(58)【調査した分野】(Int.Cl.,DB名)
前記筐体は、前記ガス流路を構成する一対の流路壁を備え、前記一対の流路壁の間隔を前記ガス流路の流路幅としたとき、(流路壁の壁厚)/(流路幅)≦0.65を満たす、
請求項1〜3のいずれか1項に記載の微粒子検出素子。
前記筐体は、前記ガス流路の軸方向と交差する方向に長い長尺体であり、前記長尺体の長手方向の一端は、前記ガス流路を有し、前記ガスが流通する管の内部に配置され、前記長尺体の長手方向の他端は、少なくとも前記電荷発生部の端子及び前記捕集電極の端子を有し、前記管の外部に配置される、
請求項1〜5のいずれか1項に記載の微粒子検出素子。
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1では、帯電微粒子のすべてを捕集電極で捕集できるわけではなく、一部の帯電微粒子を微粒子検出器の外へ逃がしていた。そのため、捕集電極による帯電微粒子の捕集率を向上させることが望まれていた。
【0005】
本発明はこのような課題を解決するためになされたものであり、捕集電極による帯電微粒子の捕集率を向上させることを主目的とする。
【課題を解決するための手段】
【0006】
本発明は、上述した主目的を達成するために以下の手段を採った。
【0007】
本発明の微粒子検出素子は、
ガス中の微粒子を検出するために用いられる微粒子検出素子であって、
前記ガスが通過するガス流路を有する筐体と、
前記筐体内に導入された前記ガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
前記筐体内で前記電荷発生部よりも前記ガスの流れの下流側に設けられ、前記帯電微粒子を捕集する捕集電極と、
を備え、
前記ガス流路は、矩形のガス導入口から前記ガス導入口と同形のガス排出口まで連なる直方体形状の空間であり、前記ガスの流れの中に前記微粒子検出素子を配置して前記ガス流路に前記ガスを通過させると、前記ガス排出口よりも下流領域に、前記ガスの流速が前記ガス流路の内部を通過する前記ガスの流速よりも低速になる低流速部が発生する、
ものである。
【0008】
この微粒子検出素子では、電荷発生部が電荷を発生させることでガス中の微粒子を帯電微粒子にし、捕集電極がその帯電微粒子を捕集する。捕集電極は捕集された帯電微粒子の数に応じて物理量が変化するため、この微粒子検出素子を用いることでガス中の微粒子の数を検出できる。ここで、ガス流路は、矩形のガス導入口からそのガス導入口と同形のガス排出口まで連なる直方体形状の空間である。ガスの流れの中に微粒子検出素子を配置してガス流路にガスを通過させると、ガス排出口よりも下流領域に、ガスの流速がガス流路の内部を通過するガスの流速よりも低速になる低流速部が発生する。捕集電極で捕集されなかった帯電微粒子は、ガス排出口から排出されたあと低流速部に至る。低流速部に至った帯電微粒子は、その後に捕集電極で捕集されずガス排出口から排出されてきた帯電微粒子を電気的な反発力によりガス流路に押し戻すように作用する。その結果、捕集電極による帯電微粒子の捕集率が向上する。
【0009】
なお、本明細書で「微粒子検出素子」は、微粒子の量(例えば微粒子の数、質量、表面積など)を検出する素子のことをいう。
【0010】
本発明の微粒子検出素子において、(低流速部におけるガスの流速)/(ガス流路の内部を通過するガスの最大流速)≦0.57を満たすようにしてもよい。こうすれば、本発明の効果が顕著に得られる。
【0011】
本発明の微粒子検出素子において、前記低流速部は、前記ガス排出口を覆うように形成されることが好ましい。こうすれば、本発明の効果が顕著に得られる。
【0012】
本発明の微粒子検出素子において、前記筐体は、前記ガス流路を構成する一対の流路壁を備え、前記一対の流路壁の間隔を前記ガス流路の流路幅としたとき、(流路壁の壁厚)/(流路幅)≦0.65を満たすようにしてもよい。こうすれば、低流速部がガス排出口を確実に覆うように形成されると共に、(低流速部におけるガスの流速)/(ガス流路の内部を通過するガスの最大流速)≦0.31を満たすようになるため、本発明の効果が顕著に得られる。
