(58)【調査した分野】(Int.Cl.,DB名)
構造体に磁場(340)を印加するステップ(904)であって、前記構造体が、導電性の粒子(220)をドープした粘性の母材(218)を浸透させた強化材料(216)の複数の層(202〜214)を含み、前記磁場(340)が、前記粒子(220)を1つ以上の導電経路(350)内に配列する、ステップ(904)と、
前記強化材料(216)の複数の層に対して前記1つ以上の導電経路(350)を所定の位置に固定するために、前記母材(218)を硬化した状態に硬化させるステップとを含む複合材料を製造する方法。
前記磁場(340)を印加するステップ(904)が、前記強化材料(216)の複数の層(202〜214)に対して互いに対向して配置された少なくとも一対のソレノイド(570)によって前記磁場(340)を生成することを含む、請求項1又は2に記載の方法。
前記複数の層(202〜214)が、z方向に積み重ねられた少なくとも2つの繊維強化材料(216)の層を含み、前記印加するステップが、z方向と実質的に平行に、前記少なくとも2つの繊維強化材料(216)の層を通って、前記磁場(340)の磁力線が延伸するように、前記磁場(340)を生成することを含む、請求項1から3のいずれか一項に記載の方法。
前記粒子(220)の大部分が常磁性材料製であり、前記印加するステップによって、複数の前記粒子(220)が、少なくとも1つの前記導電経路(350)を形成するように鎖状に連結される、請求項1から4のいずれか一項に記載の方法。
前記母材(218)が誘電材料製であり、前記印加するステップが、複数の前記粒子(220)が電気的に相互接続されていることを特徴とする少なくとも1つの導電経路(350)となるように、複数の前記粒子(220)を配列する、請求項1から5のいずれか一項に記載の方法。
前記粒子(220)が常磁性材料製であり、1本以上の前記鎖(350、354、358)が、前記層(202〜214)のうち1つに含まれている隣接する繊維同士の間の隙間を通って延伸している、請求項10に記載の複合材料。
各粒子(220)が1よりも大きいアスペクト比を有し、前記アスペクト比が、各粒子の長さを各粒子の長さ方向に直交する各粒子の別の寸法で割ったものとして定義される、請求項9から12のいずれか一項に記載の複合材料。
【発明を実施するための形態】
【0011】
導電性を向上させた複合材料、及びその製造方法の様々な実施形態が、以下に説明され、関連する図面に示される。特に指定がない限り、材料(又はその製造方法)及び/又はその様々な構成要素は、本明細書で説明され、例示され、及び/又は組み入れられた、構造、構成要素、機能性、及び/又は変更のうちの少なくとも1つを含んでもよいが、含んでいることを必要とされるものではない。さらに、本教示と関連して、本明細書で説明され、例示され、及び/又は組み入れられた、構造、構成要素、機能性、及び/又は変更は、他の類似の複合材料(又はその製造方法)に含まれてもよいが、含まれることを必要とされるものではない。以下の様々な実施形態の説明は、単に例示にすぎず、本開示、その適用又は使用を限定するものではない。また、本実施形態によって提供される利点は、以下に述べるように例示にすぎず、必ずしも全ての実施形態が、同一の利点、又は同程度の利点を提供するものではない。
【0012】
以下の例で、例示的な複合材料(及び/又はその製造方法)の、選択された態様について説明する。これらの例は、例示を意図しており、本開示の全範囲を限定するものと解釈されるべきではない。それぞれの例は、1つ以上の異なる発明、ならびに/あるいは、文脈上の、又は関連する情報、機能、及び/又は構造を含み得る。
【0013】
(実施例1)
この例では、
図1を参照して、強化材料の複数の層(すなわち複数層)及び母材を含む例示的な複合材料100について説明する。
【0014】
この例において、複合材料100は、母材102と、強化材料118の第1、第2、第3、第4、第5、第6、及び第7の層104、106、108、110、112、114、116とを含む。示されているように、層104、106、108、110、112、114、116は、z方向(すなわち積み重ねられた、又は積み重なっている方向)D1に、互いに積み重ねられている。さらに、各層104、106、108、110、112、114、116は、母材102が浸透しているz方向D1に厚さを有している。
図1から推測されるように、z方向D1は、強化材料の層の1つによって画定された平面に垂直、複合材料100によって画定された平面に垂直、及び/又は前述のいずれか1つの局所的な部分で画定された平面に垂直な方向であり得る。
【0015】
母材102は、層104、106、108、110、112、114、116に浸透、及び/又はそれらを接合するための、任意適当な材料とすることができる。例えば、母材102は、航空宇宙グレードのエポキシ樹脂等の、熱硬化性ポリマーであってもよい。
【0016】
強化材料118は、示されているように、分離した炭素繊維を含む材料等の繊維材料とすることができ、テープ構成で提供され得る。特に、繊維118は、それぞれ約5〜7マイクロメートル(μm)の直径を有し、隣接する繊維118同士の間の隙間は、それぞれ約1μmの幅を有し得る。他の実施形態において、繊維材料は、織布等の、別の適切な構成で提供され得る。
【0017】
図1において、各層は、類似の強化材料を含んでいることが示されているが、隣接する層に対して、図の平面と上下に平行な軸線を中心に、約45度回転している。特に、層104の強化材料118は、図の平面に対して実質的に45度の角度を形成し、層104の各繊維は、図の内側に向かって右方向に突出し、図の外側に向かって左方向に突出している。層106の強化材料118は、層106の強化材料118が図に実質的に垂直であるように、層104の強化材料118に対して、軸線を中心に実質的に45度回転させ得る、等である。さらに詳細には、層106の強化材料118は、層104の強化材料118に対して約45度で角度変位し得る。層108の強化材料118は、層104の強化材料118に対して約90度で角度変位し得る。層110の強化材料118は、層104の強化材料118に対して約135度で角度変位し得る。層112の強化材料118は、層104の強化材料118に対して約180度で角度変位し得る。層114の強化材料118は、層104の強化材料118に対して約225度で角度変位し、層116の強化材料118は、層104の強化材料118に対して約270度で角度変位し得る。
【0018】
しかし、他の実施形態において、強化材料の層は、互いに対して他の方向を有していてもよく、かつ/あるいは異なる層が、異なる種類の強化材料を含んでいてもよい。例えば、最上層及び/又は最下層は、ガラス繊維製の織布層であってもよく、あるいは中間層は、ハニカム状構造の材料製の強化材料を含んでいてもよい。さらに、他の実施形態は、例えば120層や、1層のみ等、より多くの、又はより少ない層を含んでいてもよい。さらに、他の実施形態は、示されているよりも薄いか、又はより大きい厚さを有する層を含んでいてもよい。例えば、一部の実施形態は、
図1に示されているものの約3倍の厚さを有する層を含んでいてもよい。
【0019】
強化材料118は、適度な導電性を有することができ、母材102は、ポリマー樹脂等の誘電材料とすることができる。したがって、複合材料100は、層104、108、110、112、116の強化材料118を通じてx方向(すなわち図に対して水平方向)に、及び層104、106、108、112、114、116の強化材料118を通じてy方向(すなわち図に対して垂直)に、適度な導電性を有し得る。しかし、強化材料118の隣接する(繊維等の)部分同士の間の隙間が、誘電性の母材102で充填されることによって、これらの隣接部分同士の間の導電性が阻害され、z方向D1における導電性が比較的低くなる。
