(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0021】
以下に、本願発明を具体化した実施形態を、船舶に搭載されたディーゼル発電機に適用した場合の図面に基づいて説明する。
【0022】
(船舶の概要)
まず始めに、
図1を参照しながら、第1実施形態における船舶1の概要について説明する。第1実施形態の船舶1は、船体2と、船体2の船尾側に設けたキャビン3(船橋)と、キャビン3の後方に配置したファンネル4(煙突)と、船体2の後方下部に設けたプロペラ5及び舵6とを備えている。この場合、船尾側の船底7にスケグ8を一体形成している。スケグ8には、プロペラ5を回転駆動させる推進軸9を軸支している。船体2内の船首側及び中央部には船倉10を設けている。船体2内の船尾側には機関室11を設けている。
【0023】
機関室11には、プロペラ5の駆動源である主エンジン21(第1実施形態ではディーゼルエンジン)及び減速機22と、船体2内の電気系統に電力を供給するための発電装置23とを配置している。主エンジン21から減速機22を経由した回転動力によって、プロペラ5が回転駆動する。機関室11の内部は、上甲板13、第2甲板14、第3甲板15及び内底板16によって上下に仕切られている。第1実施形態では、機関室11最下段の内底板16上に主エンジン21及び減速機22を据え付け、機関室11中段の第3甲板15上に発電装置23を据え付けている。なお、詳細な図示は省略するが、船倉10は複数の区画に分割している。
【0024】
図2に示すように、発電装置23は、ディーゼル発電機24を複数基(第1実施形態では3台)備えたものである。ディーゼル発電機24は、発電用エンジン25(第1実施形態ではディーゼルエンジン)と、発電用エンジン25の駆動によって発電する発電機26とを組み合わせて構成される。ディーゼル発電機24は基本的に、船体2内の必要電力量に対応して効率的に稼働するように構成している。例えば大量の電力を消費する出入航時等には、複数のディーゼル発電機24を稼働させ、比較的電力消費の少ない停泊時等には、任意の台数のディーゼル発電機24を稼働させる。各発電機26の作動によって生じた発電電力は船体2内の電気系統に供給される。詳細な図示は省略するが、電力トランスデューサが各発電機26に電気的に接続している。電力トランスデューサは各発電機26による発電電力を検出するものである。
【0025】
(発電装置の排気系統)
次に、
図2〜
図7を参照しながら、発電装置23の排気系統について説明する。各発電用エンジン25には、空気取り込み用の吸気経路(図示省略)と排気ガス排出用の排気経路30とを接続している。吸気経路を通じて取り込まれた空気は、発電用エンジン25の各気筒内(吸気行程の気筒内)に送られる。各気筒の圧縮行程完了時に、燃料タンクから吸い上げた燃料を燃料噴射装置によって気筒毎の燃焼室内に圧送し、各燃焼室によって混合気の自己着火燃焼に伴う膨張行程が行われる。
【0026】
各発電用エンジン25の排気経路30は、ファンネル4まで延びていて外部に直接連通している。前述の通り、発電用エンジン25は三基あるため、排気経路30は三本存在する。各発電用エンジン25の排気経路30は、ファンネル4まで延びたメイン経路31と、メイン経路31の中途部から分岐したバイパス経路32と、メイン経路31とバイパス経路32との両方に連通する複合ケーシング(浄化ケーシング)33とを備えている。すなわち、第1実施形態では発電用エンジン25を複数基搭載し、各発電用エンジン25に対して、メイン経路31、バイパス経路32及び複合ケーシング33等からなる排気ガス浄化システムを一対一対応させている。
【0027】
複合ケーシング33は、耐熱金属材料製で略筒状(第1実施形態では角筒状)に構成していて、各発電用エンジン25を配置した第3甲板15よりも上方に配置している。この場合、複合ケーシング33は機関室11の上部側(機関室11上段の第2甲板14上)に位置している。複合ケーシング33内のメイン経路31側には、発電用エンジン25の排気ガス中にあるNOxの還元を促す選択触媒還元装置としてのNOx触媒34及びスリップ処理触媒35(詳細は後述する)を収容している。バイパス経路32は、NOx触媒34及びスリップ処理触媒35を通さずに排気ガスを迂回させるための経路である。複合ケーシング33の排気出口部42(スリップ処理触媒35より排気ガス移動方向下流側(以下、単に下流側という))では、メイン経路31とバイパス経路32とを合流させている。なお、選択触媒還元装置としては、スリップ処理触媒35をなくしてNOx触媒34のみにしたものでもよい。