【0013】
本発明の微粒子検出素子において、前記筐体のうち前記ガス導入口の周囲に位置する辺を含む角部の曲率半径は、1.0mm以下(特に0.3mm以下)としてもよい。こうすれば、ガス導入口からガス流路に入らなかったガスは、その角部に当たったあと筐体の外面から斜め後方に延びる剥離面を境界にしてその剥離面よりも筐体側では低速で進み、その剥離面よりも筐体とは反対側では高速で進む。一般に、低速のガスと固体との熱交換は、高速のガスと固体との熱交換よりも熱交換効率が低いことが知られている。そのため、筐体とガスとの熱交換が抑制され、筐体の温度変化が低減される。特に、こうした構成は、(流路壁の壁厚)/(流路幅)≦0.65を満たす場合に適用する意義が高い。この場合、流路壁の熱容量が小さいため、流路壁はガスとの熱交換の影響を受けやすくなるからである。
【0014】
本発明の微粒子検出素子において、前記筐体は、前記ガス流路の軸方向と交差する方向に長い長尺体であり、前記長尺体の長手方向の一端は、前記ガス流路を有し、前記ガスが流通する管の内部に配置され、前記長尺体の長手方向の他端は、少なくとも前記電荷発生部の端子及び前記捕集電極の端子を有し、前記管の外部に配置されるものとしてもよい。こうすれば、電荷発生部の端子や捕集電極の端子は管を流通する高温のガスの影響を受けにくいため、はんだ等の比較的耐熱性の低い接合材で配線と接続することができる。
【0015】
本発明の微粒子検出器は、上述したいずれかの態様の微粒子検出素子と、前記捕集電極に捕集された前記帯電微粒子に応じて変化する物理量に基づいて、前記微粒子を検出する検出部と、を備えたものである。そのため、この微粒子検出器は、上述した本発明の微粒子検出素子と同様の効果、例えば捕集電極による帯電微粒子の捕集率を向上させるという効果が得られる。
【0016】
なお、本明細書において、「電荷」とは、正電荷や負電荷のほかイオンを含むものとする。「微粒子を検出する」とは、微粒子の量(例えば微粒子の数、質量、表面積など)を測定する場合のほか、微粒子の量が所定の数値範囲に入るか否か(例えば所定のしきい値を超えるか否か)を判定する場合も含むものとする。「物理量」とは、帯電微粒子の数(電荷量)に基づいて変化するパラメータであればよく、例えば電流などが挙げられる。
【発明を実施するための形態】
【0018】
次に、本発明の実施形態について、図面を用いて説明する。
図1は本発明の一実施形態である微粒子検出器10の説明図、
図2は微粒子検出素子20の斜視図、
図3は
図2の部分拡大図、
図4は
図2のA−A断面図、
図5は
図2のB−B断面図、
図6は微粒子検出素子20の分解斜視図である。なお、本実施形態において、上下方向,左右方向及び前後方向は、
図1〜
図2に示した通りとする。
【0019】
微粒子検出器10は、
図1に示すように、エンジンの排気管12を流れる排ガスに含まれる微粒子26(
図5参照)の数を検出するものである。この微粒子検出器10は、微粒子検出素子20と、各種電源36,46,56や個数検出部60を含む付属ユニット80とを備えている。
【0020】
微粒子検出素子20は、
図1に示すように、円柱状の支持体14に差し込まれた状態で、排気管12に固定されたリング状の台座16に取り付けられている。微粒子検出素子20は、保護カバー18によって保護されている。保護カバー18には図示しない穴が設けられており、この穴を介して排気管12を流通する排ガスが微粒子検出素子20の下端に設けられたガス流路24を通過する。微粒子検出素子20は、
図5に示すように、筐体22に、電荷発生部30と、余剰電荷除去部40と、捕集部50と、ヒータ電極72とを備えたものである。
【0021】
筐体22は、