【0020】
このような構成においては、複合材料100に入射した電流が放散しにくくなる場合があり、複合材料100の関連する層の損傷の原因となる。例えば、複合材料100の第1の面100aに入射した電流は、面100a及び/又は層104に近い母材102に集中する場合がある。さらに、複合材料100の第2の面100bに入射した電流は、面100b及び/又は層116に近い母材102に集中する場合がある。
【0021】
しかし、以下でより詳細に説明するように、例えば、母材を(例えば常磁性の材料で作られた)導電性粒子でドープすることと、粒子を1つ以上の導電経路の中に配列するために、母材の粘度が低いときに母材に磁場を印加することと、経路を所定の位置に固定するために、母材を少なくとも実質的に硬化した状態に硬化させることとによって、所望の方向における導電性を向上させ得ることを、本出願者は発見した。特に、縦の二点短鎖線で概略的に図示されている導電経路150、154等(
図3及び
図5も参照)等、このような電気経路を、複合材料の厚さを通してz方向に形成することによって、電流の集中を低減することができる。さらに、横の二点短鎖線で概略的に図示されている導電経路160、164等、複合材料のx及び/又はy方向(層の平面内等)に延伸する電気経路を形成することによって(
図6も参照)、特定の層を流れ得る電流の量を、その層の材料に損傷を与えることなく、増加させることができる。
【0022】
(実施例2)
この例では、
図2〜
図6を参照して、z方向D2に積み重ねられた強化材料(繊維216等)の層202、204、206、208、210、212、214を含む例示的な複合材料200と、導電性粒子220でドープした母材218ついて説明する。
【0023】
層202、204、206、208、210、212、214が、図を簡単にするために
図2に概略的に示されているが、これらの層は、複合材料100の層と類似した構造となり得る。例えば、各繊維216は、約5〜7μmの直径を有し、隣接する繊維216同士の間の各隙間は、それぞれ幅W1を有し、これは約1μmの直径とすることができる。
【0024】
この例において、母材218は、粘性が得られるまで加熱され得る。粒子220は、ドープした混合物222を生成するために、(例えば母材218が実質的に液体の状態のときに)粘性の母材218と混合され得る。粒子220は、実質的に磁力線に沿って整列する材料、例えばアルミニウム又はリチウム等の常磁性の材料、又は鉄等の強磁性の材料で作ることができる。母材218における粒子220の特定の濃度が示されているが、以下でより詳細に説明するように、このような濃度は、粒子が配列(又は配向)されたときに、所望の強化された導電性を生成するように構成され得ることに注意すべきである。例えば、粒子濃度は、約0.01〜0.99重量%の範囲のいずれかであるが、一部の実施形態において、使用される材料、及びその特定用途に基づいて、より高いか、より低くなり得る。
【0025】
一部の実施形態において、層202、204、206、208、210、212、214の1つ以上が、予め含浸させた強化材料(ドープした「プリプレグ」等)の1つ以上の層を生成するために、混合物222で予め含浸されるか、又は混合物222を予め浸透させ得る。ドープされたプリプレグは、次に積み重ねられ、次いで、母材218が粘性(例えば粒子がその中で移動できる、比較的低い粘度レベル)を有する、構造体224を生成するために加熱される。
【0026】
他の実施形態において、構造体224は、他の方法で提供され得る。例えば、樹脂トランスファー成形の実施形態において、層202、204、206、208、210、212、214の1つ以上が、互いに積み重ねられ、次に、構造体224を生成するために、混合物222がその積み重ねに加えられて、層202、204、206、208、210、212、214に浸透する。
【0027】
図3は、装置300を示し、強化材料216及び/又は母材218に対して、粒子220を配列、配向、及び/又は固定するための、任意適当な装置、システム、構造、又は機構を含み得る。例えば、装置300は、硬化装置310、磁場生成装置320、及びデータ処理システム330を含み得る。硬化装置310は、構造体224の温度を変化させるように構成でき、これによって、母材218の粘度を変化させることができる。磁場生成装置320は、母材218が、(例えば1つ以上の温度範囲で)適切な低い粘度を有しているときに、粒子220を配列するための磁力線344を有する、磁場340を生成するように構成され得る。データ処理システム330は、硬化装置310及び/又は磁場生成装置320の1つ以上の各機能を制御及び/又は監視するように構成され、装置300が、硬化装置310から構造体224へのエネルギーの印加に対して、磁場340の印加を少なくとも部分的に調整可能にすることができる。
【0028】
さらに詳細には、硬化装置310は、熱エネルギー及び/又はマイクロ波放射線等のエネルギーを、構造体224に印加するように構成することができる。例えば、硬化装置310は、構造体224が配置され得る、オートクレーブとすることができる。背景となる硬化装置310の例については、特許文献1で説明されている。例えば、構造体224が、硬化領域内に少なくとも部分的に囲まれるように、マイクロ波放射ハウジングを構成してもよい。さらに他の例において、硬化装置310は、構造体224に外部からエネルギーを印加することはできないが、むしろ、適切な硬化を生成するために、構造体224に追加される構成物であり得る。一部の実施形態において、硬化装置310からのエネルギーを構造体224に印加中に、構造体224の複数の構成要素を圧縮するために、真空バッグが、構造体224に操作可能に結合されてもよい。
【0029】
硬化装置310による構造体224へのエネルギーの印加は、
図4に示す硬化サイクル400等の、適切な硬化サイクルに従って、構造体224の温度を上昇、維持、及び/又は減少させるように構成され得る。特に、硬化サイクル400は、熱上昇段階404、維持すなわち保持段階408、及び冷却段階412を含み得る。
【0030】
硬化装置310による構造体224へのエネルギーの印加によって、構造体224は、結果としてその中で粒子220が移動するのに適切な、低い粘度を有することができる。例えば、段階404は、構造体224の第1の所定の温度、例えば摂氏54度から始まる。一部の実施形態において、硬化装置310から構造体224に印加されたエネルギーは、構造体224を、第1の所定の温度まで加熱するために使用され得る。一部の実施形態において、構造体224は、最初はヒートガン等の別の熱供給源によって加熱され、これは、1つ以上の層を、加熱して所定の位置に粘着させるために使用され得る。段階404は、構造体224の温度を、第1の所定の比率、例えば1分間に摂氏約0.5〜3度の範囲の比率で上昇させることを含み得る。段階404は、構造体224が第2の所定の温度に達するまで続き、これは、例えば摂氏177度プラスマイナス6度の、母材218の硬化(又は硬化した)温度であり得る。構造体224の温度が、第1の所定の温度から第2の所定の温度まで上昇すると、母材218の粘度は、最初は段階404の部分404aにおいて減少するが、次に、段階404の、第2の所定の温度の近くの部分404bにおいて上昇する。部分404aの間は、母材218の粘度は、その中で粒子220が移動できるように、十分に低くなり得る。部分404bの間は、母材218の粘度は、その中で粒子220が移動するのを防止するように、十分に高くなり得る。例えば、部分404bに関連する温度範囲は、母材218が実質的に硬化した状態に硬化することと対応し得る。