【0028】
複合ケーシング33外にあるメイン経路31とバイパス経路32との分岐部には、排気ガス移動方向をメイン経路31とバイパス経路32とに切り換える経路切換部材として、流体作動式の切換バルブであるメイン側切換バルブ37及びバイパス側切換バルブ38を設けている。本実施形態のメイン側切換バルブ37及びバイパス側切換バルブ38は、単作動式の切換えバルブにより構成している。流体作動式の単作動切換バルブの一例として、メイン側切換バルブ37及びバイパス側切換バルブ38を空気作動式バタフライバルブにより構成することが考えられる。そして、メイン側切換バルブ37は、メイン経路31における複合ケーシング33への入口側に設けている。また、バイパス側切換バルブ38は、バイパス経路32における複合ケーシング33への入口側に設けている。
【0029】
次に、
図3〜
図7を参照しながら、複合ケーシング33の構造について説明する。前述の通り、複合ケーシング33はメイン経路31とバイパス経路32との両方に連通している。複合ケーシング33内のメイン経路31側は、排気ガス移動方向上流側(以下、単に上流側という)から順に、排気ガス中のNOxの還元を促進させるNOx触媒34と、余分に供給された還元剤(尿素水(尿素水溶液)、より詳しくは加水分解後のアンモニア)の酸化処理を促進させるスリップ処理触媒35とを直列に並べて収容している。各触媒34,35は、多孔質な(ろ過可能な)隔壁にて区画された多数個のセルからなるハニカム構造になっており、例えばアルミナ、ジルコニア、バナジア/チタニア又はゼオライト等の触媒金属を有している。
【0030】
NOx触媒34は、後述する尿素水噴射ノズル61からの尿素水の加水分解にて生じた
アンモニアを還元剤として排気ガス中のNOxを選択還元することによって、複合ケーシング33内のメイン経路31側に送られた排気ガスを浄化する。また、スリップ処理触媒35は、NOx触媒34から流出した未反応(余剰)のアンモニアを酸化して無害な窒素にする。この場合、複合ケーシング33内のメイン経路31側では、下記の反応式:
(NH
2)
2CO+H
2O → 2NH
3+CO
2(加水分解)
NO+NO
2+2NH
3 → 2N
2+3H
2O(NOx触媒34での反応)
4NH
3+3O
2 → 2N
2+6H
2O(スリップ処理触媒35での反応)
が生ずる。
【0031】
図7に詳細に示すように、複合ケーシング33内には、メイン経路31とバイパス経路32との両方を並べて設けている。この場合、複合ケーシング33内には、排気ガス移動方向に沿って延びる仕切板40を配置している。仕切板40の存在によって、複合ケーシング33内をメイン経路31側とバイパス経路32側とに区画している。仕切板40で複合ケーシング33内を区画することによって、排気ガスがバイパス経路32を通過する際に、排気ガスの熱を用いて、メイン経路31側にあるNOx触媒34及びスリップ処理触媒35を暖機することが可能である。このため、排気ガスを浄化するか否かに拘らず、NOx触媒34及びスリップ処理触媒35を常時暖機
できる。メイン側経路31を排気ガスが通過する際は暖機運転
の短縮に寄与し、場合によっては暖機運転が不要になる。
【0032】
複合ケーシング33内のメイン経路31側の排気入口部41は、上流側に向かうに連れて断面積を縮小するような先窄まりのテーパー状(錐形状)に形成している。これに対して、仕切板40の下流側端部400は、複合ケーシング33のうちスリップ処理触媒35より下流側にある排気出口部42まで延設されており、開口部401が設けられている。このため、複合ケーシング33の排気出口部42において、メイン経路31側とバイパス経路32側とが合流する。
【0033】
複合ケーシング33の排気出口部42は、下流側端部に流出口(排気流出口)49を有し、この流出口49に排気排出管60が連通される。また、排気出口部42は、下流側の流出口49に向かって断面積を縮小するような先窄まりのテーパー状(錐形状)を有しており、流出口49が、複合ケーシング33の下流側端部の中心位置に設けられている。すなわち、複合ケーシング33において、流出口49は、メイン経路31の排気側と重なる位置に設けられている。
【0034】