図1に示すように、排気管12の軸方向と交差する方向(ここでは略直交する方向)に長い長尺の直方体である。筐体22は絶縁体であり、例えばアルミナなどのセラミックス製である。筐体22の下端22aは排気管12の内部に配置され、上端22bは排気管12の外部に配置される。筐体22の下端22aには、ガス流路24が設けられている。筐体22の上端22bには、各種端子が設けられている。
【0022】
ガス流路24の軸方向は、排気管12の軸方向と一致している。ガス流路24は、
図2に示すように、筐体22の前方の面に設けられた矩形のガス導入口24aから、筐体22の後方の面に設けられた矩形のガス排出口24bまで連なる直方体形状の空間である。筐体22は、ガス流路24を構成する左右一対の流路壁22c,22dを備えている(
図2及び
図3参照)。本実施形態では、
図3に示すように、左右一対の流路壁22c,22dの間隔を、ガス流路24の流路幅Wと称する。流路壁22c,22dの壁厚tは、流路幅Wより大きくても小さくてもよいが、流路幅Wより小さい方が好ましく、t/W≦0.65を満たすのがより好ましい。また、0.17≦t/Wを満たすことが好ましい。例えば、流路幅Wを1〜5mmの範囲内の所定値に設定し、この不等式を満たすように壁厚tを設定するのが好ましい。一例として、流路幅Wを3mmとした場合、壁厚tは0.5〜1.95mmで設定するのが好ましい。筐体22の辺のうち、ガス導入口24aの周囲に位置する辺(
図2及び
図3における、ガス導入口24aの左辺、右辺及び下辺とそれぞれ対向する辺22e,22f,22g)を含む角部の曲率半径は、1.0mm以下であることが好ましく、0.1mm以下であることがより好ましい。
【0023】
電荷発生部30は、ガス流路24内のガス導入口24aの近傍に電荷が発生するように、左右一対の流路壁22c,22dのそれぞれに設けられている。以下には説明の便宜上、流路壁22cに設けられた電荷発生部30について説明するが、流路壁22dに設けられた電荷発生部30もこれと同様である。電荷発生部30は、放電電極32と2つの誘導電極34,34とを有している。放電電極32は、流路壁22cの内面に沿って設けられ、
図4に示すように、矩形の周囲に複数の微細突起を有している。2つの誘導電極34,34は、矩形電極であり、流路壁22cに間隔をあけて放電電極32と平行となるように埋設されている。電荷発生部30では、放電電極32と2つの誘導電極34,34との間に放電用電源36(付属ユニット80の1つ)の高周波高電圧(例えばパルス電圧等)が印加されることで、両電極間の電位差による気中放電が発生する。このとき、筐体22のうち放電電極32と誘導電極34,34との間の部分が誘電体層の役割を果たす。この気中放電によって、放電電極32の周囲に存在するガスがイオン化されて正の電荷28が発生する。誘導電極34,34は、ここではグランドに接続されている。
【0024】
ガスに含まれる微粒子26は、ガス導入口24aからガス流路24内に入り、電荷発生部30を通過する際に電荷発生部30の気中放電によって発生した電荷28が付加されて帯電微粒子Pとなったあと後方に移動する。また、発生した電荷28のうち微粒子26に付加されなかったものは、電荷28のまま後方に移動する。
【0025】
余剰電荷除去部40は、電荷発生部30の下流で且つ捕集部50の上流に設けられている。余剰電荷除去部40は、印加電極42と除去電極44とを有している。印加電極42は、右側の流路壁22dの内面に沿って設けられ、ガス流路24内に露出している。除去電極44は、左側の流路壁22cの内面に沿って設けられ、ガス流路24内に露出している。印加電極42と除去電極44とは互いに向かい合う位置に配設されている。印加電極42は、除去用電源46(付属ユニット80の1つ)によって後述する電圧V1に対して1桁程度低い電圧V2(正電位)が印加される電極である。除去電極44は、グランドに接続された電極である。これにより、余剰電荷除去部40の印加電極42と除去電極44との間には弱い電界が発生する。したがって、電荷発生部30で発生した電荷28のうち、微粒子26に付加されなかった余剰の電荷28は、この弱い電界によって除去電極44に引き寄せられて捕獲され、グランドに捨てられる。これにより、余剰電荷除去部40は、余剰の電荷28が捕集部50の捕集電極54に捕集されて微粒子26の数にカウントされてしまうことを抑制している。
