリケート挙げることができる。例えば、テトラアルコキシシランまたはその部分加水分解縮合物があげられ、より具体的には、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラ−t−ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物が挙げられる。脱水剤として上記したシランカップリング剤を使用することができる。
【0087】
脱水剤の配合割合は特に制限はないが、(A)成分100質量部に対して、0.1〜50質量部が好ましく、1〜50質量部がより好ましい。水分吸収剤は、単独で用いてもよく、2種以上を併用してもよい。
【0088】
酸化防止剤としては、p−フェニレンジアミン系酸化防止剤、アミン系酸化防止剤、ヒンダードフェノール系酸化防止剤や、二次酸化防止剤としてリン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。酸化防止剤の添加量は、特に限定されないが、(A)成分100質量部に対して、好ましくは0.1〜10質量部、更に好ましくは0.5〜5質量部の範囲で使用できる。
【0089】
光安定剤は各種のものが知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー化学発行の「高分子材料の劣化と安定化」(235〜242)等に記載された種々のものが挙げられるが、これらに限定されるわけではない。光安定剤の中でも、紫外線吸収剤が好ましく、具体的には、チヌビンP、チヌビン234、チヌビン320、チヌビン326、チヌビン327、チヌビン329、チヌビン213(以上いずれも日本チバガイギー社製)等のようなベンゾトリアゾール系化合物やチヌビン1577等のようなトリアジン系、CHIMASSORB81等のようなベンゾフェノン系、チヌビン120(日本チバガイギー社製)等のようなベンゾエート系化合物等が例示できる。
【0090】
また、ヒンダードアミン系化合物も好ましく、そのような化合物は具体的には特開2006−274084号公報記載のものが挙げられるが、これらに限定されるものではない。更には紫外線吸収剤とヒンダードアミン系化合物の組み合わせはより効果を発揮することがあるため、特に限定はされないが併用しても良く、併用することが好ましいことがある。光安定剤は前述した酸化防止剤と併用してもよく、併用することによりその効果を更に発揮し、特に耐候性が向上することがあるため特に好ましい。予め光安定剤と酸化防止剤を混合してあるチヌビンC353、チヌビンB75(以上いずれも日本チバガイギー社製)などを使用しても良い。
【0091】
光安定剤の使用量は、(A)成分100質量部に対して0.1〜10質量部の範囲であることが好ましい。0.1質量部未満では耐候性を改善の効果が少なく、10質量部超では効果に大差がなく経済的に不利である。
【0092】
希釈剤としては、例えば、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素、メチルシクロヘキサン等の脂環式炭化水素、ガソリンから灯油留分にいたる石油系溶剤類、ジメチルアジペート(DMA)、2,2,4−トリメチル−1,3−ペンタンジオールジイソブチレート(TXIB)、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルシクロヘキサノン等のケトン類、テトラヒドロフラン、セロソルブアセテート、ブチルセロソルブアセテート等のエーテルエステル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン等の含窒素系溶剤等が挙げられる。
【0093】
希釈剤を使用する場合、(A)成分100質量部に対し、通常0.5〜50質量部の範囲、好ましくは1〜30質量部の範囲で使用するのが良い。
【0094】
可塑剤の具体例としては、ジオクチルフタレート、ジブチルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;アジピン酸ジオクチル、コハク酸イソデシル、セバシン酸ジブチル等の脂肪族二塩基酸エステル類;ジエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のグリコールエステル類;オレイン酸ブチル、アセチルリシノール酸メチル等の脂肪族エステル類;リン酸トリクレジル、リン酸トリオクチル、リン酸オクチルジフェニル等のリン酸エステル類;2塩基酸と2価アルコールとのポリエステル類等のポリエステル系可塑剤類;ポリプロピレングリコールやその誘導体等のポリエーテル類;パラフィン系炭化水素、ナフテン系炭化水素、パラフィン−ナフテン系混合炭化水素等の炭化水素系可塑剤類;塩素化パラフィン類;低分子量のアクリル酸エステル重合体等が挙げられる。これらの可塑剤は単独で使用してもよく、2種類以上併用してもよい。特にアクリル酸エステル重合体を使用すると硬化物の耐候性を改善することができる。
