特許第6416504号(P6416504)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝産業機器システム株式会社の特許一覧 ▶ 東芝電機サービス株式会社の特許一覧

特許6416504モールド形静止誘導機器およびその製造方法
<>
  • 特許6416504-モールド形静止誘導機器およびその製造方法 図000002
  • 特許6416504-モールド形静止誘導機器およびその製造方法 図000003
  • 特許6416504-モールド形静止誘導機器およびその製造方法 図000004
  • 特許6416504-モールド形静止誘導機器およびその製造方法 図000005
  • 特許6416504-モールド形静止誘導機器およびその製造方法 図000006
  • 特許6416504-モールド形静止誘導機器およびその製造方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6416504
(24)【登録日】2018年10月12日
(45)【発行日】2018年10月31日
(54)【発明の名称】モールド形静止誘導機器およびその製造方法
(51)【国際特許分類】
   H01F 27/08 20060101AFI20181022BHJP
   H01F 27/28 20060101ALI20181022BHJP
   H01F 27/32 20060101ALI20181022BHJP
   H01F 41/00 20060101ALI20181022BHJP
【FI】
   H01F27/08 153
   H01F27/28 176
   H01F27/32 170
   H01F41/00 B
【請求項の数】6
【全頁数】8
(21)【出願番号】特願2014-108236(P2014-108236)
(22)【出願日】2014年5月26日
(65)【公開番号】特開2015-225894(P2015-225894A)
(43)【公開日】2015年12月14日
【審査請求日】2017年3月15日
(73)【特許権者】
【識別番号】513296958
【氏名又は名称】東芝産業機器システム株式会社
(73)【特許権者】
【識別番号】598076591
【氏名又は名称】東芝インフラシステムズ株式会社
(74)【代理人】
【識別番号】110000567
【氏名又は名称】特許業務法人 サトー国際特許事務所
(72)【発明者】
【氏名】塩田 広
(72)【発明者】
【氏名】中前 哲夫
(72)【発明者】
【氏名】▲陦▼ 裕介
(72)【発明者】
【氏名】前田 照彦
(72)【発明者】
【氏名】久保田 正治
【審査官】 右田 勝則
(56)【参考文献】
【文献】 特開2003−017332(JP,A)
【文献】 特開平10−189348(JP,A)
【文献】 特開2013−171947(JP,A)
【文献】 特開2004−336892(JP,A)
【文献】 特開平06−005432(JP,A)
【文献】 特開平10−163035(JP,A)
【文献】 特開平09−213532(JP,A)
【文献】 特開平04−354312(JP,A)
【文献】 特開平11−135333(JP,A)
【文献】 特開2001−143943(JP,A)
【文献】 特開2012−119398(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01F 27/08
H01F 27/28
H01F 27/32
H01F 41/00
(57)【特許請求の範囲】
【請求項1】
鉄心と、表面が樹脂または樹脂を含んだ絶縁材にて覆われた巻線と、を組み合わされて構成されたモールド形静止誘導器中身と、
内部に前記モールド形静止誘導器中身を収納し、大気圧を上回る圧力の空気を封入する密閉容器と、
前記密閉容器内の空気を冷却する熱交換器と、
前記巻線の外周部と前記密閉容器の内面との間に設けられた仕切板と、を備え、
前記仕切板は、前記巻線の外周部に隣接する箇所に位置し前記密閉容器内の空気を流通できる流通孔を有し、