【0031】
したがって、部分404aの間は、母材218の粘度が適切な低さであるときに、磁場生成装置320が、粒子220を配列するための磁場340を生成するように構成され得る。例えば、磁場生成装置320は、図に示すようなソレノイドを含み得る。ソレノイドは、硬化装置310の内部に配置され得る。しかし、他の例において、ソレノイドの巻線等の磁場生成装置320の1つ以上の部分は、硬化装置310の外部に配置されてもよく、あるいは、硬化装置310の1つ以上の壁部を形成しても(又は壁部に配置されても)よい。示されているように、ソレノイドは、例えば、右手の法則で下方向に流れる電流が、構造体224を囲むソレノイドの導電性巻線を通ることによって、磁力線344を有する磁場340を生成するように構成され得る。特に、電流は、
図3の右側の導電性巻線部分を通って、図の外側へと流れ、
図3の左側の、関連する導電性巻線部分を通って、図の内側へと流れ得る。その結果、磁力線344は、z方向D2と実質的に平行に延伸することができる。また、磁力線344は、z方向D2に、構造体224の全厚さを通って、延伸することができる。
【0032】
特に、母材218が低粘度である、1つ以上の継続時間中に、磁場340を構造体224に印加することによって、図に示すように、粒子220が、導電性の強化をもたらすために、例えばz方向D2に非ランダムに配列される。例えば、
図2に示す、ランダムに配列された(例えば、粒子が比較的一般的な分布を有し、明らかな正味の方向性がない)粒子220と対比して、磁場を印加すると、かなりの割合の粒子220が、非ランダムに配列された構成に並び、全般的な方向性を有することができる。特に、磁場340の印加が、粒子220のそれぞれに磁気双極子モーメントを誘発することによって、粒子220のかなりの部分が、導電経路350、354、358を形成するために、1本以上の磁力線344に沿って、実質的に配列(すなわち鎖状に連結)される。一部の実施形態において、かなりの割合とは、図に示すように、50%より多く、場合によっては100%に近い。
【0033】
上述したように、導電経路によって、導電性を強化することができる。例えば、導電経路350、354、358はそれぞれ、互いに電気接触(例えば物理接触)する2つ以上の粒子220を含み得る。特に、磁場340の印加を介した粒子220の配列は、粒子220の第1のサブセットを導電経路350に電気的に相互接続し、粒子220の第2のサブセットを導電経路354に電気的に相互接続し、粒子220の第3のサブセットを導電経路358に電気的に相互接続し得る。導電経路350、354、358は、母材218に配置され、z方向D2に直交する方向に互いに変位され得る。
【0034】
図に示すように、導電経路350、354、358は、磁場340の各磁力線に沿って、実質的にz方向D2に延伸することができる。導電経路350、354、358のそれぞれは、(例えば各層内にある)分離して間隔を空けられた2つ以上の繊維216同士の間で延伸し、一部の箇所では、1つ以上の強化材料216の少なくとも一部で、少なくとも部分的に回り込んで(及び/又は接触して)いる。さらに、導電経路350、354、358は、それぞれ、構造体224の層の全厚さT1の大部分を通って、延伸することができる。例えば、導電経路350、354、358は、それぞれ、全厚さT1を通って、延伸することができる。しかし、一部の実施形態において、経路は、全厚さの全体より短く延伸してもよく、場合によっては、厚さの大部分、又は全厚さよりも短く延伸してもよいが、それでも、結果として生じる複合材料の導電性は強化することができる。
【0035】
粒子220は、磁場340の印加を介して構造体224で配向するために、任意適当な寸法を有し得る。例えば、粒子220の大部分は、隣接する繊維を隔てている隙間の幅W1より小さい長さL1をそれぞれ有しており、これによって、各粒子が、隣接する繊維同士の間でより自由に回転し、かつ/あるいは各粒子が、隣接する繊維同士の間で引っ掛かるのを防止することができる。さらに、それぞれの(又は大部分の)粒子220は、1よりも大きいアスペクト比をそれぞれ有し、これによって、各粒子で誘発された磁気モーメントを強化することができ、粒子を磁場の印加によって、より容易に配列することが可能になる。特に、各粒子のアスペクト比は、L1に直交する各粒子の別の寸法(幅W2等)で割った、各粒子の長さL1によって定義され得る。一部の実施形態において、このアスペクト比は、図に示すように、2よりも大きいか、又はさらに大きい場合がある。しかし、一部の実施形態において、粒子は、約1:1の各アスペクト比を有する、実質的に球形又は立方体であってもよい。
【0036】
おそらく、磁場生成装置320は、少なくとも母材218が、実質的に硬化した状態(又は所定の硬化状態)に達するまで、磁場340を生成して印加し、1つ以上の粒子220が、隣接する粒子との整列から外れて移動するのを防止することができる。例えば、母材218が、実質的に硬化した状態に達すると、経路は、強化材料216及び母材218に対して、所定の位置に固定され得る。このとき、磁場生成装置は、磁場340の生成(あるいは解放、又は除去)を停止するように構成され得る。
【0037】
硬化装置310は、次に、部分404bを完了させるように構造体224にエネルギーを印加し、段階408、412を実行することによって、硬化した母材218、強化材料216、及び固定された導電経路350、354、358を含む、結果として得られる複合材料を生成するために、構造体224の硬化を完了させる。例えば、段階408は、構造体224が第2の所定の温度に達したときに始まり得る。段階408は、第2の所定の温度(例えばプラスマイナス摂氏6度)を、150〜210分等の所定の継続時間の間、保持すなわち維持することを含み得る。所定の継続時間の間、第2の所定の温度を保持すなわち維持することによって、母材218が、強化材料216及び粒子220の両方に適切に接合され得る。段階412は、所定の継続時間が経過したときに始まり得る。段階412は、構造体224の温度を、例えば1分間に摂氏3度より低いか、又は等しい比率等の、第2の所定の比率で減少させることを含み得る。第2の所定の比率は、結果として生じる複合材料の強度を減少させることなく、構造体224の温度を減少させることができる最大の比率とすることができる。段階412は、構造体224が、摂氏60度、又はそれ以下の温度等の、第3の所定の温度に達するまで続き得る。構造体224が、第3の所定の温度に達すると、真空バッグの内部の圧力が解放され、真空バッグは硬化した構造体224から除去され、強化した構造体224(例えば結果として生じる複合材料)は、装置300から除去されて検査され得る。
【0038】
しかし、一部の実施形態において、磁場生成装置320は、部分404b、段階408の1つ以上の部分、及び/又は段階412の1つ以上の部分を通して、構造体に磁場340を印加するように構成され、これは、粒子220が母材218に対して移動できるように、これらの1つ以上の部分によって、母材218の粘度レベルが下げられたときに、好ましい場合がある。