【0026】
捕集部50は、ガス流路24のうち電荷発生部30及び余剰電荷除去部40よりも下流に設けられている。捕集部50は、帯電微粒子Pを捕集するものであり、電界発生電極52と捕集電極54とを有している。電界発生電極52は、右側の流路壁22dの内面に沿って設けられ、ガス流路24内に露出している。捕集電極54は、左側の流路壁22cの内面に沿って設けられ、ガス流路24内に露出している。電界発生電極52と捕集電極54とは互いに向かい合う位置に配設されている。電界発生電極52は、印加電極42に印加される電圧V2よりも大きな電圧V1(正電位)が捕集用電源56(付属ユニット80の1つ)によって印加される電極である。捕集電極54は、電流計62を介してグランドに接続された電極である。これにより、捕集部50の電界発生電極52と捕集電極54との間には比較的強い電界が発生する。したがって、ガス流路24を流れる帯電微粒子Pは、この比較的強い電界によって捕集電極54に引き寄せられて捕集される。
【0027】
なお、余剰電荷除去部40の各電極42,44のサイズ、両電極42,44の間に発生させる電界の強さ、捕集部50の各電極52,54のサイズ、両電極52,54の間に発生させる電界の強さは、帯電微粒子Pが除去電極44に捕集されることなく捕集電極54に捕集されるように、また、微粒子26に付加しなかった電荷28が除去電極44によって除去されるように、設定されている。一般に、電荷28の電気移動度は、帯電微粒子Pの電気移動度の10倍以上であり、捕集するのに必要な電界は1桁以上小さくて済むので、このような設定が容易に可能となる。なお、電界発生電極52と捕集電極54とは、複数組設けられていてもよい。
【0028】
個数検出部60は、付属ユニット80の1つであり、電流計62と個数測定装置64とを備えている。電流計62は、一方の端子が捕集電極54に接続され、もう一方の端子がグランドに接続されている。この電流計62は、捕集電極54に捕集された帯電微粒子Pの電荷28に基づく電流を測定する。個数測定装置64は、電流計62の電流に基づいて微粒子26の個数を演算する。
【0029】
ヒータ電極72は、筐体22に埋設されている。ヒータ電極72は、ジグザグに引き回された帯状の発熱体(
図6参照)である。ヒータ電極72は、図示しない給電装置に接続され、その給電装置によって通電されると発熱する。ヒータ電極72は、筐体22や除去電極44,捕集電極54などの各電極を加熱する。
【0030】
ここで、微粒子検出素子20の構成について、
図6の分解斜視図を用いて更に説明する。微粒子検出素子20は、7枚のシートS1〜S7で構成されている。各シートS1〜S7は、筐体22と同じ材料で形成されている。説明の便宜上、左から右に向かって第1シートS1、第2シートS2、…と称し、各シートS1〜S7における右側の面を表面、左側の面を裏面と称する。各シートS1〜S7の厚みは適宜設定すればよく、例えばすべて同じであってもよいし、それぞれ異なっていてもよい。
【0031】
第1シートS1の表面には、ヒータ電極72が設けられている。ヒータ電極72の一端及び他端は、第1シートS1の表面の上方に配置されており、第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられたヒータ電極端子75,75にそれぞれ接続されている。
【0032】
第2シートS2の表面には、誘導電極34,34が設けられている。誘導電極34,34は1本の配線にまとめられている。その配線の端部は、第2シートS2の表面の上方に配置されており、第2シートS2及び第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられた誘導電極端子35に接続されている。第2シートS2の表面には、除去電極44の配線44aと捕集電極54の配線54aとが上下方向に沿ってそれぞれ設けられている。各配線44a,54aの上端は、第2シートS2及び第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられた除去電極端子45及び捕集電極端子55にそれぞれ接続されている。