前記流通孔と前記巻線の外周部の間に隙間が形成されている、
モールド形静止誘導機器。
【請求項2】
鉄心と、表面が樹脂または樹脂を含んだ絶縁材に覆われた巻線と、を組み合わされて構成されたモールド形静止誘導器中身と、
内部に前記モールド形静止誘導器中身を収納し、大気圧を上回る圧力の空気を封入する密閉容器と、
前記密閉容器内の空気を冷却する熱交換器と、を備え、
大気圧の空気が封入された前記密閉容器内に前記モールド形静止誘導器中身を収納した場合における全体の絶縁耐圧が、標準使用電圧以上に設定されている、
モールド形静止誘導機器。
【請求項3】
前記巻線は低圧巻線と高圧巻線との間に空隙を形成するスペーサを有する請求項1または2記載のモールド形静止誘導機器。
【請求項4】
前記密閉容器内の空気を循環させる送風機を備える請求項1から3のいずれか一項に記載のモールド形静止誘導機器。
【請求項5】
前記送風機が有する送風羽根は、送風機の運転時に当該送風羽根の回転に伴い送風作用を発揮する送風位置状態と、送風機の運転停止時に当該送風羽根付近を自然流動する空気の流動抵抗を下げる流動抵抗低下位置状態とに向きが切り替え可能な構成である請求項4記載のモールド形静止誘導機器。
【請求項6】
請求項1から請求項5のいずれか一項に記載のモールド形静止誘導機器は、当該モールド形静止誘導機器の絶縁耐圧試験を実施後に前記密閉容器内の空気を回収作業せずに大気中へ放出し別の新鮮な空気と置換した後、出荷するモールド形静止誘導機器の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、モールド形静止誘導機器およびその製造方法に関する。
【背景技術】
【0002】
電力系統や受変電に用いられる静止誘導機器である変圧器は、1:絶縁油や液体シリコーンなどを用いる液冷変圧器、2:絶縁や冷却をSFなどの不活性ガスに依拠するガス絶縁変圧器、3:鉄心と巻線が空気中で使用される乾式変圧器に大別される。変圧器の準拠規格であるIEC(国際電気標準会議)やJEC(電気学会の電気規格調査会)などでは、乾式変圧器の一種で巻線の全表面が樹脂または樹脂を含んだ絶縁材で覆われた変圧器をモールド変圧器と規定している。
【0003】
近年、変圧器は環境適合性や不燃・難燃性という要求が高まり、地球温暖化ガスの一種であるSFなどの不活性ガスを使用するガス絶縁変圧器や現地での処理に手間を要する液冷変圧器に代えて、乾式変圧器の需要が高まっている。中でもモールド変圧器は絶縁機能を巻線に施した樹脂層にも依存させることで他の乾式変圧器よりも絶縁性能の向上を図ることができるため、特別高圧以上の分野でも使用が広まっている。
【0004】
しかし、従来のモールド変圧器においては、高圧巻線と低圧巻線間や鉄心など大地電位にある部材と巻線との間の絶縁には樹脂層に加えて空気も関与することから、国内では33kVクラス、欧米など海外でも特例を除けば77kVクラスが適用の限界であった。
【0005】
また、大気圧の空気は、例えばSFガスなどに比べて粘性が高く密度が低いため、冷却性能上の制約があり、変圧器容量は15MVA程度以下に限られていた。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2003−142318号公報
【特許文献2】特開平10−189348号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
そこで、より高電圧への適用を可能とするとともに大容量化にも適したモールド形静止誘導機器およびその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本実施形態のモールド形静止誘導機器は、鉄心と、表面が樹脂または樹脂を含んだ絶縁材にて覆われた巻線と、を組み合わされて構成されたモールド形静止誘導器中身と、内部に前記モールド形静止誘導器中身を収納し、大気圧を上回る圧力の空気を封入する密閉容器と、前記密閉容器内の空気を冷却する熱交換器と、前記巻線の外周部と前記密閉容器の内面との間に設けられた仕切板と、を備える。前記仕切板は、前記巻線に隣接する箇所に位置し前記密閉容器内の空気を流通できる流通孔を有し、前記流通孔と前記巻線の外周部の間に隙間が形成されている。
