(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6416909
(24)【登録日】2018年10月12日
(45)【発行日】2018年10月31日
(54)【発明の名称】コロナ点火システムにおける共振周波数検出のための方法
(51)【国際特許分類】
F02P 23/04 20060101AFI20181022BHJP
【FI】
F02P23/04 B
【請求項の数】20
【全頁数】16
(21)【出願番号】特願2016-538778(P2016-538778)
(86)(22)【出願日】2014年12月12日
(65)【公表番号】特表2017-500482(P2017-500482A)
(43)【公表日】2017年1月5日
(86)【国際出願番号】US2014069947
(87)【国際公開番号】WO2015089367
(87)【国際公開日】20150618
【審査請求日】2017年9月22日
(31)【優先権主張番号】14/568,219
(32)【優先日】2014年12月12日
(33)【優先権主張国】US
(31)【優先権主張番号】61/931,131
(32)【優先日】2014年1月24日
(33)【優先権主張国】US
(31)【優先権主張番号】14/568,330
(32)【優先日】2014年12月12日
(33)【優先権主張国】US
(31)【優先権主張番号】61/915,088
(32)【優先日】2013年12月12日
(33)【優先権主張国】US
(31)【優先権主張番号】14/568,266
(32)【優先日】2014年12月12日
(33)【優先権主張国】US
(31)【優先権主張番号】62/072,530
(32)【優先日】2014年10月30日
(33)【優先権主張国】US
(31)【優先権主張番号】62/090,096
(32)【優先日】2014年12月10日
(33)【優先権主張国】US
(31)【優先権主張番号】61/950,991
(32)【優先日】2014年3月11日
(33)【優先権主張国】US
(31)【優先権主張番号】14/568,438
(32)【優先日】2014年12月12日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】506146389
【氏名又は名称】フェデラル−モーグル・イグニション・カンパニー
【氏名又は名称原語表記】FEDERAL−MOGUL IGNITION COMPANY
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】バローズ,ジョン・アントニー
【審査官】
齊藤 彬
(56)【参考文献】
【文献】
特開平08−200190(JP,A)
【文献】
国際公開第2012/138674(WO,A1)
【文献】
特表2014−513760(JP,A)
【文献】
米国特許出願公開第2012/0055455(US,A1)
【文献】
米国特許出願公開第2013/0208393(US,A1)
【文献】
米国特許出願公開第2012/0192825(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F02P 23/04
(57)【特許請求の範囲】
【請求項1】
コロナ点火システムを動作させる方法であって、
第1の期間中に第1の駆動周波数で、かつコロナ点火器にエネルギが供給されない第2の期間によって前記第1の期間から離間された第3の期間中に第3の駆動周波数で、前記コロナ点火器にエネルギを供給するステップと、
前記コロナ点火器にエネルギが供給されない前記第2の期間中に、前記コロナ点火器の第1の出力電圧および第1の出力電流の少なくとも一方から、前記コロナ点火器の共振周波数を取得するステップとを備える、方法。
【請求項2】
前記第3の駆動周波数は、前記第2の期間中に取得される前記共振周波数と等しい、請求項1に記載の方法。
【請求項3】
前記第3の期間中に前記コロナ点火器に供給されるエネルギが前記第1の駆動周波数から前記第3の駆動周波数に変化するように、前記第2の期間中に制御ソフトウェアを調整することを含む、請求項2に記載の方法。
【請求項4】
前記コロナ点火器にエネルギが供給されない第4の期間によって前記第3の期間から離間された第5の期間中に第5の駆動周波数で前記コロナ点火器にエネルギを供給することと、
前記コロナ点火器にエネルギが供給されない第6の期間によって前記第5の期間から離間された第7の期間中に第7の駆動周波数で前記コロナ点火器にエネルギを供給することと、
前記コロナ点火器にエネルギが供給されない前記第4の期間中に、前記コロナ点火器の第2の出力電圧および第2の出力電流の少なくとも一方から、前記コロナ点火器の共振周波数を取得することと、
前記コロナ点火器にエネルギが供給されない前記第6の期間中に、前記コロナ点火器の第3の出力電圧および第3の出力電流の少なくとも一方から、前記コロナ点火器の共振周波数を取得することと、を含み、
前記第5の駆動周波数は、前記第4の期間中に取得される前記共振周波数と等しく、
前記第7の駆動周波数は、前記第6の期間中に取得される前記共振周波数と等しい、請求項2に記載の方法。
【請求項5】
前記コロナ点火器にエネルギを供給するステップは、前記第2の期間において中止され、前記コロナ点火器の共振周波数を取得するステップは、前記エネルギが中止された直後に行われる、請求項1に記載の方法。
【請求項6】
前記第2の期間は、第2の持続時間が後続する第1の持続時間を含み、前記第1の持続時間中にのみ前記共振周波数を取得することと、前記コロナ点火器に供給される前記エネルギが前記第1の駆動周波数から前記第3の駆動周波数に変化するように、前記第2の持続時間中に制御ソフトウェアを調整することと、を含む、請求項5に記載の方法。
【請求項7】
前記第1の期間中に前記コロナ点火器に供給される前記エネルギの一部分を前記第2の期間中に前記コロナ点火器に蓄積することを含み、前記共振周波数は、前記蓄積されたエネルギから取得される、請求項1に記載の方法。
【請求項8】