【0033】
第3シートS3の表面には、放電電極32、除去電極44及び捕集電極54が設けられている。除去電極44は、第3シートS3のスルーホールを介して第2シートS2の配線44aに接続され、更にこの配線44aを介して除去電極端子45に接続されている。捕集電極54は、第3シートS3のスルーホールを介して第2シートS2の配線54aに接続され、更にこの配線54aを介して捕集電極端子55に接続されている。
【0034】
第4シートS4の下端側には、ガス流路24すなわち直方体形状の空間が設けられている。
【0035】
第5シートS5の裏面には、放電電極32、印加電極42及び電界発生電極52が設けられている。
【0036】
第6シートS6の裏面には、誘導電極34,34が設けられている。誘導電極34,34は1本の配線にまとめられている。その配線の端部は、第6シートS6の裏面の上方に配置されており、第3〜第6シートS3〜S6のスルーホールを介して第2シートS2の誘導電極34の配線に接続されている。そのため、第6シートS6に設けられた誘導電極34,34も、第1シートS1の裏面の上方に設けられた誘導電極端子35に接続されている。
【0037】
第7シートS7の裏面には、放電電極32の配線32aと印加電極42の配線42aと電界発生電極52配線52aとが上下方向に沿ってそれぞれ設けられている。配線32aの下端は、第4〜第6シートS4〜S6のスルーホールを介して第3及び第5シートS3,S5にそれぞれ設けられた放電電極32に接続されている。配線42aの下端は、第5及び第6シートS5,S6のスルーホールを介して第5シートS5の裏面に設けられた印加電極42に接続されている。配線52aの下端は、第5及び第6シートS5,S6のスルーホールを介して第5シートS5の裏面に設けられた電界発生電極52に接続されている。各配線32a,42a,52aの上端は、第7シートS7のスルーホールを介して第7シートS7の表面の上方に設けられた放電電極端子33、印加電極端子43及び電界発生電極端子53にそれぞれ接続されている。
【0038】
次に、微粒子検出器10の製造例について説明する。微粒子検出素子20は、複数枚のセラミックグリーンシートを用いて作製することができる。具体的には、複数枚のセラミックグリーンシートの各々について、必要に応じて切欠や貫通孔や溝を設けたり電極や配線パターンをスクリーン印刷したりした後、それらを積層して焼成する。なお、切欠や貫通孔や溝については、焼成時に焼失するような材料(例えば有機材料)で充填しておいてもよい。こうして、微粒子検出素子20を得る。続いて、微粒子検出素子20の放電電極端子33、印加電極端子43及び電界発生電極端子53をそれぞれ付属ユニット80の放電用電源36、除去用電源46及び捕集用電源56に接続する。また、微粒子検出素子20の誘導電極端子35及び除去電極端子45をグランドに接続し、捕集電極端子55を電流計62を介して個数測定装置64に接続する。更に、ヒータ電極端子75,75を図示しない給電装置に接続する。こうすることにより、微粒子検出器10を製造することができる。
【0039】
次に、微粒子検出器10の使用例について説明する。自動車の排ガスに含まれる微粒子26を計測する場合、上述したようにエンジンの排気管12に微粒子検出素子20を取り付ける(
図1参照)。
【0040】
図5に示すように、ガス導入口24aから筐体22内に導入された排ガスに含まれる微粒子26は、電荷発生部30の放電によって発生した電荷28(ここでは正電荷)を帯びて帯電微粒子Pになる。帯電微粒子Pは、電界が弱く除去電極44の長さが捕集電極54よりも短い余剰電荷除去部40をそのまま通過して、捕集部50に至る。一方、微粒子26に付加されなかった電荷28は、電界が弱くても余剰電荷除去部40の除去電極44に引き寄せられ、除去電極44を介してGNDに捨てられる。これにより、微粒子26に付加されなかった不要な電荷28は捕集部50にほとんど到達することがない。