【図面の簡単な説明】
【0009】
図1】第1実施形態によるモールド変圧器の概略構成を示す縦断面図
図2】モールド変圧器中身の横断面図
図3】モールド変圧器中身および仕切板の横断面図
図4】第2実施形態による図1相当図
図5】送風機を示すもので、(a)は正面図、(b)は破断側面図
図6】第3実施形態における送風機付近の縦断面図
【発明を実施するための形態】
【0010】
以下、複数の実施形態によるモールド形静止誘導機器について図面を参照して説明する。なお、各実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。
【0011】
(第1実施形態)
まず、第1実施形態について図1から図3を参照して説明する。図1は、モールド形静止誘導機器であるモールド変圧器1の概略構成が示されている。このモールド変圧器1は、モールド形静止誘導機器中身を構成するモールド変圧器中身2と、このモールド変圧器中身2を収納した密閉容器3と、この密閉容器3の外側の側面(図中左右)に設けられた熱交換器4と、を備えている。このうち、モールド変圧器中身2は、表面が樹脂または樹脂を含んだ絶縁材にて覆われた巻線5と、鉄心6を組み合わせて構成されている。巻線5は、鉄心6の外周に装着された低圧巻線5aと、この低圧巻線5aの外周に配置された高圧巻線5bを備えている。このモールド変圧器中身2の断面図を図2に示す。低圧巻線5aと高圧巻線5bとの間は、波型のスペーサ5cを設けることで所定の空隙5dを確保するとともに、必要とされる絶縁強度を確保している。ここでのスペーサ5cは波型ダクトの例を示しているが、空隙5dを確保する構成であればよい。
【0012】
密閉容器3内には、モールド変圧器中身2を収納した状態で、大気圧を上回る圧力の空気7が封入されている。この密閉容器3と左右の各熱交換器4は、それぞれ上部接続ダクト8および下部接続ダクト9により接続されている。上部接続ダクト8は密閉容器3の上部に接続され、下部接続ダクト9は密閉容器3の下部に接続されている。
【0013】
密閉容器3内には、図1に示すように、下部接続ダクト9より上方かつ上部接続ダクト8より下方に位置させて、仕切板10を設けている。この仕切板10は、密閉容器3の内面に固定状態に設けられている。仕切板10には、図3に示すように、巻線5の外周部に隣接する部位に当該巻線5の外周部に沿った円形の流通孔10aが形成されている。
【0014】
上記構成において、モールド変圧器1の運転が始まると、モールド変圧器中身2が発熱し、これに伴い密閉容器3内の空気7の温度が上昇する。温度上昇した空気7は、図1に矢印で示すように、密閉容器3内を上昇した後、上部接続ダクト8を通して熱交換器4側に流れて冷却される。そして、熱交換器4にて冷却された空気7は、下部接続ダクト9を通して密閉容器3内に戻されるというように循環する。このように密閉容器3内の空気7が熱交換器4を通して循環することで、密閉容器3内の空気7が冷却され、ひいてはモールド変圧器中身2が冷却される。
【0015】
この場合、密閉容器3内を循環する空気7の一部は、仕切板10の流通孔10aと巻線5の外周部との間の隙間を通り、巻線5を外周部から冷却する。このとき、巻線5の外周部を流通する空気7は、巻線5に近い場所を流通するため、冷却効果を高めることが可能となる。また、巻線5においては、低圧巻線5aと高圧巻線5bとの間に、スペーサ5cにより空隙5bが形成されているため、密閉容器3内を循環する空気7の一部は、その巻線5の空隙5cにも入り込み、巻線5を内部からも冷却する。これにより、巻線5の冷却効果を一層高めることが可能となる。
【0016】
ここで、空気の絶縁耐力はその絶対圧力にほぼ比例するため、大気圧の空気に対してゲージ圧1気圧(絶対圧力2気圧)の空気はほぼ2倍の耐力を有する。また、気体は密度が高くなるほど熱運搬能力が増し、大気圧の空気に対してゲージ圧1気圧(絶対圧力2気圧)の空気は、流速を一定に保てば約2倍の冷却能力を有する。
【0017】