前記蓄積されたエネルギは1〜25ミリジュールであり、前記第1の出力電流および前記第1の出力電圧の複数の発振を含み、前記共振周波数は、前記蓄積されたエネルギの前記第1の出力電流および前記第1の出力電圧の少なくとも一方から取得される、請求項7に記載の方法。
【請求項9】
前記コロナ点火器の前記共振周波数を取得するステップは、前記第1の出力電流および/または前記第1の出力電圧を含む信号を取得することと、180度以下だけ前記信号をシフトすることと、前記シフトされた信号のゼロ交差を評価することとを含む、請求項1に記載の方法。
【請求項10】
前記シフトされた信号の連続したゼロ交差間の間隔を測定することによって、前記コロナ点火器の前記共振周波数を取得することを含む、請求項9に記載の方法。
【請求項11】
前記コロナ点火器にエネルギが供給されない第4の期間によって前記第3の期間から離間された第5の期間中に第5の駆動周波数で前記コロナ点火器にエネルギを供給することと、
前記コロナ点火器にエネルギが供給されない前記第4の期間中に、前記コロナ点火器の第2の出力電圧および第2の出力電流の少なくとも一方から、前記コロナ点火器の前記共振周波数を取得することと、
前記コロナ点火器にエネルギが供給されない第6の期間によって前記第5の期間から離間された第7の期間中に第7の駆動周波数で前記コロナ点火器にエネルギを供給することと、
前記コロナ点火器にエネルギが供給されない前記第6の期間中に、前記コロナ点火器の第3の出力電圧および第3の出力電流の少なくとも一方から、前記コロナ点火器の前記共振周波数を取得することと、
前記第2の期間、前記第4の期間および前記第6の期間中に取得された前記共振周波数を平均して、平均共振周波数値を取得することと、
前記コロナ点火器にエネルギが供給されない第8の期間によって前記第7の期間から離間された第9の期間中に第9の駆動周波数で前記コロナ点火器にエネルギを供給することと、を含み、
前記第9の駆動周波数は、前記平均共振周波数値と等しい、請求項1に記載の方法。
【請求項12】
コロナ点火システムであって、
共振周波数を有するコロナ点火器を備え、前記コロナ点火器は、第1の出力電圧および第1の出力電流を供給し、さらに、
第1の期間中に第1の駆動周波数で前記コロナ点火器にエネルギを供給し、前記コロナ点火器にエネルギが供給されない第2の期間によって前記第1の期間から離間された第3の期間中に第3の駆動周波数で前記コロナ点火器にエネルギを供給するエネルギ源と、
前記コロナ点火器にエネルギが供給されない前記第2の期間中に、前記第1の出力電圧および前記第1の出力電流の少なくとも一方から、前記コロナ点火器の前記共振周波数を取得する周波数検出器とを備える、コロナ点火システム。
【請求項13】
前記第3の駆動周波数は、前記第2の期間中に取得される前記共振周波数と等しい、請求項12に記載のシステム。
【請求項14】
前記第1の期間中に前記コロナ点火器に供給されたエネルギの少なくとも一部分は、前記第2の期間中に前記コロナ点火器に蓄積され、前記共振周波数は、前記蓄積されたエネルギから取得される、請求項12に記載のシステム。
【請求項15】
前記周波数検出器は、前記コロナ点火器からの前記第1の出力電流および/または前記第1の出力電圧を含む信号を受信し、前記信号から前記共振周波数を判定するコントローラを含む、請求項12に記載のシステム。
【請求項16】
前記周波数検出器は、前記コロナ点火器の入力から前記第1の出力電流または前記第1の出力電圧を取得するセンサをさらに含み、前記センサは、前記第1の出力電流または前記第1の電圧出力を含む前記信号を前記コントローラに伝達する、請求項15に記載のシステム。
【請求項17】
前記センサから前記信号を受信し、シフトされた前記信号を前記コントローラに供給する前に、前記信号を180度以下だけシフトする低域フィルタを含み、前記コントローラは、前記シフトされた信号から前記共振周波数を判定する、請求項16に記載のシステム。
【請求項18】
前記コントローラは、前記コロナ点火器に供給されるエネルギが前記第1の駆動周波数から前記第3の駆動周波数に変化するように、前記第2の期間中に調整される制御ソフトウェアを含む、請求項15に記載のシステム。
【請求項19】
前記エネルギ源は、電源と、前記電源から前記コロナ点火器にエネルギを供給する一対のスイッチとを含む、請求項12に記載のシステム。
【請求項20】
前記エネルギ源は、前記コロナ点火器にエネルギが供給されない第4の期間によって前記第3の期間から離間された第5の期間中に第5の駆動周波数で前記コロナ点火器にエネルギを供給し、
前記エネルギ源は、前記コロナ点火器にエネルギが供給されない第6の期間によって前記第5の期間から離間された第7の期間中に第7の駆動周波数で前記コロナ点火器にエネルギを供給し、
前記周波数検出器は、前記コロナ点火器にエネルギが供給されない前記第4の期間中に前記コロナ点火器の第2の出力電圧および第2の出力電流の少なくとも一方から前記コロナ点火器の前記共振周波数を取得し、
前記周波数検出器は、前記コロナ点火器にエネルギが供給されない前記第6の期間中に前記コロナ点火器の第3の出力電圧および第3の出力電流の少なくとも一方から前記コロナ点火器の前記共振周波数を取得し、
前記コントローラは、前記コロナ点火器にエネルギが供給されない前記第2の期間、前記第4の期間および前記第6の期間中に取得された前記共振周波数を平均して、平均共振周波数値を取得し、
前記エネルギ源は、前記コロナ点火器にエネルギが供給されない第8の期間によって前記第7の期間から離間された第9の期間中に第9の駆動周波数で前記コロナ点火器にエネルギを供給し、