仕切板40の下流側端部400は、メイン経路31の出口側を遮蔽する位置に延設されて複合ケーシング33の内壁面に固着されている。この仕切板40の下流側端部400は、バイパス経路32から排気出口部42に流出した排気ガスがメイン経路31に流れ込むことを防止する逆流防止板として設けられている(以下、仕切板400の下流側端部400を逆流防止板400と呼ぶ)。逆流防止板400は、メイン経路31及びバイパス経路32の境界位置であってスリップ処理触媒35下流側となる位置から、流出口49の周縁であってバイパス経路32から離れた位置に向かって延設されている。そして、逆流防止板400が開口部401を備えることにより、排気出口部42において、メイン経路31側とバイパス経路32側とを合流させる。
【0035】
メイン経路31を通過した排気ガスは、逆流防止板400の開口部401を通じて、排気出口部42の流出口49に到達して、浄化された排気ガスが排気排出管60より排気される。一方、バイパス経路32を通過した排気ガスは、逆流防止板400により案内されて排気出口部42流出口49に到達することで、メイン経路31への流入量(メイン経路31へ逆流する排気ガス流量)が低減され、その多くが排気排出管60より排気される。従って、バイパス経路32使用時における、メイン経路31内のNOx触媒34及びスリ
ップ処理触媒35の劣化を抑制できる。
【0036】
複合ケーシング33の一側面には、噴気体としての噴気ノズル43を複数個取り付けている。各噴気ノズル43によって、気体供給源(図示省略)からの圧縮気体(空気)をNOx触媒34やスリップ処理触媒35に向けて吹き付ける。噴気ノズル43の作用によって、使用中に複合ケーシング33内のメイン経路31側に溜まった煤塵を強制的に除去できる。
【0037】
複合ケーシング33の排気入口部41前面側には、メイン側流入口47とバイパス側流入口48とを形成している。メイン側流入口47が複合ケーシング33内のメイン経路31側に連通し、バイパス側流入口48が複合ケーシング33内のバイパス経路32側に連通している。複合ケーシング33の排気入口部41の前部外面側には、メイン側流入口47に連通するメイン側導入管51と、バイパス側流入口48に連通するバイパス側導入管52とを設けている。メイン側導入管51とバイパス側導入管52とは、それぞれ中継管55,56を介して二股配管53に連結している。この場合、二股配管53のメイン側出口部57に、フランジを介してメイン側中継管55の入口側を締結している。メイン側中継管55の他端側は、メイン側導入管51に連通している。二股配管53のバイパス側出口部58には、フランジを介してバイパス側中継管56の入口側を締結している。バイパス側中継管56の出口側は、長さ調節用である蛇腹構造の調節管69を介してバイパス側導入管52を締結している。
【0038】
詳細な図示は省略するが、二股配管53の入口部59は、メイン経路31の上流側にフランジを介して連結している。二股配管53は、メイン経路31とバイパス経路32との分岐部に相当する。複合ケーシング33内のメイン経路31側に連通する二股配管53のメイン側出口部57内に、メイン側切換バルブ37を設けている。複合ケーシング33内のバイパス経路32側に連通する二股配管53のバイパス側出口部58内に、バイパス側切換バルブ38を設けている。複合ケーシング33の排気出口部42後面側に、流出口49をメイン経路31側に寄せて形成している。複合ケーシング33の排気出口部42の後部外面側に、流出口49に連通する排気排出管60を設けている。排気排出管60は、メイン経路31の下流側にフランジを介して連結している。
【0039】
メイン経路31のうちメイン側切換バルブ37と複合ケーシング33に連結したメイン側導入管51との間には、上流側から順に、排気ガスに還元剤である尿素水を
噴射する尿素水噴射ノズル61と、排気ガスと尿素水とを混合させる排気ミキサー62とを配置している
。メイン側中継管55
に複数本の尿素水噴射ノズル61(第1実施形態では2本
)を備えている
。尿素水噴射ノズル61からメイン側中継管55内に尿素水を霧状に噴射するように構成している。
【0040】
メイン側中継管55とメイン側導入管51との間に排気ミキサー62を設けている。排気ミキサー62は、メイン側中継管55に設けた尿素水噴射ノズル61から所定距離だけ下流側に位置している。この場合の所定距離は、尿素水噴射ノズル61から噴射した尿素水を、メイン側中継管55内でアンモニアに加水分解させるのに必要な距離である。