【0039】
上述したように、データ処理システム330は、硬化装置310及び/又は磁場生成装置320の1つ以上の各機能を制御及び/又は監視するように構成され得る。例えば、データ処理システム330は、硬化装置310によって構造体224に印加されるエネルギーのレベルを制御するように、磁場生成装置320によって生成された磁場340の強さ及び/又は方向を制御するように、母材218の粘度レベルを決定(又は評価)するように、かつ/あるいは決定された(又は評価された)粘度レベルに基づいて、硬化装置310、磁場生成装置320の1つ以上を制御するように構成され得る。
【0040】
特に、段階404、408、412に対応するシーケンス等の、1つ以上の温度傾斜、及び/又は温度保持のシーケンスは、(例えばユーザによって)データ処理システム330に入力され得る。データ処理システム330は、次に、それに応じて段階404、408、412を実行するように、構造体224にエネルギーを印加するために、硬化装置310を制御することができる。さらに、データ処理システム330は、母材218の粘度レベルが、その中で粒子220が移動できるように十分に低いときを判断(及び/又は推定)するように構成された、1つ以上のソフトウェアアプリケーション(Vancouver, B.C.のConvergent Manufacturing Technologies(商標)による、RAVEN Simulation Software等)を含み、記憶し、及び/又は実行することができ、これによって、ユーザ及び/又はデータ処理システム330は、いつ磁場340の印加を開始するか、及び/又は、いつ磁場340の印加を停止するかを判断することができる。例えば、このソフトウェアアプリケーションは、(例えば、ユーザがシーケンスをソフトウェアアプリケーションに入力することによって、又はデータ処理システム330がシーケンスをソフトウェアアプリケーションに入力することによって)入力シーケンスを受けとるように構成され得る。このソフトウェアアプリケーションは、また、構造体224の材料組成に応じてデータを受信するように構成され得る。このソフトウェアアプリケーションは、次に、入力シーケンス、及び/又は受けとった組成データに基づいて、硬化サイクル400に沿って、1つ以上の(例えば全ての)ポイントで、母材218の硬化の程度及び/又は粘度のレベルを判断(又は推定)し、これによって、ユーザ及び/又はデータ処理システム330に、硬化サイクル400の間で、いつ磁場340を印加するか、及び/又は、硬化サイクル400の間で、いつ磁場340の印加を停止するかを知らせることができる。
【0041】
データ処理システム330は、入力シーケンス及び/又は受信した組成データの少なくとも一部に基づいて、粒子220を配列するのに適切な磁場の強さを決定するように構成され得る。例えば、受信した組成データは、アルミニウム及び/又はリチウム粒子を含む粒子220が、それぞれ、約2.2×10
−5及び1.4×10
−5の磁化率を有していることを示し得る。さらに、受信した組成データと連動する入力シーケンスの少なくとも一部に基づいて、データ処理システム330は、経路を形成するためには、母材が約10ポアズ(又は1Ns/m
2)の粘度を有する20分間に、100マイクロメートル以下の粒子の移動が必要であると判断することができる。したがって、これらの1つ以上の判断及び入力に基づいて、データ処理システム330は、粒子220を経路内に配列するには、約1.0Tの磁場の強さが適切であると判断でき、これに応じて、磁場生成装置320を制御することができる。しかし、一部の実施形態において、他の磁場の強さが適切な場合がある。例えば、磁場340が約0.7Tの強さを有し、場合によってはさらに低く、これが粒子220の配列に適切である場合がある。
【0042】
一部の実施形態において、粒子220の温度が上昇すると(段階404の間等)、誘発される各粒子220の磁気モーメントは、わずかに減少する場合がある。したがって、データ処理システム330は、誘発された磁気モーメントの、このような減少を相殺するために、磁場340の強度を上げるように構成され得る。
【0043】
図5は、装置500を示し、強化材料216及び/又は母材218に対して、粒子220を配列、配向、及び/又は固定するための、類似の任意適当な装置、システム、構造、又は機構を含み得る。例えば、装置500は、硬化装置510、磁場生成装置520、及びデータ処理システム530を含み、その1つ以上が、硬化装置310、磁場生成装置520、及びデータ処理システム530のそれぞれと、類似の構造及び/又は機能を有し得る。
【0044】
さらに詳細には、硬化装置510は、母材218の粘度を変化させるように構成され、磁場生成装置520は、磁場540、550を生成して印加するように構成され得る。磁場540、550は、粒子220が形成する、実質的にz方向D2に延伸する導電経路560、562、564、566のそれぞれに沿って、磁力線540a、540b、及び550a、550bをそれぞれ有し得る。特に、磁場生成装置520は、第1の対の実質的に整列したソレノイド570、574と、第2の対の実質的に整列したソレノイド578、582とを有し得る。ソレノイド570、574は、構造体224に対して互いに対向して配置されて、それぞれが、それぞれの磁場を生成することができ、これが組み合わされたときに、磁場540を生成し得る。同様に、ソレノイド578、582は、構造体224に対して互いに対向して配置されて、それぞれが、それぞれの磁場を生成することができ、これが組み合わされたときに、磁場550を生成し得る。構造体224に対して互いに対向して配置されたソレノイドで、1つ以上の磁場を生成することによって、装置500は、特定の構成に対して、互いに対向して配置された第1及び第2の列のソレノイドを用いることで、比較的大きい複合材料の構成において、経路を配列することが可能になる。例えば、ここでは構造体224の一部のみが概略的に示されているが、構造体224は、長さ約20メートル、幅約10メートル、その他比較的大きな寸法を有することができる。例えば、構造体224は、民間航空機用の、積層複合材の翼のスキンパネルの製造に使用され得る。
【0045】
装置300と同様に、装置500は、粒子220を導電経路内に配列すると同時に、母材218を硬化させるように構成され得る。さらに、装置500は、母材218が所定の硬化状態に硬化されたら、磁場540、550の印加を停止するように構成することができ、これによって、例えば、
図3及び
図4を参照して上述したのと類似の方法で、経路を所定の位置に固定する。
【0046】
図6は、装置600を示し、これもまた同様に、強化材料216及び/又は母材218に対して、粒子220を配列、配向、及び/又は固定するための任意適当な装置、システム、構造、又は機構を含み得る。例えば、装置600は、硬化装置610、磁場生成装置620、及びデータ処理システム630を含み、その1つ以上が、硬化装置310、510、磁場生成装置320、520、又はデータ処理システム330、530と類似の構造及び/又は機能を有し得る。ただし、磁場生成装置620は、z方向D2に実質的に直交する磁力線を有する、磁場640を生成するように構成され得る。構造体224に磁場640を印加することによって、粒子220を、導電経路660、662、664、666、668、670、672、674、676、678、680、682、684内に配列することができる。図に示すように、これらの経路は、z方向D2に実質的に直交する方向に延伸し、結果として生じる複合材料の導電性を、x及び/又はy方向に強化することができる。