前記第9の駆動周波数は、前記コントローラによって供給される前記平均共振周波数値と等しい、請求項12に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本米国特許出願は、2013年12月12日に提出された米国仮特許出願番号第61/915,088号(代理人番号710240−6793;IA−50129)、2014年1月24日に提出された米国仮特許出願番号第61/931,131号(代理人番号710240−6830;IA−50134)、2014年3月11日に提出された米国仮特許出願番号第61/950,991号(代理人番号712040−6901;IA−50147)、2014年10月30日に提出された米国仮特許出願番号第62/072,530号(代理人番号710240−7346;IA−51029−1)、2014年12月10日に提出された米国仮特許出願番号第62/090,096号(代理人番号710240−7356;IΑ−50359)、2014年12月12日に提出された米国実用新案出願番号第14/568,219号(代理人番号710240−7404;IA−50129およびIA−50129−1)、2014年12月12日に提出された米国実用新案出願番号第14/568,266号(代理人番号710240−7409;IA−50147)、2014年12月12日に提出された米国実用新案出願番号第14/568,330号(代理人番号710240−7410;1A−50359)、および2014年12月12日に提出された米国実用新案出願番号第14/568,438号(代理人番号710240−7411;IA−50134)の恩恵を主張し、各々の内容全体を引用によって本願明細書において援用する。
【0002】
発明の背景
1.発明の分野
この発明は概して、コロナ放電点火システムに関し、より特定的には、システムに供給されるエネルギを制御することに関する。
【背景技術】
【0003】
2.関連技術
コロナ放電点火システムは、交流電圧および電流を供給し、高電位電極と低電位電極とを高速で連続的に反転させ、コロナ放電の形成を強化し、アーク形成のための機会を最小化する。システムは、中央電極が高い無線周波数電圧電位に充電され、燃焼室において強い無線周波数電界を生成しているコロナ点火器を含む。電界は、燃焼室における燃料および空気の混合物の一部分をイオン化し絶縁破壊を開始させ、混合気の燃焼を容易にする。これは点火事象と称される。電界は、混合気が誘電特性を維持し、非熱的プラズマとも称されるコロナ放電が生じるように制御されることが好ましい。混合気のイオン化された部分は火炎前面を形成し、次いで自律的となり、混合気の残りの部分を燃焼する。電極と、点火器の接地筒壁、ピストン、金属シェル、または他の部分との間で熱プラズマおよび電気アークを生成することになるであろうすべての誘電特性を混合気が失わないように電界が制御されることが好ましい。コロナ放電点火システムの一例は、Freenの米国特許番号第6,883,507号に開示されている。
【0004】
その上、コロナ放電点火システムは、好ましくは、コロナ点火器の共振周波数に等しいかまたは近い駆動周波数でエネルギがコロナ点火器に供給されるように制御される。これにより、燃焼室において強固なコロナ放電につながる電圧増幅がもたらされる。コロナ点火器の共振周波数を検出することがこの高いレベルの制御を実現するために必要である。しかしながら、共振周波数の正確な検出は、特に広範囲の周波数において実現することが困難である。たとえばアーキング事象による動作中の共振周波数の変化によっても、共振周波数を正確に検出することが困難となる。
【発明の概要】
【課題を解決するための手段】
【0005】
発明の概要
発明の1つの局面は、向上した共振周波数検出を含むコロナ点火システムを動作させる方法を提供する。当該方法は、コロナ事象と称される第1の期間中に第1の駆動周波数でコロナ点火器にエネルギを供給するステップを含む。当該方法は、同じくコロナ事象と称される第3の期間中に第3の駆動周波数でコロナ点火器にエネルギを供給するステップも含む。第3の期間は、第2の期間によって第1の期間から離間される。第2の期間中はコロナ点火器にエネルギが供給されず、したがって第2の期間は休止期間と称される。当該方法はさらに、コロナ点火器にエネルギが供給されない第2の期間中に、コロナ点火器の第1の出力電圧および第1の出力電流の少なくとも一方から、コロナ点火器の共振周波数を取得するステップを含む。
【0006】
発明の別の局面は、向上した共振周波数検出を提供するコロナ点火システムを備える。当該システムは、コロナ点火器と、エネルギ源と、周波数検出器とを含む。コロナ点火器は共振周波数を有し、コロナ点火器は、第1の出力電圧および第1の出力電流を供給する。エネルギ源は、第1の期間中に第1の駆動周波数でコロナ点火器にエネルギを供給し、コロナ点火器にエネルギが供給されない第2の期間によって第1の期間から離間された第3の期間中に第3の駆動周波数でコロナ点火器にエネルギを供給する。周波数検出器は、コロナ点火器にエネルギが供給されない第2の期間中に、第1の出力電圧および第1の出力電流の少なくとも一方から、コロナ点火器の共振周波数を取得する。
【0007】
第2の休止期間中にコロナ点火器の共振周波数を測定することによって、コロナ点火器にエネルギが供給されていない時、コロナ点火器の真の共振周波数の正確な測定値が取得される。この休止期間中は、測定された共振周波数は、システムの任意の他の構成要素ではなくコロナ点火器にのみ依存する。この正確な共振周波数測定値は次いで、次のコロナ事象中に、たとえば第3の期間中に、コロナ点火器に供給され、強固なコロナ放電を実現することができる。コロナ事象に直ちに後続する第2の休止期間中に共振周波数を測定することは好都合であり、さもなければ浪費されるコロナ点火器に蓄積されたエネルギを活用する。共振周波数は、各コロナ事象後に評価し調整されることができるか、または複数のコロナ事象にわたって評価され、次いで精度をさらに向上させるように調整されることができる。
【0008】
図面の簡単な説明
本発明の他の利点は、添付の図面に関連して考慮されると以下の詳細な説明を参照することでより良く理解されるようになるため、容易に認識されることになる。
【図面の簡単な説明】
【0009】
【
図1】発明の第1の例示的な実施形態に係るコロナ放電点火システムのブロック図である。
【
図2】発明の第2の例示的な実施形態に係るコロナ放電点火システムのブロック図である。
【
図3】発明の第3の例示的な実施形態に係るコロナ放電点火システムのブロック図である。
【
図4】コロナ点火器へのエネルギ供給のタイミングに対する共振周波数検出のタイミングを例示するグラフである。