図8〜
図11に示すように、第1実施形態の排気ミキサー62は、メイン側中継管55及びメイン側導入管51と同一内径に形成した筒状のミキサー管体71と、ミキサー管体71の内周側に設けた複数枚の混合フィン72(第1実施形態では四枚)と、ミキサー管体71の軸芯に位置する軸芯体73とを備えていて、混合フィン72群及び軸芯体73によって、排気ミキサー62を通過する排気ガス及び霧状の尿素水に旋回流を生じさせるように構
成している。
【0041】
各混合フィン72は、排気ガスの流れを旋回流にするための部材であり、ミキサー管体71中心からミキサー管体71の内周面に向かって放射状に配置している。この場合、各混合フィン72の半径方向内側の側端面を軸芯体73に固着し、各混合フィン72の半径方向外側の側端面をミキサー管体71の内周面に固着している。各混合フィン72は、ミキサー管体72の円周方向に沿って等角度ごとに位置している(軸芯体73を中心とする点対称状に位置している)。なお、混合フィン72の枚数は第1実施形態の四枚に限るものではない。
【0042】
各混合フィン72の上流側と下流側とは、排気ガス移動方向(ミキサー管体71等の軸芯方向)に対してそれぞれ所定角度をなすように構成している。すなわち、各混合フィン72は排気ガス移動方向の中途部で屈曲している。この場合、排気ガス移動方向に対する上流側フィン板部72aの角度を傾斜角θ1とし、排気ガス移動方向に対する下流側フィン板部72bの角度を傾斜角θ2とするように、各混合フィン72を屈曲させている。下流側フィン板部72bの傾斜角θ2を上流側フィン板部72aの傾斜角θ1よりも大きく設定している。すなわち、各フィン板部72a,72bの傾斜角θ1,θ2は、上流側よりも下流側のほうが大きくなっている。換言すると、各フィン板部72a,72bの傾斜角θ1,θ2は、上流側から下流側に向かうに連れて連続的又は段階的に大きくなっている。
【0043】
各混合フィン72の半径方向内側の側端面を支持する軸芯体73の上流側先端部は、上流側に向かうに連れて断面積を縮小するような先窄まりのテーパー状(錐形状)に形成している。また、軸芯体73の下流側基端部は、下流側に向かうに連れて断面積を縮小するような後窄まりのテーパー状(錐形状)に形成している。このため、ミキサー管体71の軸芯付近に流れ込む排気ガスは、軸芯体73のテーパー状の上流側先端部によって半径方向外側の各混合フィン72に向けて案内される。
【0044】
本実施形態では、排気ミキサー62を軸芯体73に混合フィン72を固着させた構成としたが、
図12のように、軸芯体73を具備しない構成としても構わない。すなわち、棒状となる複数の支持ステー73x(本実施形態では2本)を互いに交差させて固着させるとともに、支持ステー73xの交差位置がミキサー管体71中心となるように支持ステー73xを配置する。そして、各支持ステー73xには、支持ステー73x同士の交差位置を中心として2枚混合フィン72が固着されている。混合フィン72の上流側先端は、ミキサー管体71中心からミキサー管体71内周面に向かって、中途部まで上流側に伸びた後にミキサー管体71開口面と平行になるように屈曲させた縁辺で構成されている。
【0045】
尿素水噴射ノズル61は、メイン経路31(メイン側中継管55)断面において下流側の排気ミキサー62の混合フィン72と重なる位置に、尿素水噴射口611を配置している。尿素水噴射ノズル61の尿素水噴射口611は、メイン経路31(メイン側中継管55)の周方向に沿って等間隔(等角度)に配置されている。尿素水噴射ノズル61は、混合フィン72の枚数の公約数となる本数分設置されており、それぞれの尿素水噴射口611が、メイン経路31(メイン側中継管55及びミキサー管体71)の周方向に沿って、排気ミキサー62の混合フィン72の設置位置に同期する位置に配置される。なお、尿素水噴射ノズル61の本数は第1実施形態の2本に限るものではない。
【0046】
(気経路切換動作)
各排気経路30におけるメイン経路31とバイパス経路32には、それぞれを開閉する開閉部材として、メイン側切換バルブ37及びバイパス側切換バルブ38が設けられている(実施形態では3組、計6個)。これらメイン側切換バルブ37及びバイパス側切換バ
ルブ38は、排気ガスの通過する経路を選択するために、一方を開けば他方を閉じるという関係になっている。また、メイン側切換バルブ37及びバイパス側切換バルブ38は、規制海域などに応じて開閉させるように構成されている。