【0095】
可塑剤を使用する場合、(A)成分100質量部に対し、通常10〜300質量部の範囲、好ましくは20〜250質量部の範囲で使用するのが良い。可塑剤の使用量が10質量部未満の場合には組成物の粘度が高くなりすぎる場合があり、また300質量部を越える場合は硬化物からの可塑剤の染み出しなどが生じる場合があるため好ましくない。
【0096】
エポキシ樹脂としては、分子中に2個以上のエポキシ基を有する化合物を挙げることができる。このような化合物として、エピクロルヒドリン−ビスフェノールA型エポキシ樹脂、エピクロルヒドリン−ビスフェノールF型エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、p−オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m−アミノフェノール系エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンなどのごとき多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ樹脂、石油樹脂などのごとき不飽和重合体のエポキシ化物などが例示されるが、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用され得る。
【0097】
エポキシ樹脂を使用する場合その使用量は(A)架橋性珪素基を有する重合体100質量部に対して1〜1000質量部の範囲が好ましい。より好ましい範囲は2〜500質量部、さらには5〜300質量部、特には5〜200質量部である。
【0098】
エポキシ樹脂硬化剤としては、通常市販されているエポキシ樹脂硬化剤を一種又は複数種選択して使用し得る。このような硬化剤としては、例えば、アミン類、酸無水物類、イミダゾール類やその他の硬化剤を挙げることができる。
【0099】
アミン類としては、第一〜第三級アミンを使用できる。第一級アミンとしては脂肪族アミン(ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン、ポリメチレンジアミン(トリメチルヘキサメチレンジアミン、ポリエーテルジアミン、ジエチルアミノプロピルアミン))、脂環族アミン(メンセンジアミン)、芳香環を含む脂肪族アミン(メタキシレンジアミン)、芳香族アミン(メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、芳香族ジアミン共融混合物)、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ〔5,5〕ウンデカン)、変性アミン(アミンアダクト、シアノエチル化ポリアミン)を例示できる。第二級及び第三級アミンとしては直鎖第二級アミン、直鎖第三級アミン、テトラメチルグアニジン、ピペリジン、ピリジン、ピコリン、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノールを例示できる。
【0100】
酸無水物類としては、芳香族酸無水物(無水フタル酸、無水トリメリット酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、無水ピロメリット酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸無水物)、環状脂肪族酸無水物(無水マレイン酸、無水コハク酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、アルケニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸無水物)、脂肪族酸無水物、ポリカルボン酸無水物、ハロゲン化酸無水物、クロレシド酸無水物を例示できる。
【0101】
イミダゾール類としては、2−メチルイミダゾール、2−エチル−4メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウム・トリメリテート、2,4−ジアミノ−6−〔2−メチルイミダゾリル−(1)〕−エチル−S−トリアジン、四級塩(1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド)、イソシアヌル酸塩(2−フェニルイミダゾリウムイソシアヌレート)、ヒドロキシメチル体(2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール)、三フッ化ホウ素−アミン・コンプレックスを例示できる。