【
図5】エネルギが供給されずコロナ点火器に蓄積されたままである休止期間と比較した、コロナ点火器にエネルギが供給される時のコロナ事象中の負荷電流または電圧信号を例示するグラフである。
【発明を実施するための形態】
【0010】
詳細な説明
本発明は、向上した共振周波数検出をもたらすコロナ放電点火システム20および方法を提供する。システム20は、ともに負荷と称され、共振周波数で動作する誘導コイルLおよびキャパシタCを含むコロナ点火器22を備える。コロナ点火器22は駆動周波数においてエネルギを受取り、入力24において電流および電圧を供給する。エネルギ源V3は、コロナ事象と称される第1の期間中、かつコロナ点火器22が燃焼室においてコロナ放電26を供給している間、第1の駆動周波数でコロナ点火器22にエネルギを供給する。コロナ点火器22へのエネルギ供給は、休止期間と称される第2の期間102中は中止され、別のコロナ事象と称される第3の期間103中に再び供給される。第1の期間101中に供給されるエネルギの一部は第2の休止期間102中にコロナ点火器22に蓄積される。この蓄積されたエネルギの共振周波数は、システム20の任意の他の構成要素ではなくコロナ点火器22にのみ依存し、したがって、システム20の真の共振周波数を正確に表す。周波数検出器、たとえば電流センサ36または電圧センサ78は、コントローラ28と共同して、この休止期間中に共振周波数を取得する。センサ36または78は、出力電圧または出力電流を含む信号54または80を典型的に伝達し、当該信号を解析のためにコントローラ28に供給する。コントローラ28が共振周波数を識別すると、好ましくは休止期間102中に制御ソフトウェアを調整することができ、したがって第3の期間103中に適用される駆動周波数は、正確に測定された共振周波数と一致する。コントローラ28は代替的に、複数のサイクルから共振周波数の測定値を受取り、次いでそれらの正確に測定された共振周波数から取得される平均共振周波数値と一致するようにその後のコロナ事象の駆動周波数を調整することができる。
【0011】
向上した共振周波数検出を提供するコロナ点火システム20の例示的な実施形態が
図1〜
図3に示される。これらのシステム20は、関連する米国特許出願番号第14/568219号、第14/568266号および第14/568330号にも記載されており、これらは引用によって本願明細書において援用される。各実施形態では、システム20は、合わせて負荷と称され共振周波数で動作する、キャパシタCに結合された誘導コイルLを含むコロナ点火器22を含む。コロナ点火器22は、駆動周波数においてエネルギを受取り、コロナ点火器22の入力24において、出力電流および出力電圧と称される電流および電圧を供給する。内燃機関における動作中に、コロナ点火器22は好ましくは、コロナ放電26と称される高い無線周波数電界を発火端において形成して、エンジンの燃焼室内の燃料および空気の混合物を点火する。システム20は、コロナ点火器22に供給される駆動周波数とシステム20のキャパシタンス/インダクタンス回路とを制御するコントローラ28および一対のスイッチ30A,30Bも含み、したがって駆動周波数は共振周波数に好ましくは維持される。駆動周波数が共振周波数に等しくなるようにシステム20を動作させることにより、燃焼室における強固なコロナ放電26につながる電圧増幅がもたらされる。
【0012】
例示的な実施形態のコントローラ28は、所定の時間にスイッチ30Aまたは30Bの一方を起動して、所望の駆動周波数を実現する。スイッチ30Aまたは30Bの一方が起動されている時、エネルギは、電源V3から起動中のスイッチ30Aまたは30Bを介してコロナ点火器22に流れることができる。スイッチ30A,30Bが起動されない時は、エネルギはコロナ点火器22に流れることはできない。スイッチ30Aは第1のスイッチと称され、スイッチ30Bは第2のスイッチと称されるが、スイッチ30Bを代替的に第1のスイッチと称することができ、スイッチ30Aを第2のスイッチと称することができる。いずれの場合にも、スイッチ30Aまたは30Bの一方のみが起動しており、コロナ点火システム20の動作中の任意の所与の時間にコロナ点火器22にエネルギを供給している。したがって、コントローラ28は、第2のスイッチ30Bを起動する前に第1のスイッチ30Aを停止し、逆もまた同様であり、したがって2つのスイッチ30A,30Bは同時には起動しない。たとえば、出力電流が正の時は常に、第1のスイッチ30Aが起動しており、ゆえにコロナ点火器22にエネルギを供給し、出力電流が負の時は常に、第2のスイッチ30Bが起動しており、ゆえにコロナ点火器22にエネルギを供給する。好ましくは、スイッチ30A,30Bの起動は、コロナ点火器22の共振周波数と同期される。
【0013】
システム20は、他のシステムと比較してはるかに広範囲の周波数で動作することが可能である。本明細書に記載されるシステムにおいて採用されることができる共振周波数制御の方法は、関連する米国特許出願番号第14/568219号、第14/568266号、および第14/568330号に開示されていることも注記する。これらは、引用によって本願明細書において援用される。各出願は、本願と同じ発明者を挙げ、本願と同じ日に提出されたものである。
【0014】
図1は、第1の例示的な実施形態に係るコロナ放電点火システム20のブロック図であり、コロナ放電点火システム20は、コロナ点火器22の共振周波数と等しいかまたはほぼ等しい駆動周波数を供給し維持することが可能である。コントローラ28、スイッチ30A,30B、コロナ点火器22に加えて、システム20は、第1のドライバ32Aおよび第2のドライバ32Bと称される一対のドライバ32A,32Bも含む。
図1のシステム20はさらに、変圧器34、第1の電流センサ36、第1のローパスフィルタ38、および第1の信号調整装置40を含む。コロナ点火器22の出力電流は、入力24における電流と等しく、第1の電流センサ36によって測定される。
【0015】