【0047】
(実施例3)
この例は、
図7を参照して、プリプレグを用いて複合材料を製造する方法を示している。
【0048】
図7は、例示的な方法において実行されるステップを示すフローチャートであるが、このプログラムの完全な工程、又は全てのステップを列挙するものではない。
図7は、方法の複数のステップを示し、概略的に700で示されている。方法700の様々なステップが以下で説明され、
図7に示されるが、必ずしもこのステップの全てが実行される必要はなく、場合によっては、示されている順序とは異なる順序で実行され得る。
【0049】
方法700は、母材を比較的低い粘度を有するまで加熱するステップ702と、ドープした母材を生成するために、導電性材料を低い粘度の母材の中に混合するステップ704とを含み得る。一部の実施形態において、導電性材料は、1より大きいアスペクト比を有する、常磁性の粒子を含み得る。
【0050】
方法700は、プリプレグを生成するために、ドープした母材を強化材料(例えば、積み重ねられた炭素繊維の層)に加えるステップ706をさらに含み得る。一部の実施形態において、プリプレグの生成は、ドープした母材が、積み重ねられた炭素繊維の層に浸透できるようにすること、及び/又は母材が実質的に固形になるように、母材の粘度を増加させることを含み得る。
【0051】
方法700は、生成されたプリプレグを(例えば、常磁性の粒子でドープされていてもよいし、ドープされていなくてもよい、別のプリプレグの層の上に)積み重ねるステップ708と、ドープした母材が比較的低い粘度を有するまで、積み重ねられたプリプレグを加熱するステップ710とをさらに含み得る。一部の実施形態において、ステップ710における低い粘度は、ステップ702における比較的低い粘度よりも、さらに低い粘度レベルに対応し得る。例えば、ステップ704において、導電性粒子を母材に混合することは、機械的な攪拌動作を含むことができ、これは、母材が「より厚い」(例えば、粘度がより高い)ときに実行され得る。一方、導電性粒子の配列は、以下に説明するように、母材が「より薄い」(例えば、粘度がより低い)ときに実行され得る。特に、ステップ704における、より高い粘度は、導電性粒子が、母材内で「沈殿する」のを防止すなわち阻止するように構成され得る。例えば、ステップ704におけるより高い粘度は、導電性粒子が混合されたときに、(
図2に示すように)母材内における懸濁を維持するように構成され得る。さらに、ステップ710における、ドープした母材のより低い粘度は、導電性粒子が、印加された磁場に応じて、母材内で移動できるように構成され得る。例えば、ステップ710における母材のより低い粘度は、磁場の印加中に、(
図3に示すように)導電性の鎖の複数の組の中へと、導電性粒子がz方向に移動できるように構成され得る。
【0052】
例えば、方法700は、(常磁性粒子等の)導電性材料を配列する(すなわち鎖状に連結させる)ために、積み重ねられたプリプレグに磁場を印加するステップ712をさらに含み得る。例えば、磁場の印加によって、導電性材料を、1つ以上の導電経路内に配列することができる。一部の実施形態において、この経路は、実質的にz方向に延伸し得る。他の実施形態において、この経路は、z方向に実質的に直交する方向に延伸し得る。
【0053】
方法700は、複合材料を生成するために、積み重ねられたプリプレグを実質的に硬化した状態に硬化させるステップ714と、磁場を解放するステップ716とをさらに含み得る。例えば、ドープした母材が実質的に硬化した状態にあることによって、経路を所定の位置に固定することができ、導電性材料が実質的に硬化した状態になる前に鎖が解けることを防止するために、ステップ712、714の少なくとも一部を重複させてもよい。
【0054】
(実施例4)
この例では、
図8を参照して、樹脂トランスファー成形を用いて複合材料を製造する方法を説明する。
【0055】
図8は、例示的な方法において実行されるステップを示すフローチャートであるが、このプログラムの完全な工程、又は全てのステップを列挙するものではない。
図8は、方法の複数のステップを示し、概略的に800で示されている。方法800の様々なステップが以下で説明され、
図8に示されるが、必ずしもこのステップの全てが実行される必要はなく、場合によっては、示されている順序とは異なる順序で実行され得る。
【0056】
方法700と同様に、方法800は、母材を所定の比較的低い粘度レベルに達するまで加熱するステップ802と、ドープした母材を生成するために、導電性材料を低い粘度の母材の中に混合する(又は配置する)ステップ804とを含み得る。
【0057】
方法800は、ドープした母材を、強化材料の1層以上の層に加えるステップ806と、ドープした母材を、強化材料の1層以上の層に浸透させることによって、複合構造体を形成するステップ808をさらに含み得る。
【0058】
方法800は、導電性材料を(1つ以上の導電経路内に)配列するために、複合構造体に磁場を印加するステップ810と、複合材料を形成するために、実質的に硬化した状態に複合構造体を硬化させるステップ812をさらに含み得る。
【0059】
方法800は、磁場を解放するステップ814をさらに含み得る。一部の実施形態において、磁場は、ステップ812の前に解放(又は除去)されてもよい。他の実施形態において、磁場は、ステップ812の間に解放されてもよい。さらに別の実施形態において、磁場は、ステップ812の後に解放されてもよい。
【0060】
(実施例5)
この例は、
図9を参照して、複合材料を製造する方法を示している。
【0061】
図9は、例示的な方法において実行されるステップを示すフローチャートであるが、このプログラムの完全な工程、又は全てのステップを列挙するものではない。
図9は、方法の複数のステップを示し、概略的に900で示されている。方法900の様々なステップが以下で説明され、
図9に示されるが、必ずしもこのステップの全てが実行される必要はなく、場合によっては、示されている順序とは異なる順序で実行され得る。
【0062】
ステップ902において、強化材料の1つ以上の層が提供される。強化材料の1層以上の層には、粘性の母材を浸透させ得る。粘性の母材は、導電性粒子でドープされ得る。強化材料の1つ以上の層は、z方向に積み重ねられた、少なくとも2層の繊維強化材料を含み得る。母材は、誘電材料で作ることができる。導電性粒子の大部分は、例えばアルミニウム又はリチウム等の常磁性の材料で作られ得る。
【0063】
一部の実施形態において、ドープした粘性の母材を浸透させた強化材料は、(例えば、方法700のステップ710と同様の方法で)プリプレグを加熱することでもたらされ得る。他の実施形態において、ドープした粘性の母材を浸透させた強化材料は、(例えば、方法800のステップ802、804、806、808と同様の方法で)樹脂トランスファー成形を介してもたらされ得る。
【0064】
ステップ904において、粒子を1つ以上の導電経路内に配列するために、磁場が印加され得る。磁場が印加されることによって、複数の粒子が、少なくとも1つの導電経路を形成するように、鎖状に連結する。例えば、少なくとも1つの導電経路が、複数の粒子が電気的に相互接続されることによって特徴付けられ得る。一部の実施形態において、母材は適度に導電性であって、この場合、複数の粒子が、母材を介して電気的に相互接続され得る。
【0065】