【0102】
その他の硬化剤としては、ポリアミド樹脂(ダイマー酸とポリアミンの縮合物)、ジシアンジアミド及びその誘導体、(o−トリルビグアニド、α−2、5−ジメチルビグアニド)、有機酸ヒドラジッド(コハク酸ヒドラジド、アジピン酸ヒドラジド)、ジアミノマレオニトリルとの誘導体、メラミン及びその誘導体、アミンイミド、ポリアミンの塩、オリゴマー類:合成樹脂初期縮合物(ノボラックフェノール樹脂、ノボラッククレゾール樹脂)、ポリビニルフェノール(ポリ−p−ビニルフェノール)を挙げることができる。
【0103】
特に、アミン類を使用するのが好適であり、硬化性の優れた樹脂組成物を得ることができる。また、アミノ基をケチミン化した化合物を使用でき、この場合、貯蔵中には硬化しない1液型硬化性組成物を容易に製造することができる。
【0104】
エポキシ樹脂硬化剤を使用する場合、エポキシ樹脂100質量部に対して5〜200質量部使用するのが好ましい。滑剤、顔料あるいは発泡剤としては一般に市販されているものを使用できる。
【0105】
本発明の導電性接着剤を製造する方法は特に制限はなく、例えば、配合物質を所定量配合し、脱気攪拌することにより製造することができる。本発明の導電性接着剤は、必要に応じて1液型とすることもできるし、2液型とすることもできるが、特に1液型として好適に用いることができる。本発明の導電性接着剤は大気中の湿気により常温で硬化することが可能であり、常温湿気硬化型接着剤として好適に用いられるが、必要に応じて、適宜、加熱により硬化を促進させてもよい。また、本発明の導電性接着剤は、引火点が65℃未満の溶剤を含有しないことが好ましい。
【0106】
本発明の導電性接着剤は、ハンダに代替して、電子部品の接着に使用することができる導電性接着剤としても好適に使用することができる。また、スクリーン印刷や光レジスト法によってプリント基板の導電回路を形成することにも使用することができる。本発明の導電性接着剤を使用するとハンダを使用しない電気製品を安価に製造することができる。
【実施例】
【0107】
以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。
【0108】
(合成例1)
ポリオキシプロピレンジオールにナトリウムメトキシド(NaOMe)のメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去し、さらに生成した金属塩を水により抽出除去して、末端にアリル基を有するポリオキシプロピレンを得た。得られたアリル基末端ポリオキシプロピレンに対し、白金ビニルシロキサン錯体のイソプロパノール溶液を添加し、トリメトキシシランを反応させ、PPG(ポリプロピレングリコール)換算の質量平均分子量が約25000、1分子当たり1.5個の末端トリメトキシシリル基を有するポリオキシプロピレン系重合体A1を得た。
【0109】
(合成例2)
合成例1で用いたポリオキシプロピレンジオールより分子量が小さいポリオキシプロピレンジオールにナトリウムメトキシド(NaOMe)のメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去し、さらに生成した金属塩を水により抽出除去して、末端にアリル基を有するポリオキシプロピレンを得た。得られたアリル基末端ポリオキシプロピレンに対し、白金ビニルシロキサン錯体のイソプロパノール溶液を添加し、トリメトキシシランを反応させ、PPG換算の質量平均分子量が約15000、1分子当たり1.5個の末端トリメトキシシリル基を有するポリオキシプロピレン系重合体A2を得た。
【0110】
(合成例3)
フラスコに溶剤である酢酸エチル40質量部、メチルメタクリレート59質量部、2−エチルヘキシルメタクリレート25質量部、γ−メタクリロキシプロピルメチルジメトキシシラン21質量部、及び金属触媒としてルテノセンジクロライド0.1質量部を仕込み窒素ガスを導入しながら80℃に加熱した。ついで、3−メルカプトプロピルメチルジメトキシシラン7.5質量部をフラスコ内に添加し80℃で6時間反応を行った。室温に冷却後、ベンゾキノン溶液(95%THF溶液)を20質量部添加して重合を停止した。溶剤および未反応物を留去し、ポリスチレン換算の質量平均分子量が約6000であり、Mw/Mnが1.6であり、Tgが61.2℃であるジメトキシシリル基を有するアクリル酸エステル系重合体A3を得た。