システム20はコントローラ28によって制御される。コントローラ28は、好ましくはデジタル信号プロセッサ(DSP)、複合プログラマブルロジックデバイス(CPLD)、フィールドプログラマブルゲートアレイ(FPGA)、マイクロコントローラ、またはマイクロプロセッサなどの、プログラマブルデジタルコントローラまたはプログラマブル混合信号コントローラである。コントローラ28は、燃焼室においてコロナ放電26の発生を開始させるようコントローラ28に命じるトリガ入力信号42を受信する。コントローラ28は、アークが検出されたことを任意の外部制御システム(図示せず)に通知するためのアーク検出出力信号44、ならびに任意の外部制御システムに回路の健康状態および動作に関する追加的なデータを供給するためのフィードバック出力信号46も供給する。コントローラ28との間で伝達されるトリガ入力信号42、アーク検出出力信号44およびフィードバック出力信号46は、EMCフィルタ48と称される電磁両立性フィルタおよび他の入力フィルタ49によってフィルタリングされる。トリガ入力信号42に応答して、コントローラ28は、スイッチ30A,30Bを制御するドライバ32A,32Bに駆動信号50を供給する。スイッチ30Aまたは30Bの一方が起動中である時、直流電圧であるエネルギV3が変圧器34の一次巻線52に印加される。変圧器34はその場合、入力24を介して、エネルギをコロナ点火器22に駆動周波数で供給する。例示的な実施形態では、変圧器34は「プッシュプル」構造として当該分野で知られている構造を有する。
【0016】
図1のシステム20では、コロナ点火器22から供給される電流(出力電流)は、任意の好適な技術を用いて、第2の休止期間102中に第1の電流センサ36において測定される。第1の電流センサ36は、たとえば分路抵抗器、ホール効果センサ、または変流器であり得る。コロナ点火器22の出力電流の測定値を含む電流出力信号54は、第1の電流センサ36からコントローラ28に向かって伝達される。好ましくは、この電流出力信号54は、コントローラ28に伝達される前に第1のローパスフィルタ38によって軽くフィルタリングされる。第1のローパスフィルタ38は、電流出力信号54において、電流の発振期間より小さい位相シフトを生じさせる。一実施形態では、位相シフトは180度であるが、好ましくは位相シフトは180度未満であり、より好ましくは、位相シフトは2分の1サイクル未満である90度未満である。第1のローパスフィルタ38は、大電流および電圧を切替えることによって生成される不要な高周波ノイズも除去する。フィルタリングされた電流出力信号54は、次いで、第1の信号調整装置40に転送される。第1の信号調整装置40は、コントローラ28に転送するために電流出力信号54を安全にする。したがって、電流出力信号54は、コントローラ28によって安全に処理することができるレベルにある。出力電流は、各コロナ事象後にコントローラ28に典型的に供給されるが、コントローラ28に供給される前に複数のコロナ事象について測定されてもよい。
【0017】
コントローラ28は、第2の休止期間102中に第1の電流センサ36によって取得された電流測定値を有する電流出力信号54を受信し、当該電流測定値を用いて、コロナ点火器22の共振周波数と、スイッチ30A,30Bを起動して共振動作を与えるための最適なタイミングとを識別する。コントローラ28は、様々な異なる技術を用いて、電流出力信号54に基づいてコロナ点火器22の共振周波数を識別することができる。
【0018】
例示的な実施形態では、起動されるべき第1のスイッチ30Aまたは第2のスイッチ30Bのタイミングをコントローラ28が決定すると、コントローラ28は、第1のスイッチ30Aを起動するように第1のドライバ32Aに指示するか、または第2のスイッチ30Bを起動するように第2のドライバ32Bに指示する。ドライバ32A,32Bは、所定の時間にスイッチ30A,30Bを起動するように指示され、したがってスイッチ30A,30Bによって変圧器34に、かつ最終的にはコロナ点火器22に伝達されるエネルギの駆動周波数は、コロナ点火器22の共振周波数と等しい。この例示的な実施形態では、駆動周波数がコロナ点火器22の共振周波数と等しくなるように、コロナ点火器22の出力電流がゼロと交差するたびにスイッチ30Aまたは30Bの一方が起動される。
【0019】
システム20の動作中の任意の所与の時間にスイッチ30Aまたは30Bの一方のみが起動していることが重要である。たとえば、コントローラ28は、出力電流がゼロと交差する時に、第1のドライバ32Aを起動することができ、その結果第1のスイッチ30Aが起動される。次に、コントローラ28は、第1のドライバ32Aおよび第1のスイッチ30Aをオフにし、次いで、出力電流が次にゼロと交差する時に、第2のドライバ32Bを起動し、その結果第2のスイッチ30Bが起動される。コントローラ28は、第1の信号調整装置40から受信した各電流出力信号54を解析して共振周波数を正確に検出することができ、必要であればスイッチ30A,30Bのタイミングを調整することができる。
【0020】
図2は、発明の第2の例示的な実施形態に係るコロナ放電26点火システム20のブロック図であり、
図1のシステム20のように動作するが、いくつかの追加的な特徴を含む。追加的な1つの特徴は、システム20の様々な機能セクションが、互いに離間された制御系統接地56、電源系統接地58および負荷接地60を含む点である。この技術は、EMIおよび/または電磁両立性(EMC)を向上させるために用いられる。制御系統接地56は、ガルバニック絶縁62によって電源系統接地58から絶縁される。変圧器34が電源系統接地58を負荷接地60から絶縁し、この絶縁は第1の電流センサ36とコントローラ28との間で維持されなければならない。電源系統接地58と負荷接地60との間の絶縁は、第1のローパスフィルタ38または第1の信号調整装置40においてガルバニック絶縁62を追加することによって実現され得る。あるいは、電源系統接地58と負荷接地60との間の絶縁は、無視できる電流のみが装置を流れることができる差動モードで第1のローパスフィルタ38または第1の信号調整装置40を動作させることによって実現されることができる。