上記した実施形態のモールド変圧器1によれば、モールド変圧器中身2を、大気圧を上回る圧力の空気7を密閉した密閉容器3内に収納することで、巻線5の高圧巻線5bと低圧巻線5a間や鉄心6などの大地電位にある部材と巻線5との間の絶縁に関与する空気7の絶縁耐圧を向上させることができる。
【0018】
この場合、モールド変圧器中身2単独での絶縁耐圧を標準使用電圧(常規電圧)以上とし、大気圧を上回る圧力の空気7が密閉された密閉容器3内に収納する場合の全体の絶縁耐圧を規格等で定められた試験電圧(商用周波電圧、インパルス電圧等)以上とする。このように絶縁耐圧を設定することで、密閉容器3から空気が排出された場合でも定常時は比較的安全に運用することが可能となる。また、上記ではモールド変圧器中身2単独での絶縁耐圧を標準使用電圧以上としたが、大気圧の空気7が密閉された密閉容器3内に収納する場合の絶縁耐圧を標準使用電圧以上となるよう設定することでも同様の効果が得られる。
【0019】
また、密閉容器3内の空気7の密度を上げかつその空気7を冷却するための熱交換器4を設けたため、冷却性能も向上させることができる。この構成の結果、絶縁機能や冷却機能を大気圧の空気に依存していた従来のモールド変圧器の電圧や容量の上限を超えて、高電圧化および大容量化したモールド変圧器1を提供することが可能となる。
【0020】
また、上記した実施形態のモールド変圧器1は、絶縁耐圧試験を実施後に密閉容器3内の空気7を別の新鮮な空気7と置換して出荷するようにする。
モールド変圧器1のように絶縁機能の一部を空気に依存する絶縁システムを採用した機器においては、前記IECやJECなどの規格で、例えば雷インパルス試験などの際に空気が局部的かつ限定的に絶縁破壊し部分放電を生じることが許容されている。空気での部分放電が発生すると、それに伴って生じたオゾンや発熱事象により近傍の絶縁物から極微量の分解ガスが発生することがある。絶縁媒体を密閉容器に封入した電気機器においては、電気機器から内部の絶縁媒体を抽出してそれに含まれるガスをガスクロマトグラフィーで分析することで、電気機器に生じた異常を検出したり電気機器の劣化状況を診断したりすることが可能になる。
【0021】
本実施形態のモールド変圧器1によれば、上述したように絶縁耐圧試験を実施後に密閉容器3内の空気7を別の新鮮な空気7と置換して出荷するようにしたので、出荷先で前述した分析を行うことで、機器の異常を検出したり劣化状況を診断したりすることを一層精確に行うことが可能となる。
【0022】
本実施形態においては、密閉容器3内に封入した気体は空気であることから、地球温暖化ガスの一種であるSFガスとは異なり、特段の回収作業を必要とせずに大気中へ放出することが可能であるため、空気の置換に要する作業は容易なものとなる。
【0023】
(第2実施形態)
次に第2実施形態について図4および図5を参照して説明する。この第2実施形態のモールド変圧器11においては、密閉容器3と熱交換器4とを接続する上部接続ダクト8および下部接続ダクト9のうち、下部接続ダクト9内に送風機12を配設している。送風機12は、図5に示すように、複数枚例えば3枚の送風羽根13と、この送風羽根13を回転駆動するファンモータ14と、このファンモータ14を支持するフレーム15を備えている。
【0024】
上記構成において、モールド変圧器11の運転時に送風機12を運転させると、送風羽根13の送風作用により、密閉容器3内の空気7が熱交換器4を通して図4の矢印方向へ流れるように強制的に循環されるようになる。これにより、循環する循環空気の流速が向上するともに循環量が増加し、モールド変圧器中身2の特に巻線5の冷却性能や熱交換器4の冷却性能もそれに応じて向上させることができる。さらに、本実施形態においても、図4に示すように仕切板10を設けることによって、一層冷却効率を向上させることができる。
【0025】
また、本実施形態においては、送風機12の送風羽根13は、図5に示す送風位置状態と、図示はしないが流動抵抗低下位置状態とに向きが切り替え可能な構成となっている。送風羽根13が図5に示す送風位置に位置した状態では、各送風羽根13は、ほぼ正面を向き、かつ送風方向(図5(b)の矢印B参照)に対してやや斜めに傾斜した状態となっている。この状態で送風羽根13が回転された場合には、前述の送風作用を発揮し、前記密閉容器3内の空気を強制的に矢印方向に流動させる。