【0047】
バイパス側切換バルブ38が閉じてメイン側切換バルブ37が開いた状態では、膨張行程後の排気行程において、複数台の発電用エンジン25から各メイン経路31に送られた排気ガスが、各メイン経路31を経由してNOx触媒34及びスリップ処理触媒35を経由して浄化処理をされた後、船舶1外に放出される。メイン側切換バルブ37が閉じてバイパス側切換バルブ38が開いた状態では、排気ガスが各バイパス経路32を経由して(NOx触媒34及びスリップ処理触媒35を通過せずに)、直接船舶1外に放出される。
【0048】
このように、各排気経路30におけるメイン経路31とバイパス経路32とに、各排気路31,32を開閉する開閉部材としてのメイン側切換バルブ37及びバイパス側切換バルブ38が設けられていると、例えば規制海域内の航行時と規制海域外の航行時のように、排気ガスの浄化処理が必要な場合と不要な場合とにおいて、メイン側切換バルブ37及びバイパス側切換バルブ38の開閉状態を切り換えるだけで、排気ガスの通過する経路を適宜選択できる。従って、排気ガスの効率よい処理が可能になる。また、例えば排気ガスの浄化処理が不要な場合は、NOx触媒34及びスリップ処理触媒35を避けて外部に直接連通するバイパス経路32側に排気ガスを誘導できる。このため、排気効率のよい状態を維持でき、各発電用エンジン25の出力低下の回避が可能になる。更に、排気ガスの浄化処理が不要な場合は、NOx触媒34及びスリップ処理触媒35が排気ガスにさらされないから、NOx触媒34及びスリップ処理触媒35の寿命延長にも寄与するのである。
【0049】
停止中の発電用エンジン25に対するメイン側切換バルブ37及びバイパス側切換バルブ38は、少なくともバイパス経路32側のバイパス側切換バルブ38が閉じるように構成されている。このため、停止中の発電用エンジン25に向けて他のエンジンから排出された排気ガスが逆流するのを簡単且つ確実に防止できる。
【0050】
前述の通り、メイン側切換バルブ37及びバイパス側切換バルブ38は流体作動式のものであり、流体の供給がない場合は開き状態に保持される(ノーマリーオープン形式)ものである。そして、それぞれ単作動型の空気圧式シリンダにより構成された、メイン側切換バルブ37を切換駆動させるメイン側バルブ駆動器67と、バイパス側切換バルブ38を切換駆動させるバイパス側バルブ駆動器68とが設けられている。メイン側バルブ駆動器67は、メイン側中継管55の外周側に、メイン側中継管55の長手方向に沿って並列状に並んで設けられている。バイパス側バルブ駆動器68は、バイパス側中継管56の外周側に、バイパス側中継管56の長手方向に沿って並列状に並んで設けられている。
【0051】
メイン側切換バルブ37及びバイパス側切換バルブ38のバルブ駆動器67,68は、
図13に示すように、それぞれ流体流通配管80を介して流体供給源81に接続されている。流体供給源81は、バルブ駆動器67,68作動用(メイン側切換バルブ37及びバイパス側切換バルブ38作動用)の圧縮流体である空気(窒素ガスでもよい)を供給するためのものである。メイン側及びバイパス側それぞれの流体流通配管80の中途部には、上流側から順に、フィルタレギュレータ82と、バルブ駆動器67,68に流体を供給するか否かを切換える電磁弁83と、閉側調整部及び開側調整部を有する流量調整部84とが設けられている。各電磁弁83は、制御情報に基づいて作動し、対応する切換バルブ37、38のバルブ駆動器67,68に圧縮流体を供給したり停止したりするように構成されている。また、各バルブ駆動器67,68には、各電磁弁83が流体供給状態であるか、又は、流体停止状態であるかを検知するリミットスイッチ85が設けられており、各バルブ駆動器67,68にはサイレンサ86が接続され、各電磁弁83には、サイレンサ87が接続されている。
【0052】
そして、排気ガスの通過する経路を切り換える場合には、メイン側及びバイパス側両方の電磁弁83が流体供給停止状態となり、メイン側切換バルブ37及びバイパス側切換バルブ38への流体供給を停止する。メイン側切換バルブ37及びバイパス側切換バルブ38は、前述したようにノーマリーオープン形式であるので、流体供給が停止すると、両バルブ駆動器67,68により駆動されて開状態になる。その後、排気ガスを通過させない側の電磁弁83が流体供給状態になり、流体が供給された側のバルブが閉状態になる。ここで、排気ガスを通過させたい側の電磁弁83は流体供給停止状態のままであり、切換バルブが開状態のままである。以上のように、排気ガスの通過する経路の切換えを行う。メイン側切換バルブ37及びバイパス側切換バルブ38の動作の一例としては、メイン側切換バルブ37を開いてバイパス側切換バルブ38を閉じた状態(