図2のシステム20では、第1の信号調整装置40のみが差動モードで動作して、負荷接地60から電源系統接地58を絶縁する。これらの方法のうち1つ以上が採用され得る。
【0021】
図2のシステム20の別の追加的な特徴は、変圧器34の一次側の第2のスイッチ30Bの電流の振幅を測定するための第2の電流センサ64である。第2の電流センサ64は、具体的には第2のスイッチ30Bの出力における電流を測定する。あるいは、スイッチ30A,30Bの各々に第2の電流センサ64があり得る。第2の電流センサ64は、追加的なフィードバック信号55をコントローラ28に供給し、第1の電流センサ36のみの位相測定では可能でない有益な診断情報を与える。たとえば、スイッチ30A,30Bの出力における電流を測定することによって、負荷回路内の開路または短絡を検出することが可能である。その上、
図2のシステム20は、コントローラ28にフィードバック信号55を供給する前に電流出力信号54を軽くフィルタリングするために電流センサとコントローラ28との間に配置される第2のローパスフィルタ66を含む。
【0022】
図3は、発明の第3の例示的な実施形態に係るコロナ放電26点火システム20のブロック図である。
図3のシステム20もガルバニック絶縁62を含むが、この実施形態では、ガルバニック絶縁62は、コントローラ28のエネルギ入力側およびエネルギ出力側の両方に位置し、3つの接地56,58,60を完全に離間する。回路がより少数の接地を用いて動作するように設計される場合、ガルバニック絶縁62によってもたらされる障壁の一方または両方を省略することができる。
【0023】
図3のシステム20は、電圧フィードバック巻線68と称される別の巻線をさらに含む。電圧フィードバック巻線68によって供給される電圧は、コロナ点火器22の入力24における電圧を反映する。電圧センサ78は、好ましくは、この電圧を測定するために電圧フィードバック巻線68の出力に配置される。出力電圧を含む出力信号80が次いで、第2の低域フィルタ66を介してコントローラ28に転送される。第2の低域フィルタ66は、コントローラ28に電圧出力信号80を供給する前に電圧出力信号80を軽くフィルタリングする。また、
図1および
図2のシステム20とは異なり、制御信号72が
図3のコントローラ28に供給される。制御信号72は、アーキングが発生したかどうかまたは所望の電圧などの、コロナ点火器22の動作に関連する任意の情報を含むことができる。
【0024】
図1〜
図3に示される例示的なシステム20の特徴および関連出願に示される特徴は、本願明細書において具体的に記載されたもの以外に様々な組合せで用いてもよい。しかしながら、システム20は、その共振周波数において、またはその付近で交流信号によってコロナ点火器22を駆動することと、この交流駆動信号を有効にし、かつ無効にすることと、コロナ点火器22における電流または電圧の周波数を測定することとができる能力を有するべきである。具体的には、10個のゼロ交差、好ましくは5つ未満のゼロ交差など最少発振数で周波数を正確に識別することが可能であるべきである。
【0025】
本発明のシステムは、正確な共振周波数検出の方法を実施して、強固なコロナ放電26を含む非凡な性能を実現することが可能である。
図4は、システムの1つのチャンネルについての2つのコロナ事象101,103に関する共振周波数検出の、時間またはエンジンクランク角に基づく時間的な配置を示す。たとえば
図1〜
図3に示されるように、チャンネルは1つのコロナ点火器22を含む。しかしながら、たとえばマルチシリンダーエンジン用途では複数のチャンネルが用いられてもよく、システム全体を複製することによって実装されることができる。あるいは、複数のチャンネルは、複数の出力を駆動するために好適なスイッチングを有する1つのシステムを用いることによって実装されることができる。いずれの場合でも、動作原理は不変である。システムの動作中に、1つ以上の制御入力、たとえばエンジン制御ユニットからのトリガ入力信号42に応答してコロナ放電26が生じ、必要とされる瞬間に点火をもたらす。
【0026】
図4において、コントローラ28、ドライバ32A,32Bおよびスイッチ30A,30Bが時間200においてコロナ点火器にエネルギを印加し始めると、第1の期間101と称される第1のコロナ事象が始まる。コロナ発生回路への外部入力に応答して時間201において回路が無効とされると、第1の期間101が終わる。第1のサイクルでは、N=1である時、共振周波数はまだ測定されておらず、したがってシステムは、負荷の解析から導出された所定の周波数を使用してもよい。この所定の周波数は、コントローラ28のソフトウェアにおいて典型的に規定される。あるいは、システム20は、コントローラ28のソフトウェアに蓄積され、システムの以前の動作期間中になされた測定から導出された周波数を、そのようなデータが利用可能であって蓄積されていれば、使用してもよい。
【0027】
第1のコロナ事象101の終わり時刻と同時の、または終わり時刻後の時間202において、エネルギがコロナ点火器22に供給されない、休止期間と称される第2の期間102が始まる。この休止期間中に、コロナ点火器22またはコロナ回路に、典型的には1〜25ミリジュールの領域にいくらかのエネルギ量が蓄積され得る。この蓄積されたエネルギは、評価されることができる出力電圧および出力電流の複数の発振中に消費される。電力を供給する駆動回路が無効にされた後でも、コロナ点火器22に結合されたワイヤの抵抗などの寄生損失においてエネルギが消費されるまで、このエネルギはコロナ点火器22の共振周波数でインダクタンスとキャパシタンスとの間で循環し続けることになる。この蓄積されたエネルギは通常は浪費されるが、本発明の方法では、負荷の真の共振周波数を識別するために評価される。
【0028】
具体的には、第2の期間102中に、システムの周波数検出器は、コロナ点火器22の第1の出力電圧と称される出力電圧または第1の出力電流と称される出力電流を測定し評価して、コロナ点火器22の共振周波数の正確な測定値を取得する。一実施形態では、電流センサ36または電圧センサ78が出力電流または出力電圧を取得し、フィルタ38または66の一方は、180度以下、より好ましくは2分の1サイクル未満である90度未満だけ信号をシフトする。