【0041】
捕集部50に到達した帯電微粒子Pは、電界発生電極52によって発生した捕集用電界によって捕集電極54に捕集される。そして、捕集電極54に捕集された帯電微粒子Pの電荷28に基づく電流が電流計62で測定され、その電流に基づいて個数測定装置64が微粒子26の個数を演算する。電流Iと電荷量qの関係は、I=dq/(dt)、q=∫Idtである。個数測定装置64は、所定期間にわたって電流値を積分(累算)してその積分値(蓄積電荷量)を求め、蓄積電荷量を素電荷で除算して電荷の総数(捕集電荷数)を求め、その捕集電荷数を1つの微粒子26に付加する電荷の数の平均値(平均帯電数)で除算することで、捕集電極54に捕集された微粒子26の個数Ntを求める(下記式(1)参照)。個数測定装置64は、この個数Ntを排ガス中の微粒子26の数として検出する。
Nt=(蓄積電荷量)/{(素電荷)×(平均帯電数)} …(1)
【0042】
微粒子検出素子20の使用に伴い、微粒子26等が捕集電極54に数多く堆積すると、新たに帯電微粒子Pが捕集電極54に捕集されないことがある。そのため、定期的にあるいは堆積量が所定量に達したタイミングで、捕集電極54をヒータ電極72によって加熱することにより、捕集電極54上の堆積物を加熱して焼却し捕集電極54の電極面をリフレッシュする。また、ヒータ電極72により、筐体22の内周面に付着した微粒子26を焼却することもできる。
【0043】
ここで、ガス流路24は、矩形のガス導入口24aからガス導入口24aと同形のガス排出口24bまで連なる直方体形状の空間である。このガス流路24に排ガスを通過させると
図7に示す流速分布が得られる。
図7は、微粒子検出素子20の断面図(
図2のB−B断面図に相当)を用いて、微粒子検出素子20を排ガスの流れの中に配置したときの流速分布を示したものである。
図7の元図になったカラーの流速分布図では、赤→橙→黄→緑→青→藍→紫の順に流速が低くなるように表示されていたが、
図7ではカラーをグレースケールに置き換えて表示した。
図7に示すように、ガス排出口24bよりも下流領域には、排ガスの流速がガス流路24の内部を通過する排ガスの流速よりも低速になる低流速部LAが発生する。捕集電極54で捕集されなかった帯電微粒子Pは、ガス排出口24bから排出されたあと低流速部LAに至る。低流速部LAに至った帯電微粒子Pは、その後に捕集電極54で捕集されずガス排出口24bから出てきた帯電微粒子Pを電気的な反発力によりガス流路24に押し戻すように作用する。その結果、捕集電極54による帯電微粒子Pの捕集率が向上する。
【0044】
図7の低流速部LAは、(低流速部LAにおける排ガスの流速)/(ガス流路24の内部を通過する排ガスの最大流速)を流速比Rとしたとき、R≦0.57を満たす。R≦0.57の低流速部LAが存在するか否かは、
図7の元図になったカラーの流速分布図を用いることにより容易に判断することができる。
図7では、低流速部LAは、ガス排出口24bを覆うように形成されていることがわかる。これにより、上述したように低流速部LAに至った帯電微粒子Pがその後にガス排出口24bから排出されてきた帯電微粒子Pをガス流路24に押し戻すように作用しやすくなり、帯電微粒子Pの捕集率がより向上する。
【0045】
図7に示した流路壁22c,22dの壁厚tは、(流路壁の壁厚t)/(流路幅W)≦0.65を満たす。具体的には、