【0026】
これに対して、送風羽根13が流動抵抗低下位置状態に位置されたでは、各送風羽根13は、その基端部を中心にして、図5(b)の矢印C方向へ約90度回転し、送風方向である矢印B方向とほぼ平行する状態となる。送風機12の運転が停止した状態で、送風羽根13が流動抵抗低下位置状態に切り替えられた場合には、下部接続ダクト9内に送風機12が配設されていても、下部接続ダクト9内の送風羽根13付近を自然流動する空気の流動抵抗を下げることが可能となる。
【0027】
ちなみに、送風機12が運転停止状態のときに、送風羽根13が図5に示す送風位置状態にあると、送風羽根13付近を自然流動する空気の流動抵抗が大きく、送風羽根13が自然対流を阻害する要因となる。この点、送風機12が運転停止状態のときに、送風羽根13を前記流路抵抗低下位置状態に切り替えることで、前述したように送風羽根13が自然対流を阻害することを極力防止することが可能になる。これにより、送風機12の運転停止状態において、密閉容器3内の空気7の自然対流による自冷時の流動量を増やすことが可能となる。
【0028】
送風羽根13の流路抵抗低下位置状態としては、各送風羽根13を、基端部を支点にして先端部が当該送風羽根13の回転中心となるファンモータ14の回転軸側に倒れるように前方または後方に回動させることも可能である。なお、送風羽根13の送風位置状態と流動抵抗低下位置状態との切り替えは、作業者が外部からスイッチ操作あるいは手動操作で行うようにする。
【0029】
この第2実施形態のモールド変圧器11においても、第1実施形態の場合と同様に、絶縁耐圧試験を実施後に密閉容器3内の空気7を別の新鮮な空気7と置換して出荷することが好ましい。
【0030】
(第3実施形態)
次に第3実施形態について、図6を参照して説明する。この第3実施形態は、第2実施形態とは次の点が異なっている。すなわち、送風機12を配設した下部接続ダクト9には、送風機12の熱交換器4側および巻線5側に位置させて、当該下部接続ダクト9を開閉する開閉部材16を設けている。この開閉部材16は、例えば上下動可能なシャッター式で、図6に実線で示す開放位置では下部接続ダクト9を開放させて、当該下部接続ダクト9を流通する空気の流動を許容するが、図6に二点鎖線で示す閉鎖位置では、当該下部接続ダクト9を流通する空気の流動を阻止する。
【0031】
このような構成とした場合、仮に送風機12が故障した場合に、開閉部材16を閉鎖位置にしておくことで、密閉容器3内の空気7を外部に漏らすことなく、送風機12の交換が可能となる。ここでは、送風機12の熱交換器4側および巻線5側の両方に開閉部材16を設けた例を示しているが、少なくとも巻線5側に設けることによって、上述の効果が得られる。
【0032】
なお、開閉部材16としては、上下動するシャッター式に限られず、例えば軸を中心に回動されて下部接続ダクト9を開閉する円盤状の部材から構成してもよい。
(その他の実施形態)
モールド形静止誘導機器としては、モールド変圧器に限られず、モールド形リアクトルでもよい。
【0033】
以上説明したように本実施形態のモールド形静止誘導機器によれば、より高電圧への適用を可能とするとともに大容量化にも適したモールド形静止誘導機器を提供することができる。
【0034】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0035】
図面中、1はモールド変圧器(モールド形静止誘導機器)、2はモールド変圧器中身(モールド形静止誘導機器中身)、3は密閉容器、4は熱交換器、5は巻線、5aは低圧巻線、5bは高圧巻線、5cはスペーサ、5dは空隙、6は鉄心、7は空気、10は仕切板、10aは流動孔、11はモールド変圧器(モールド形静止誘導機器)、12は送風機、13は送風羽根、14はファンモータ、16は開閉部材を示す。
図1
図2
図3
図4
図5
図6