【0029】
上述したように、この休止期間中に取得される共振周波数は、システム20の他の構成要素ではなく、負荷だけに依存する。周波数検出器は、センサ36もしくは78、またはシステム20の他の構成要素と共同して作動するコントローラ28を典型的に含む。例示的な一実施形態によれば、第2の期間102中の共振周波数の測定および評価は、コロナ点火器22の入力24における出力電流の連続したゼロ交差どうしの間隔を測定することによって行われる。様々な異なる技術を用いて、コロナ点火器22の入力24における電流を測定することができる。たとえば、
図1〜
図3のシステムにおいて示される電流センサ36は、出力電流を取得し、信号からノイズを除去する低域フィルタ38に電流出力信号54を供給することができる。あるいは、
図3に示される電圧センサ86は出力電圧を取得し、信号からノイズを除去する低域フィルタ66に電圧出力信号80を供給することができる。コントローラ28は次いで、シフトされた電流または電圧信号のゼロ交差を評価して、システムの真の共振周波数を識別する。たとえば、コントローラ28は、コロナ事象の終わり後にコロナ点火器22の出力電流または出力電圧の連続したゼロ交差どうしの間隔を測定することができる。
【0030】
好ましくは、共振周波数は、コロナ点火器へのエネルギ供給が中止された直後である休止期間102中の第1の持続時間301中に取得される。
図4は、202で始まり、203で終わるこの第1の持続時間301を示す。この第1の期間301は測定期間と称されることが多い。第1の持続時間301の直後に、第2の持続時間302が後続し、コントローラ28は制御ソフトウェアを調整し、正確に測定された共振周波数と一致するように、蓄積された駆動周波数値を変更する。
図4はこの第2の期間が203で始まり、204で終わることを示し、204で次のコロナ事象が開始する。第2の持続時間302は、共振周波数が識別され処理されるために十分に長く、かつ次のコロナ事象の開始前に制御ソフトウェアが更新されるために十分長くなければならない。
【0031】
測定期間を含むコロナ事象および休止期間の長さは変動し得る。しかしながら、例示的な実施形態では、各コロナ事象の持続時間は典型的に20〜250マイクロ秒であり、各休止期間の持続時間は典型的に15〜240ミリ秒であり、測定期間はわずか5〜25マイクロ秒である。しかしながら、ある実施形態では、反復率が高いか、または1つのシステムによって複数のコロナ出力を提供しなければならず、第1の持続時間301(測定期間)はたとえば1ミリ秒未満より短くなり得る。この場合、共振周波数を評価するのに利用可能な時間は制限要因になり得る。そのような場合、非常に短い周期にわたって、たとえば1共振サイクルまたは2分の1共振サイクルで共振周波数を評価し、この共振周波数データを用いて多くのサイクルにわたって周波数の推定値を向上させることが必要であり得る。もちろん、共通回路が複数のコロナ点火器22を駆動する場合、異なるコロナ点火器22からの測定された共振周波数は別個に保たれ、個々に処理される必要がある。
【0032】
図5は、第1の期間101(コロナ事象)の終わりのコロナ点火器22の入力24における電流または電圧信号の拡大図であり、その後、エネルギがコロナ点火器22に供給されない、第1の期間101直後の第2の休止期間102中の電流または電圧信号が後続する。
図5に示される第1の期間101の部分は、コロナ期間300と称され、
図5に示される第2の休止期間の部分は測定期間301である。コロナ期間300中に、コントローラ28によって周波数F1で負荷が駆動され、負荷に電圧を、または駆動周波数によって規定された負荷500に電流を与える。この電流または電圧信号500は、上記した技術などの、いくつかの利用可能な技術の任意の好都合な方法によって導出することができる。電流または電圧信号500は、同じく上記したコントローラ28によって解析に好適な電圧または電流信号を与える多くのやり方で処理されることもできる。
【0033】
図5に示される例では、ゼロ交差信号501を与えるために、たとえば低域フィルタ38によって信号500が処理される。信号500のゼロ交差とゼロ交差501の出力との間にわずかな位相シフトがある。これは、用いられる任意のフィルタリングまたは信号調整によって課された遅延によりシフトされ、システムまたは方法の動作に影響しない。一実施形態では、位相シフトは180度以下である。コロナ期間300の終わり後、駆動エレクトロニクスが無効とされる。しかしながら、上述したように、休止期間中にいくらかのエネルギがコロナ点火器22に蓄積される。蓄積されたエネルギは、負荷および駆動回路の寄生損失で完全に消費されるまで、測定期間301中に電気と磁気との間で発振し続ける。この測定期間301中には、発振は負荷の真の共振周波数である周波数F2を有する。したがって、コントローラ28は、測定期間301中に共振周波数を評価し取得するように設計される。測定期間301の長さは、負荷信号500が小さすぎて正確に検出することができないロック期間502の終わりの前に常に完了されるように設定されることができる。
【0034】
あるいは、周波数F2を測定する代わりに、規定された数の移行を行なうための時間、または規定された時間における移行の数が測定され得る。移行の総数およびそれらにかかる時間を数えることを含み得る「スマートな」方法を用いることもできる。さらなる代替案は、負荷信号500の直接解析またはいずれかの信号の周波数領域解析を含み、典型的にFFT解析を含む。電流または電圧信号種類のいずれかは、フィルタリング(アナログまたはデジタル)の適用、または予め規定された範囲の外側もしくは先行する間隔とは大きく異なるゼロ交差間隔の排除などによる、コントローラ28によるさらなる処理を受けることができる。信号処理の他の周知の方法を用いることもできる。共振周波数F2が識別されると、測定期間301に後続する次のコロナ期間中に駆動周波数として直接に用いることができる。たとえば、複数の測定期間301にわたって取得された共振周波数F2測定値を平均することによって、推定される駆動周波数の精度を向上させるために共振周波数F2を用いることもできる。