図7ではt=1mm、W=3mmとした。これにより、低流速部LAは、ガス排出口24bを確実に覆うように形成されるし、低流速部LAにおける排ガスの流速は、流速比R≦0.31を満たすほど低くなる。そのため、上述したように低流速部LAに至った帯電微粒子Pがその後にガス排出口24bから排出されてきた帯電微粒子Pをガス流路24に押し戻すように一層作用しやすくなり、帯電微粒子Pの捕集率が一層向上する。こうした作用効果は、t/W≦0.65を満たせば得られる。一方、流路壁22c,22dの壁厚tがt/W≦0.65を満たしていない場合であっても、帯電微粒子Pの捕集率が向上する効果は得られる。例えば、
図8に示すように壁厚tが流路幅Wと等しい場合(
図8ではt=W=3mm)であっても、ガス排出口24bよりも下流領域に低流速部LAが発生し、
図7ほど明確ではないがガス排出口24bを覆うように形成される。そのため、帯電微粒子Pの捕集率が向上するという効果は得られる。但し、
図8の低流速部LAは、流速比R≦0.57を満たすが、流速比R≦0.31を満たさない。そのため、帯電微粒子Pの捕集率が向上するという効果は
図8よりも
図7の方が大きい。なお、壁厚tや流路幅Wには、各種電極32,42,44,52,54の厚み(通常、数10μm)を含めないものとする。
【0046】
筐体22のうちガス導入口24aの周囲に位置する辺22e〜22gを含む角部(
図3参照)の曲率半径は、1.0mm以下(特に0.3mm以下)を満たすことが好ましい。こうすれば、ガス導入口24aからガス流路24に入らなかった排ガスは、
図7に示すように、こうした角部に当たったあと筐体22の外面から斜め後方に延びる剥離面BFを境界にしてその剥離面BFよりも筐体22側では低速で進み、その剥離面BFよりも筐体22とは反対側では高速で進む。一般に、低速のガスと固体との熱交換は、高速のガスと固体との熱交換よりも熱交換効率が低いことが知られている。そのため、筐体22と排ガスとの熱交換が抑制され、筐体22の温度変化が低減され、ひいては微粒子の個数Ntの測定精度が向上する。すなわち、微粒子26の個数Ntは上述したように平均帯電数の関数であり、平均帯電数は温度の関数であることが知られている。そのため、筐体22の温度変化を抑制して平均帯電数を安定化させれば、個数Ntの測定精度が向上する。辺22e〜22gを含む角部の曲率半径が1.0mmを超えると、剥離面BFは形成されず筐体22の外面を高速のガスが流れるため、筐体22の温度変化は低減されない。辺22e〜22gを含む角部の曲率半径が1.0mm以下という構成を採用したことによる効果は、壁厚tと流路幅Wとの関係によらずに得ることができる。例えば、
図8においても得ることができる。但し、この構成は、(流路壁の壁厚t)/(流路幅W)≦0.65を満たす場合に適用する意義が高い。この場合、流路壁22c,22dの熱容量が小さいため、流路壁22c,22dは排ガスとの熱交換の影響を受けやすくなるからである。なお、剥離面BFを生じさせるためには、この曲率半径は0mmであっても構わない。しかし、あまり鋭利な角部を形成しようとすると、角部が突出して脱落しやすくなり、脱落面によって角部形状が不均一になるおそれがある。そのような不均一な角部形状では、流れが乱れやすくなるため、かえって安定な剥離面を生じにくくなる。これを防ぐためには、曲率半径を0.01mm以上にしておくことが好ましい。
【0047】
以上説明した微粒子検出器10では、捕集電極54で捕集されなかった帯電微粒子Pは、ガス排出口24bから排出されたあと低流速部LAに至る。低流速部LAに至った帯電微粒子Pは、その後に捕集電極54で捕集されずガス排出口24bから排出されてきた帯電微粒子Pを電気的な反発力によりガス流路24に押し戻すように作用する。その結果、捕集電極54による帯電微粒子Pの捕集率が向上する。微粒子検出器10において、捕集性能を上げるために電圧V1を増加させると、ガス流路24内の絶縁破壊や配線部での短絡を生じるリスクがあるため、電圧V1を変えずに捕集率を向上させる工夫はきわめて有効である。
【0048】
微粒子検出器10は、流速比R≦0.57を満たすことや低流速部LAがガス排出口24bを覆うように形成されることが好ましい。こうすれば、捕集電極54による帯電微粒子Pの捕集率がより向上する。
【0049】