【0111】
(実施例1)
表1に示す配合割合(質量基準)にて、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着したフラスコに、合成例1で得られた架橋性珪素基を有するオキシプロピレン系重合体A1、合成例2で得られた架橋性珪素基を有するオキシプロピレン系重合体A2、合成例3で得られた架橋性珪素基を有するアクリル系重合体A3、(B)成分の凹凸状導電性粒子、(C)成分の鱗片状導電性粒子、充填剤として微粉シリカ、酸化防止剤としてヒンダードフェノール系酸化防止剤とヒンダードアミン系酸化防止剤、光安定剤としてヒンダードアミン系光安定剤及び希釈剤としてノルマルパラフィンを混合した。該混合物を加熱(100℃)、脱気、撹拌を2時間することによって混練及び脱水をした。冷却後、その混合物に接着性付与剤として3−アミノプロピルトリメトキシシラン、脱水剤としてビニルトリメトキシシランとn−デシルトリメトキシシラン及びシラノール縮合触媒としてジオクチル錫ジバーサテートを添加し、混合撹拌することにより導電性接着剤を調製した。
この導電性接着剤を10mlのポリエチレン製シリンジ(武蔵エンジニアリング(株)製 クリアシリンジ PSY−10E)に充填し、さらにアルミ袋に入れて脱気・密封した。その後23℃、50%RH下で雰囲気下にて1か月放置し、しまりを評価した。また、所定の評価サンプルを作成し体積抵抗率を評価した。
【0112】
(比較例1、比較例2)
鱗片状導電性粒子を配合しなかったことを除いて、実施例1と同様に導電性接着剤を調製し、しまり及び体積抵抗率を評価した。しまり及び体積抵抗率の評価方法は次の通りである。
【0113】
(しまり)
23℃、50%RH下で1ヶ月保管したサンプルを吐出圧力300kPa、吐出時間2秒として所定時間内に吐出される重量を測定した。吐出量が保管前の吐出量の70%以上の場合はしまりなし、70%未満の場合はしまりありとした。使用した装置は以下の通りである。
ディスペンスコントローラ: 武蔵エンジニアリング(株)製 ML−80FX
ノズル: 武蔵エンジニアリング(株)製 2条ネジテーパノズル TPND−18G 内径0.84mm
【0114】
(体積抵抗率)
導電性接着剤を、スペーサーを用いて約2OOμmの厚みに伸延し、23℃50%RH下にて7日間養生して硬化物シートを作成した。体漬抵抗率は、三菱化学株式会社製ロレスターMCP−T360を使用し、四端針法により測定した。
【0115】
【表1】
【0116】
表の配合における添加量は質量部で示され、配合物質の詳細は下記の通りである。
*1 合成例1で得られた重合体A1、直鎖状で数平均分子量が25000であり主鎖構造がポリオキシアルキレンであり、架橋性珪素基としてトリメトキシシリル基を有する重合体
*2 合成例2で得られた重合体A2、直鎖状で数平均分子量が15000であり主鎖構造が実質的にポリオキシアルキレンであり、架橋性珪素基としてトリメトキシシリル基を有する重合体
*3 合成例3で得られた重合体A3、ポリスチレン換算の質量平均分子量が約6000であり、Mw/Mnが1.6であり、Tgが61.2℃であるジメトキシシリル基を有するアクリル酸エステル系重合体
*4 三井金属鉱業(株)製、商品名:ACAX−3、銀メッキ銅粉であり、走査型電子顕微鏡(SEM)を用いて観察した際、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して、三次元的に結晶成長した樹枝状導電性粒子。中心粒径(D50)は16.4μmであり、BET比表面積(SSA)は0.41m
2/gであり、タップ密度は1.05g/cm
3である。
*5 三井金属鉱業(株)製、商品名:1400YP(10%)、1400YP(銅粉)に重量比10%で銀メッキした銀メッキ銅粉、中心粒径(D50)は5.81μm、標準偏差(SD)は2.74μm、10%粒子径(D10)は3.58μm、90%粒子径(D90)は9.03μm、SD/D50値は0.47、D90/D10値2.52である。また、BET比表面積(SSA)は0.26m
2/gであり、タップ密度は4.3g/cm
3である。
*6 日本アエロジル(株)製、商品名:R972
*7 信越化学工業(株)製、商品名:KBM−903
*8 信越化学工業(株)製、商品名:KBM−1003
*9 信越化学工業(株)製、商品名:3103C
*10 (株)ADEKA製、商品名:AO−60
*11 大内新興化学工業(株)製、商品名:ノクラックCD
*12 (株)ADEKA製、商品名:LA−63P
*13 日東化成工業(株)製、商品名:U−830
*14 JX日鉱日石エネルギー(株)製、商品名:N−11