一部の実施形態において、磁場を印加するステップは、強化材料の1つ以上の層に対して、互いに対向して配置された少なくとも一対のソレノイドによって、磁場を生成することを含み得る。生成された磁場は、z方向と実質的に平行な磁力線を有し、少なくとも2層の繊維強化材料の層を通って延伸し得る。
【0066】
一部の実施形態において、ステップ904は、母材が所定の粘度に達するまで、磁場を印加することを含み得る。例えば、母材が比較的低い粘度レベルを有しているときに磁場が印加され、それによって、粒子が実質的に磁力線に沿って配列され、導電経路を形成する。母材の粘度は、次に、(硬化装置等の)粘度制御装置によって、所定の比較的高い粘度レベルまで増加させられることによって、粒子の分散を実質的に防止する。母材が(少なくとも)所定の比較的高い粘度レベルに達するまで、母材に磁場を印加することによって、経路の切れ目を最小にすることができ、所望の方向の導電性をさらに向上させることができる。
【0067】
ステップ906において、強化材料の1つ以上の層に対して、1つ以上の導電経路を所定の位置に実質的に固定するために、母材を実質的に硬化した状態に硬化させることができる。例えば、ステップ906は、硬化サイクルを実行するために、母材に熱エネルギーを印加することを含み得る。
【0068】
一部の実施形態において、ステップ904、906は、少なくとも部分的には、同時に行われる。例えば、磁場は、母材が(少なくとも)硬化した状態に硬化するまで印加され得る。特に、上述した所定の比較的高い粘度レベルは、母材が硬化した状態に相当し得る。
【0069】
方法900は、母材を硬化した状態に硬化させた後に、磁場を除去するステップをさらに含み得る。例えば、母材が硬化した状態に達した後に、磁場は、ソレノイドに流れている電流を減少させることによって、ソレノイドの近傍から(例えば、強化材料、粒子、及び硬化した母材で形成された)複合材料を除去することによって、及び/又は複合材料の近傍からソレノイドを除去することによって、除去され得る。
【0070】
(実施例6)
この例は、
図10を参照して、複合材料を製造する方法を示している。
【0071】
図10は、例示的な方法において実行されるステップを示すフローチャートであるが、このプログラムの完全な工程、又は全てのステップを列挙するものではない。
図10は、方法の複数のステップを示し、概略的に1000で示されている。方法1000の様々なステップが以下で説明され、
図10に示されるが、必ずしもこのステップの全てが実行される必要はなく、場合によっては、示されている順序とは異なる順序で実行され得る。
【0072】
ステップ1002において、構造体が提供される。この構造体は、強化材料の複数の層、及び強化材料の複数の層に浸透する粘性の母材とを含み得る。母材は、導電性粒子でドープされ得る。強化材料の複数の層は、z方向に互いに積み重なることができる。粒子は、常磁性の材料で作られ得る。強化材料は、互いに間隔を空けられた、複数の分離した繊維(例えば炭素繊維)を含み得る。母材は、樹脂とすることができる。
【0073】
ステップ1004において、実質的にz方向に延伸する1つ以上の導電経路を形成するために、粒子をz方向に対して配列するように、この構造体に磁場が印加され得る。例えば、ステップ1004は、粒子の第1のサブセットを、第1の経路に電気的に相互接続することを含み得る。第1の経路は、分離して間隔を空けられた2つ以上の繊維同士の間で、及び強化材料の複数の層の全厚さの、少なくとも大部分を通ってz方向に延伸することができる。さらに、ステップ1004は、粒子の第2のサブセットを、第2の経路内に電気的に相互接続することを含み得る。第2の経路は、樹脂内に配置され、全厚さの全体を通って延伸し、第1の経路からは、z方向と直交する方向に変位され得る。
【0074】
ステップ1006において、母材及び強化材料の複数の層に対して、経路を所定の位置に実質的に固定するために、母材を硬化させることができる。一部の実施形態において、ステップ1004は、母材(例えば樹脂)が、ステップ1006における所定の硬化状態に硬化するまで実行され得る。
【0075】
(実施例7)
この例では、
図11を参照して、本開示の態様に従って、データ処理システム1100について説明する。
【0076】
この例示的な例において、データ処理システム1100は、通信フレームワーク1102を含む。通信フレームワーク1102は、プロセッサユニット1104と、メモリ1106と、永続的記憶媒体1108と、通信ユニット1110と、入力/出力(I/O)ユニット1112と、ディスプレイ1114との間の通信を提供する。メモリ1106、永続的記憶媒体1108、通信ユニット1110、入力/出力(I/O)ユニット1112、及びディスプレイ1114は、通信フレームワーク1102を介して、プロセッサユニット1104によってアクセス可能なリソースの例である。
【0077】
プロセッサユニット1104は、メモリ1106内にロードされ得るソフトウェアの命令を実行する働きをする。プロセッサユニット1104は、特定の実行に応じて、いくつかのプロセッサ、マルチプロセッサコア、その他の種類のプロセッサとすることができる。さらに、プロセッサユニット1104は、主プロセッサが、シングルチップで二次プロセッサと共に存在する、いくつかのヘテロジニアスプロセッサシステムを用いて実装され得る。別の例示的な例として、プロセッサユニット1104は、同種の複数のプロセッサを含む、対称的なマルチプロセッサシステムとすることができる。
【0078】
メモリ1106、及び永続的記憶媒体1108は、記憶装置1116の例である。記憶装置は、例えば無制限に、データ、関数形式のプログラムコード、その他の適切な情報等を、一時的又は永続的に記憶できる任意のハードウェアである。
【0079】
記憶装置1116は、また、これらの例において、コンピュータ可読記憶装置として参照され得る。この例において、メモリ1106は、例えば、ランダムアクセスメモリ、又は他の任意適当な揮発性又は不揮発性の記憶装置とすることができる。永続的記憶媒体1108は、特定の実行に応じて、様々な形態をとることができる。
【0080】
例えば、永続的記憶媒体1108は、1つ以上の構成部品又は装置を含み得る。例えば、永続的記憶媒体1108は、ハードディスク、フラッシュメモリ、書き換え可能光ディスク、書き換え可能磁気テープ、又は上記のいくつかの組み合わせとすることができる。永続的記憶媒体1108によって使用される媒体は、取り外し可能であってもよい。例えば、取り外し可能なハードディスクが、永続的記憶媒体1108に使用され得る。
【0081】
この例において、通信ユニット1110は、他のデータ処理システム又は装置との通信を提供する。この例において、通信ユニット1110は、ネットワークインターフェースカードである。通信ユニット1110は、物理通信リンク、及び無線通信リンクのいずれか、又はその両方の使用を介した通信を提供し得る。
【0082】
入力/出力(I/O)ユニット1112は、データ処理システム1100に接続し得る他の装置への、データの入力及び出力を可能にする。例えば、入力/出力(I/O)ユニット1112は、キーボード、マウス、及び/又はその他の適切な入力装置を通して、ユーザ入力の通信を提供し得る。さらに、入力/出力(I/O)ユニット1112は、プリンタに出力を送信することができる。ディスプレイ1114は、ユーザに情報を表示する機構を提供する。
【0083】