図14(a)参照)から、一旦メイン側切換バルブ37及びバイパス側切換バルブ38の両方を開いた状態(
図14(b)参照)にして、その後、バイパス側切換バルブ38を開いてメイン側切換バルブ37を閉じた状態(
図14(c)参照)になる。
【0053】
以上の構成において、メイン側切換バルブ37を開いてバイパス側切換バルブ38を閉じた場合、排気ガスは、メイン経路31を通過する。すなわち、二股配管53のメイン側出口部57、メイン側中継管55、排気ミキサー62、メイン側導入管51及びメイン側流入口47を経由して複合ケーシング33内のメイン経路31側に流入し、NOx触媒34及びスリップ処理触媒35を通過して浄化処理をされる。
【0054】
この場合、尿素水噴射ノズル61から噴射した霧状の尿素水を含む排気ガスは、メイン側中継管55を通じて排気ミキサー62に案内される。各混合フィン72の上流側フィン板部72aが排気ガス移動方向を傾斜角θ1の方向に変更してから、下流側フィン板部72bが排気ガス移動方向を更に傾斜角θ2の方向に変更する結果、ミキサー管体71の内周面に向けて尿素水を含む排気ガスが流れ、ミキサー管体71の内周面に沿った円周方向に移動する。このため、複合ケーシング33内のメイン経路31側の排気入口部41に排気ガスの旋回流が形成され、排気ガスと尿素水とがスムーズに効率よく混合される。複合ケーシング33内のメイン経路31側の排気入口部41は、上流側に向かうに連れて断面積を縮小するような先窄まりのテーパー状(錐形状)であるため、排気ガスの旋回流の旋回径が大きくなる。その結果、排気ガスは、尿素水とより一層均一に混合されながら、複合ケーシング33内のメイン経路31側にあるNOx触媒34に行き渡ることになる。
【0055】
(尿素水噴射ノズル)
図9に示す如く、尿素水噴射ノズル61は、メイン側中継管55内に挿入されており、先端の尿素水噴射口611を下流側に向けて配置する。尿素水噴射口611は、メイン側中継管55の周方向に沿って等間隔に配置されており、下流側に設置される排気ミキサー62の混合フィン72と重なる位置に配置される。これにより、尿素水噴射ノズル61が尿素水噴射口611より下流側に向けて尿素水を噴射させた際、排気ミキサー62の混合フィン72に向けて尿素水を噴射できる。
【0056】
従って、複数の尿素水噴射ノズル61により尿素水を分散して噴射することで、尿素水を拡散して噴射できる上に、噴射後の尿素水が混合フィン72に当たることで更に分散される。そのため、排気ミキサー62における尿素水の分布量を均一化でき、排気ガスと尿素水との混合効率を高めるとともに、排気ミキサー62における部分的な温度低下を抑制して、尿素析出の発生を抑える。また、尿素水の拡散効率が高まることから、尿素水噴射ノズル61と排気ミキサー62との距離を短くできるため、メイン側中継管55を短尺化できる。
【0057】
尿素水噴射口611は、排気ガス移動方向に沿う直線上で混合フィン72の上流側先端
と重なる位置に設けられており、尿素水噴射口611は、混合フィン72の上流側先端に向けて尿素水を噴射する。これにより、尿素水噴射ノズル61から噴射された尿素水が、混合フィン72の上流側先端の辺縁に当たることで、排気ミキサー62内に尿素水が拡散されて誘導される。そのため、排気ミキサー62内における尿素水の分散効率が高まるため、排気ガスの浄化効率を向上できる。
【0058】
尿素水噴射ノズル61の尿素水噴射口611は、メイン経路31(メイン側中継管55)の中心と内周面との間の中央領域に配置されている。すなわち、尿素水噴射口611は、混合フィン72の上流側先端と重なる位置であって、混合フィン72の上流側先端の中央領域に配置されている。これにより、尿素水噴射ノズル61から噴射された尿素水が、メイン経路31内で偏りなく拡散されやすくなるため、メイン経路31及び排気ミキサー62などにおける尿素析出を抑制できる。また、
図15に示す如く、
図12に示す構成の排気ミキサー62においては、混合フィン72の状雨竜側先端の屈曲部に重なる位置に、尿素水噴射口611が配置されている。
【0059】