【0035】
第2の休止期間102中に正確な共振周波数測定値が取得された後、第3の期間103と称される次のコロナ事象が始まる。
図4は、204で始まり205で終わる第3の期間103を示す。エネルギは、第3の期間103中にコロナ点火器22に再び供給される。一実施形態では、第3の期間103中にコロナ点火器22に供給される、第3の駆動周波数と称される駆動周波数は、第2の期間102中に取得される共振周波数と等しくなるようにコントローラ28によって設定される。
【0036】
第3の期間103後に、方法は、コロナ点火器22にエネルギが供給されない、第4の期間104と称される別の休止期間を典型的に含む。ちょうど第2の休止期間102が第1の期間101に直ちに後続するように、この第4の休止期間104は、第3の期間103(コロナ事象)に直ちに後続する。
図4は、205で始まるが終わりが示されていない第4の期間104を示す。この休止期間104も206で始まり207で終わる測定期間303から始まる。第4の休止期間104の持続時間は、第2の休止期間102の持続時間と等しいかまたは異なり得る。第2の出力電圧および第2の出力電流と称されるこの第4の休止期間104中のコロナ点火器22の出力電圧および/または出力電流は、第2の休止期間102に取得されたのと同じように、周波数検出器によって測定され評価されて、負荷の共振周波数を取得する。
【0037】
次に、エネルギ源は、第4の休止期間104によって第3の期間から離間された第5の期間(図示せず)中に第5の駆動周波数でコロナ点火器22にエネルギを供給する。第5の期間は別のコロナ事象と称される。このコロナ事象の持続時間は、
図4に示される先行するコロナ事象の持続時間と同じかまたは異なり得る。第4の休止期間104中に、コントローラは、第4の休止期間104中に測定された共振周波数と等しくなるように第5の駆動周波数を設定することができる。この場合、第5の駆動周波数は典型的に、第3の駆動周波数よりも、負荷の実際の共振周波数にわずかに近い。
【0038】
休止期間によって互いに離間されたコロナ事象のサイクルは、上記したのと同じように継続することができる。たとえば、コロナ点火器22にエネルギが供給されない第6の休止期間が第5の期間(コロナ事象)に後続することができる。この休止期間中のコロナ点火器22の出力電圧および電流は、第3の出力電圧および第3の出力電流と称される。第3の出力電圧および第3の出力電流の少なくとも一方は、コロナ点火器22の入力24において測定され、周波数検出器によって評価されて、第6の休止期間中に負荷の共振周波数を取得することができる。制御ソフトウェアは、第2および第4の休止期間中に更新されたのと同じように、第6の休止期間中に再び更新されることができる。
【0039】
第6の休止期間後、エネルギ源は第7の期間(図示せず)中に第7の駆動周波数でコロナ点火器22にエネルギを供給することができる。第7の期間は、第6の休止期間によって第5の期間から離間される別のコロナ事象である。このコロナ事象の持続時間は、先行するコロナ事象の持続時間と同じかまたは異なり得る。第6の休止期間中に、コントローラ28は、第6の休止期間中に測定された共振周波数と等しくなるように第7の駆動周波数を設定することができる。この場合、第7の駆動周波数は典型的に、第5の駆動周波数よりも、負荷の実際の共振周波数にわずかに近い。
【0040】
別の実施形態では、直前の休止期間中に取得された共振周波数測定値と一致するように各コロナ事象の駆動周波数を変更する代わりにまたはそれに加えて、コントローラは、コロナ点火器22にエネルギが供給されない第2の期間、第4の期間および第6の期間中に取得された共振周波数測定値を平均して、平均共振周波数値を取得することができる。この平均共振周波数値は、将来のコロナ事象中にコロナ点火器22に適用することができる。たとえば、エネルギ源は、エネルギがコロナ点火器22に供給されない第8の期間によって第7の期間から離間された第9の期間中に第9の駆動周波数でコロナ点火器22にエネルギを供給することができる。第9の駆動周波数は、コントローラ28によって供給される平均共振周波数値と等しい。
【0041】
本発明のシステム20および方法は、比較のためのシステムに対する複数の利点をもたらす。たとえば、1つの比較のためのシステムは、異なる周波数で多くの試行を行ない、フィードバックパラメータ(例えば電流フロー、出力電圧、および/またはエネルギ使用量)を用いることによって、負荷の共振周波数に近似することを試み、共振に最も近い試行を識別することを試みる。別の比較のためのシステムは、ドライバ回路が通電されている間、相当な数の共振サイクルにわたって電圧と電流との間の位相差を減少させるように共振周波数を調整する。別の比較のためのシステムは、動作中に負荷電流の位相を測定し、この情報を用いて、適切な位相で電子スイッチを直接駆動し、したがってシステムは共振で動作する。しかしながら、この技術はある周波数範囲に限定される。しかしながら本発明のシステム20および方法は、システムの動作サイクルにおいて通常休止している時間に共振周波数の測定を可能にし、通常浪費されるコロナ点火器22に蓄積されたエネルギを用いる。コロナ点火器22に電源供給されていない間に共振周波数を測定することによって、本発明のシステムは、複数の試行の必要性、およびコロナ点火サイクルにおいて余分な電力供給された位相を導入する必要性なしに、共振周波数のより正確な測定値を取得する。共振周波数の完全な測定はすべてのコロナ事象後に行うことができ、測定は、サイクルごとに評価され用いることができる。複数のサイクルにわたる測定は必要とされないが、共振周波数測定の精度を反復して向上させるように行われることができる。
【0042】
明らかに、本発明の多くの変更および変形が上記の教示に照らして可能であり、具体的に記載された以外のやり方で、請求項の範囲内において実施され得る。