オペレーティングシステム、アプリケーション、及び/又はプログラム用の命令は、記憶装置1116に置かれ、これは、通信フレームワーク1102を通して、プロセッサユニット1104と通信する。この例示的な例において、命令は、永続的記憶媒体1108において、関数形式である。これらの命令は、プロセッサユニット1104による実行のために、メモリ1106内にロードされ得る。異なる実施形態の処理は、コンピュータ実行命令を用いて、プロセッサユニット1104によって実行することができ、この命令は、メモリ1106等のメモリに置かれる。
【0084】
これらの命令は、プロセッサユニット1104において、プロセッサによって読み取られ実行される、プログラム命令、プログラムコード、コンピュータ使用可能プログラムコード、又はコンピュータ可読プログラムコードとして参照される。異なる実施形態のプログラムコードは、メモリ1106、又は永続的記憶媒体1108等の、異なる物理的な、又はコンピュータ可読の記憶媒体で実施される。
【0085】
プログラムコード1118は、選択的に取り外し可能なコンピュータ可読媒体1120上に関数形式で置かれ、プロセッサユニット1104による実行のために、データ処理システム1100に、ロードされるか又は転送される。プログラムコード1118、及びコンピュータ可読媒体1120は、この例において、コンピュータプログラム製品1122を形成する。1つの例において、コンピュータ可読媒体1120は、コンピュータ可読記憶媒体1124、又はコンピュータ可読信号媒体1126とすることができる。
【0086】
コンピュータ可読記憶媒体1124は、ハードディスク等の記憶装置に転送するための、永続的記憶媒体1108の一部である、ドライブ、又は他の装置に挿入又は配置される、例えば、光学ディスク又は磁気ディスクを含むことができ、これは、永続的記憶媒体1108の一部である。コンピュータ可読記憶媒体1124は、また、データ処理システム1100に接続するハードディスク、サムドライブ、又はフラッシュメモリ等の、永続的記憶媒体の形態を取り得る。場合によっては、コンピュータ可読記憶媒体1124は、データ処理システム1100から取り外せないことがある。
【0087】
この例において、コンピュータ可読記憶媒体1124は、プログラムコード1118を伝播又は送信する媒体というよりは、プログラムコード1118を記憶するために使用される、物理的すなわち有形の記憶装置である。コンピュータ可読記憶媒体1124は、また、コンピュータ可読の有形の記憶装置、又はコンピュータ可読の物理的記憶装置とも呼ばれる。言い換えれば、コンピュータ可読記憶媒体1124は、人が触れることのできる媒体である。
【0088】
あるいは、プログラムコード1118は、コンピュータ可読信号媒体1126を用いて、データ処理システム1100に転送され得る。コンピュータ可読信号媒体1126は、例えば、プログラムコード1118を含む、伝播されたデータ信号とすることができる。例えば、コンピュータ可読信号媒体1126は、電磁信号、光信号、及び/又はその他の任意適当な種類の信号とすることができる。これらの信号は、無線通信リンク、光ファイバーケーブル、同軸ケーブル、ワイヤ、及び/又はその他の任意適当な種類の通信リンク等の、通信リンクを介して送信され得る。言い換えれば、通信リンク及び/又は接続は、例示的な例において、物理的又は無線であり得る。
【0089】
一部の例示的な実施形態において、プログラムコード1118は、データ処理システム1100内で使用するために、別の装置又はデータ処理システムから、コンピュータ可読信号媒体1126を通じて、ネットワークを介して永続的記憶媒体1108にダウンロードされ得る。例えば、サーバデータ処理システムにおいて、コンピュータ可読記憶媒体に記憶されたプログラムコードは、サーバからデータ処理システム1100に、ネットワークを介してダウンロードされ得る。プログラムコード1118を提供するデータ処理システムは、サーバコンピュータ、クライアントコンピュータ、又はプログラムコード1118を記憶及び送信することが可能なその他の装置とすることができる。
【0090】
データ処理システム1100用に例示されている異なる構成部品は、異なる実施形態が実施され得る態様に、構造的な制限を設けるものではない。異なる例示的な実施形態が、データ処理システム1100用に例示されている構成部品に加わる、及び/又はこれに替わる構成部品を含む、データ処理システムで実行され得る。
図11に示す他の構成部品は、図示されている例示的な例とは異なっていてもよい。異なる実施形態が、プログラムコードを実行できる、任意のハードウェア又はシステムを用いて実行され得る。一例として、データ処理システム1100は、無機成分と統合された有機成分を含むことができるか、かつ/あるいは全てが人間を除く有機成分で構成され得る。例えば、記憶装置は、有機半導体で構成され得る。
【0091】
別の例示的な例において、プロセッサユニット1104は、特定の用途のために製造又は構成された回路を有する、ハードウェアユニットの形態を取り得る。この種のハードウェアは、操作を実行するように構成された記憶装置から、メモリ内にプログラムコードをロードする必要なく、操作を実行することができる。
【0092】
例えば、プロセッサユニット1104が、ハードウェアユニットの形態をとるときに、プロセッサユニット1104は、いくつかの操作を実行するように構成された、回路システム、特定用途向け集積回路(ASIC)、プログラマブル論理装置、その他の適切な種類のハードウェアであり得る。プログラマブル論理装置の場合、この装置は、いくつかの操作を実行するように構成される。この装置は、いくつかの操作を実行するように、後で再構成、又は永続的に構成され得る。プログラマブル論理装置の例には、例えば、プログラマブル論理アレイ、フィールドプログラマブル論理アレイ、フィールドプログラマブルゲートアレイ、その他の適切なハードウェア装置が含まれる。この種の実装の場合、異なる実施形態のための処理は、ハードウェアユニットで実行されるため、プログラムコード1118は省略してもよい。
【0093】
さらに別の例示的な例として、プロセッサユニット1104は、コンピュータ及びハードウェアユニットに含まれているプロセッサの組み合わせを用いて実装され得る。プロセッサユニット1104は、プログラムコード1118を実行するように構成された、いくつかのハードウェアユニット、及びいくつかのプロセッサを有し得る。ここに示されている例の場合、処理の一部は、いくつかのハードウェアユニットで実行され、他の処理は、いくつかのプロセッサで実行され得る。
【0094】
別の例において、通信フレームワーク1102を実行するために、バスシステムを使用することができ、システムバス又は入力/出力バス等の、1つ以上のバスで構成され得る。言うまでもなく、バスシステムは、バスシステムに取り付けられた異なる構成部品や装置間のデータ転送を提供する、任意適当な種類のアーキテクチャを用いて実行することができる。
【0095】
また、通信ユニット1110は、データ送信、データ受信、又はデータの送受信の両方を行う、いくつかの装置を含むことができる。通信ユニット1110は、例えば、モデム又はネットワークアダプタ、2つのネットワークアダプタ、あるいはそのいくつかの組み合わせであってもよい。さらに、メモリは、例えば、インターフェースに含まれている等の、メモリ1106又はキャッシュ、及び通信フレームワーク1102に存在し得るメモリコントローラーハブであり得る。
【0096】