図16に示す如く、各尿素水噴射ノズル61の尿素水噴射口611は、排気ガス移動方向に沿って、排気ミキサー62までの距離が異なる位置に配置するものとしてもよい。すなわち、複数の尿素水噴射ノズル61を設けることで尿素水の拡散効率が高まったことから、尿素水噴射ノズル61から排気ミキサー62までの距離を短距離化できるため、排気ガス移動方向に沿って、尿素水噴射ノズル61の配置位置を異なるものとできる。また、複数の尿素水噴射ノズル61は、メイン側中継管55に対して同一方向から挿入されており、複合ケーシング33に対して同一方向からメンテナンス可能に構成されている。
【0060】
図17に示す如く、尿素水噴射ノズル61は、排気ミキサー62の混合フィン72の枚数に合わせて、その本数が設定される。すなわち、排気ミキサー62の混合フィン72を枚数の公約数に当たる本数分だけ、尿素水噴射ノズル61を設けており、尿素水噴射ノズル61の尿素水噴射口611を、メイン経路31(メイン側中継管55)に沿って等間隔に配置する。例えば、排気ミキサー62の混合フィン72を4枚とした場合、2本又は4本の尿素水噴射ノズル61を配置する。また、排気ミキサー62の混合フィン72を6枚とした場合、2本、3本、又は4本の尿素水噴射ノズル61を配置する。
【0061】
(逆流防止板)
図18に示す如く、仕切板40の下流側端部が、複合ケーシング33の排気出口部42において、メイン経路31の下流出口側から流出口49の周縁に向かって延設されて、逆流防止板400が構成されている。流出口49は、メイン経路31と重なる位置に配置されており、逆流防止板400は、スリップ処理触媒35下流側で、仕切板40から流出口49周縁に向けて斜行するように設置されている。逆流防止板400の周縁が、複合ケーシング33の内壁面に固着されている。
【0062】
これにより、バイパス経路32を通過した排気ガスは、逆流防止板400を沿って、流出口49と連通する排気排出管60に誘導されて、排気排出管60に排気される。そして、逆流防止板400がメイン経路31の下流出口側と流出口49の間に設けられているため、バイパス経路32を通過した排気ガスのメイン経路31への流入が抑制される。従って、NOx触媒34及びスリップ処理触媒35の劣化を防止し、高い浄化効率を長い期間維持できる。
【0063】
また、逆流防止板400は、その内側に開口部401を設けており、開口部401を通じて、メイン経路31の出口側が排気排出管60と連通する。すなわち、仕切板40の下流側端部の両側縁部が、複合ケーシング33の内壁面に沿って下流側に延設されて、開口部401を間に設けた逆流防止板400が構成される。このように開口部401を広く構
成することにより、メイン経路31の出口側において、逆流防止板400による圧力抵抗を低減できるため、メイン経路31における圧力損失を抑制できる。
【0064】
更に、排気ガスがバイパス経路32を通過している際、尿素水噴射ノズル61を冷却させるべく、冷却空気を尿素水噴射ノズル61に供給する。これにより、尿素水噴射ノズル61を通過した冷却空気が、メイン経路31の上流側に流入してメイン経路31内を流れる。従って、尿素水噴射ノズル61からの冷却空気が、メイン経路31内のNOx触媒34及びスリップ処理触媒35を通過して、バイパス経路32からの排気ガスのメイン経路31への流入が抑制される。そのため、NOx触媒34及びスリップ処理触媒35の劣化を防止し、高い浄化効率を長い期間維持できる。
【0065】
(第2実施形態)
本発明の第2実施形態となる複合ケーシング33における逆流防止板400の構成について、
図19を参照して、以下に説明する。本実施形態では、
図19に示す如く、仕切板40の下流側端部に設けられた逆流防止板400が、多孔状の開口部401を有している。すなわち、逆流防止板400は、複数の穴を開口部401とした多孔板により構成され、排気出口部42におけるメイン経路31と排気排出管60との間に設置される。逆流防止板400の周縁(側縁及び下流側端縁)が、複合ケーシング33の内壁面に固着されている。逆流防止板400は、複合ケーシング33の内壁面に固着させた両辺縁側には、穴が設けられておらず、内側に開口部401となる穴が設けられている。多孔状の開口部はほぼ均等間隔で設けられており、開口部形状は丸形だけでなく三角や四角等の形状でも良い。
【0066】
これにより、メイン経路31を通過した排気ガスは、開口部401を構成する穴を通じて、流出口49と連通する排気排出管60に誘導されて、排気排出管60に排気される。一方、バイパス経路32を通過した排気ガスが、逆流防止板400を沿って、流出口49と連通する排気排出管60に誘導されて、排気排出管60に排気される。従って、バイパス経路32を通過した排気ガスのメイン経路31への流入が抑制されて、浄化効率を維持できると同時に、メイン経路31の下流出口における排気流量の低下(圧力損失)を抑制できる。
【0067】
なお、本実施形態において、
図19に示すように、開口部401を構成する複数の穴を逆流防止板400の一部に設けるものとしたが、
図20に示すように、開口部401を構成する複数の穴を逆流防止板400全面に設けるものとしてもよい。開口部401を広い領域で逆流防止板400に構成することで、メイン経路31における逆流防止板400の圧力抵抗を低下させることができる。
【0068】
(第3実施形態)
本発明の第3実施形態となる複合ケーシング33における逆流防止板400の構成について、
図21を参照して、以下に説明する。本実施形態では、
図21に示す如く、仕切板40の下流側端部は、複合ケーシング33のうちスリップ処理触媒35より下流側にある排気出口部42内で途切れており、スリップ処理触媒35の下流側を多孔状の逆流防止板400で覆う。
【0069】
これにより、メイン経路32を通過した排気ガスは、開口部401を構成する穴を通じて、排気出口部42に流出して、排気排出管60に排気される。一方、バイパス経路32を通過した排気ガスが排気出口部42に流出している際に、排気ガスの一部がメイン経路32に流入すると、逆流防止板400によりスリップ処理触媒35への流入が遮られる。従って、バイパス経路32を通過した排気ガスがメイン経路31に流入した場合であっても、スリップ処理触媒35よりも上流への流入が抑制されるため、NOx触媒34及びス
リップ処理触媒35の浄化効率を維持できる。
【0070】
(第4実施形態)
本発明の第4実施形態となる複合ケーシング33における逆流防止板400の構成について、
図22を参照して、以下に説明する。本実施形態では、
図22に示す如く、複合ケーシング33の排気出口部42に設けられる流出口49が、バイパス経路32側に設けられている。排気出口部42は、下流側の流出口49に向かって断面積を縮小するようにメイン経路31側を傾斜させた先窄まりの形状を有しており、流出口49が、メイン経路31の排気側と重なる位置に設けられている。
【0071】
また、
図22に示す如く、仕切板40の下流側端部を複合ケーシング33の排気出口部42における流出口49周縁に向けて屈曲させることなく延設することで、多孔状の開口部401を備えた逆流防止板400が構成されている。すなわち、複合ケーシング33の下流側端部において、仕切板40よりもバイパス経路32側に流出口49が設けられている。そして、仕切板40の下流側端部をバイパス経路32における排気ガス移動方向に沿って真直ぐ延設して、複合ケーシング33の下流側端部における流出口49よりもメイン経路31側となる内壁面に、逆流防止板400の下流側端部を当接させることができる。
【0072】
これにより、バイパス経路32を流れる排気ガスは、その排気ガス移動方向を屈曲させることなく、流出口49まで到達することとなるため、メイン経路31へ流入する排気ガス流量を低減できる。そして、逆流防止板400がバイパス経路32における排気ガス移動方向に沿った形状とすることで、メイン経路31への排気ガスの流入を更に遮ることとなり、メイン経路31への排気ガスの流入量を更に低減できる。従って、バイパス経路32を通過した排気ガスのメイン経路31への流入が抑制されて、NOx触媒34及びスリップ処理触媒35の劣化を防止できると同時に、メイン経路31の下流出口における排気流量の低下を抑制できる。なお、メイン経路31における圧損を低減するべく、
図23に示すように、逆流防止板400全体に多孔状の穴401を設けるものとしても構わないし、
図24に示すように、逆流防止板400中心に排気ガス移動方向下流側から切り欠いた穴401を設けるものとしても構わない。
【0073】
(その他)
なお、各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。上記の各実施形態では、発電用エンジン25の排気経路30中に設ける排気ガス浄化システムに、本願発明を適用したが、これに限らず、例えば主エンジン21の排気系統中の排気ガス浄化システムに適用してもよい。