ここで説明するフローチャート及びブロック図は、システムで考えられる実施形態の、アーキテクチャ、機能性、及び操作と、様々な例示的な実施形態による、方法、及びコンピュータプログラム製品とを示している。この点において、フローチャートの各ブロック、又はブロック図は、モジュール、セグメント、又はコードの一部を表しており、指定した1つ又は複数の論理機能を実行するための、1つ以上の実行可能な命令を含んでいる。また、一部の代替実施形態において、ブロックに記載されている機能は、図に記載されている順序に関わらずに発生し得ることにも注意するべきである。例えば、連続して示されている2つのブロックの機能は、実質的に同時に実行されるか、又はそのブロックの機能は、含まれている機能性に応じて、逆の順序で実行されることがあり得る。
【0097】
(実施例8)
このセクションでは、実施形態の追加の態様及び特徴が、限定されることなく一連の段落として提示されて説明され、その一部又は全てが、明確さ及び効率性のために、アルファベット順に示される。これらの各段落は、任意適当な方法で、1つ以上の他の段落、及び/又は本出願の他の箇所の開示と組み合わせることができる。以下の一部の段落は、他の段落を明確に参照してさらに制限し、いくつかの適切な組み合わせの例を、限定することなく提供する。
【0098】
A0.それぞれがz方向に厚さを有する、強化材料の1つ以上の層と、強化材料の1つ以上の層に浸透する母材と、z方向に導電性の強化をもたらすために、母材内に配置され(又は分散し)、非ランダムに配列された複数の導電性粒子とを含む複合材料。
【0099】
A1.かなりの割合の粒子が、実質的にz方向に延伸する1つ以上の導電性の鎖を形成し、各鎖が、互いに電気的に接触する少なくとも2つ以上の粒子を含む、段落A0に記載の複合材料。
【0100】
A2.かなりの割合が、50%以上である、段落A1に記載の複合材料。
【0101】
A3.粒子が、常磁性材料で作られており、少なくとも1本以上の鎖が、層の1つに含まれている、隣接する繊維同士の間の隙間を通って延伸している、段落A0に記載の複合材料。
【0102】
A4.粒子の大部分が、それぞれ、隙間の幅よりも短い長さを有する、段落A3に記載の複合材料。
【0103】
A5.各粒子が、1よりも大きいそれぞれのアスペクト比を有し、このアスペクト比が、それぞれの粒子の長さに直交する、それぞれの粒子の別の寸法で割った、それぞれの粒子の長さとして定義される、段落A4に記載の複合材料。
【0104】
A6.1つ以上の層が、炭素繊維の積み重ねられた層を含む、段落A0に記載の複合材料。
【0105】
B0.導電性粒子でドープした粘性の母材を浸透させた、強化材料の1つ以上の層を提供するステップと、粒子を1つ以上の導電経路内に配列するために、磁場を印加するステップと、強化材料の1つ以上の層に対して、1つ以上の導電経路を所定の位置に固定するために、母材を実質的に硬化した状態に硬化させるステップとを含む、複合材料を製造する方法。
【0106】
B1.母材を、実質的に硬化した状態に硬化させた後に、磁場を除去するステップをさらに含む、段落B0に記載の方法。
【0107】
B2.磁場を印加するステップが、強化材料の1つ以上の層に対して、互いに対向して配置された少なくとも一対のソレノイドによって、磁場を生成することを含む、段落B0に記載の方法。
【0108】
B3.1つ以上の層が、z方向に積み重ねられた少なくとも2つの繊維強化材料の層を含み、印加するステップが、磁場の磁力線が、z方向と実質的に平行に、少なくとも2つの繊維強化材料の層を通って延伸するように、磁場を生成することを含む、段落B0に記載の方法。
【0109】
B4.粒子の大部分が、常磁性材料で作られており、印加するステップによって、複数の粒子が、少なくとも1つの導電経路を形成するために鎖状に連結される、段落B0に記載の方法。
【0110】
B5.母材が、誘電材料で作られており、印加するステップによって、複数の粒子が電気的に相互接続されていることを特徴とする、少なくとも1つの導電経路内に複数の粒子を配列する、段落B0に記載の方法。
【0111】
B6.硬化させるステップが、母材に熱エネルギーを印加することを含む、段落B0に記載の方法。
【0112】
B7.印加するステップ、及び硬化させるステップが、少なくとも部分的には同時に行われる、段落B0に記載の方法。
【0113】
B8.印加するステップが、母材が所定の粘度に達するまで磁場を印加することを含む、段落B0に記載の方法。
【0114】
C0.強化材料の複数の層、及び強化材料の複数の層に浸透する粘性の母材を含む構造体を提供するステップであって、母材が、導電性粒子でドープされ、強化材料の複数の層が、z方向に互いに積み重ねられている、構造体を提供するステップと、実質的にz方向に延伸する1つ以上の導電経路を形成するために、粒子をz方向に対して配列するように、その構造体に磁場を印加するステップと、母材及び強化材料の複数の層に対して、1つ以上の導電経路を所定の位置に実質的に固定するために、母材を硬化させるステップとを含む、複合材料を製造する方法。
【0115】
C1.粒子が常磁性材料で作られ、強化材料が、互いに間隔を空けられた複数の分離した繊維を含み、印加するステップが、粒子の第1のサブセットを、1つ以上の導電経路の第1の経路に電気的に相互接続し、第1の経路が、2つ以上の分離した、間隔を空けられた繊維同士の間で延伸し、強化材料の複数の層の全厚さの、少なくとも大部分をz方向に通っている、段落C0に記載の方法。
【0116】
C2.母材が樹脂であり、印加するステップが、粒子の第2のサブセットを、1つ以上の導電経路の第2の経路に電気的に相互接続することを含み、第2の経路が、樹脂内に配置され、全厚さの全体を通って延伸し、第1の経路からは、z方向に直交する方向に変位している、段落C1に記載の方法。
【0117】
C3.硬化させるステップにおいて、樹脂が所定の硬化状態に硬化するまで、印加するステップが実行される、段落C2に記載の方法。
【0118】
本明細書で説明される、複合材料の異なる実施形態、及びその製造方法は、導電性を強化するための既知の解決策に対して、いくつかの利点を提供する。例えば、本明細書で説明される例示的な実施形態は、複合材料の健全性を損なうことなく複合材料を硬化させて、複合材料の中に(及び/又は複合材料を通る)導電経路を形成することを可能にする。また、他の利点として、本明細書で説明される例示的な実施形態は、複合材料に入射した電流を放散させ、かつ/又は1つ以上の複合層を流れる電流を強化することができる。しかし、ここで述べる全ての実施形態が、必ずしも同一の利点、又は同程度の利点を提供するものではない。
【0119】
上述した開示は、独立した有用性を有する複数の異なる実施形態を含んでいる。これらの各実施形態は、その好ましい形態で開示されているが、本明細書で開示され例示された、その特定の実施形態は、多くの変更が可能であるため、限定的な意味で考えられるべきではない。本実施形態の主題は、本明細書で開示された様々な要素、特徴、機能、及び/又は特性の、全ての新規かつ非自明な組み合わせ、及び副次的な組み合わせを含んでいる。以下の請求項は、新規かつ非自明であるとみなされる、いくつかの組み合わせ及び副次的な組み合わせについて、特に示す。特徴、機能、要素、及び/又は特性の、他の組み合わせ及び副次的組み合わせの実施形態は、本出願、又は関連出願からの優先権を主張する出願において、特許請求され得る。このような特許請求の範囲は、異なる発明、又は同一の発明に関するかどうかに関わらず、かつ、範囲として元の特許請求より広いか、狭いか等しいか、又は異なっているかに関わらず、本開示の実施形態の主題内に含まれると考えられる。