また、t/W≦0.65を満たすことが好ましい。こうすれば、低流速部LAは、ガス排出口24bを確実に覆うように形成されるし、低流速部LAにおける排ガスの流速は、流速比R≦0.31を満たすほど低くなる。そのため、捕集電極54による帯電微粒子Pの捕集率が一層向上する。なお、流路壁22c,22dの強度を確保することを考慮すると、0.17≦t/Wを満たすことが好ましい。
【0050】
更に、筐体22のうちガス導入口24aの周囲に位置する辺22e〜22gを含む角部の曲率半径を1.0mm以下にすることが好ましい。こうすれば、筐体22の外面と排ガスとの熱交換が抑制され、筐体22の温度変化が低減され、ひいては微粒子の個数Ntの測定精度が向上する。
【0051】
更にまた、長尺体である筐体22のうち、ガス流路24が形成された下端は排気管12の内部に配置され、電極端子33,35,43,45,53,55、75が形成された上端は排気管12の外部に配置される。そのため、電極端子33,35,43,45,53,55、75は排気管12を流通する高温の排ガスの影響を受けにくく、はんだ等の比較的耐熱性の低い接合材で外部配線と接続することができる。
【0052】
そしてまた、捕集電極54は電界を利用して帯電微粒子Pを捕集するため、捕集電極54に帯電微粒子Pを効率よく捕集することができる。
【0053】
そして更に、筐体22は、ヒータ電極72を内蔵しているため、筐体22の温度をヒータ電極72によって制御することができる。また、微粒子検出素子20の使用に伴って捕集電極54等に付着した微粒子26をヒータ電極72を加熱することにより焼却して捕集電極54等をリフレッシュすることができる。
【0054】
そして更にまた、微粒子検出素子20は、筐体22内で捕集電極54よりもガスの流れの上流側に除去電極44を備えているため、微粒子26に付加されなかった電荷28(余剰電荷)は捕集電極54に捕集される前に除去電極44によって除去される。したがって、そのような余剰電荷によって微粒子数が影響を受けるのを防止することができる。
【0055】
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
【0056】
例えば、上述した実施形態において、ガス流路24の流路壁22c,22dを壁厚tとして説明したが、流路壁22cを壁厚t1とし、流路壁22dを壁厚t2(≠t1)としてもよい。その場合、(流路壁の壁厚t1)/(流路幅W)≦0.65、(流路壁の壁厚t2)/(流路幅W)≦0.65の両方を満たすことが好ましい。
【0057】
上述した実施形態において、筐体22にガス流路24を2つ以上並べて設けてもよい。その場合、例えばガス流路24ごとに捕集電極54に発生させる電界の強度を変化させれば、ガス流路24ごとに捕集される微粒子26の粒径分布を異ならせることができる。
【0058】
上述した実施形態において、微粒子検出素子20は、低流速部LAが発生しない構成であって、筐体22のうちガス導入口24aの周囲に位置する辺22e〜22gを含む角部の曲率半径が1.0mm以下(特に0.3mm以下)のものであってもよい。その場合、低流速部LAによる効果は得られないものの、角部による効果、つまり筐体22の外面と排ガスとの熱交換が抑制され、筐体22の温度変化が低減され、ひいては微粒子の個数Ntの測定精度が向上するという効果は得られる。
【0059】
上述した実施形態では、電荷発生部30として、ガス流路24の内面に沿って設けられた放電電極32と筐体22に埋設された2つの誘導電極34,34とにより構成したが、気中放電により電荷を発生するものであれば特にどのような構成でも構わない。例えば、誘導電極34,34をガス流路24の壁に埋設する代わりに、ガス流路24の内面に沿って設けてもよい。あるいは、特許文献1に記載されているように、電荷発生部を針状電極と対向電極とで構成してもよい。
【0060】
上述した実施形態では、電界発生電極52はガス流路24に露出していたが、これに限らず筐体22に埋設されていてもよい。また、電界発生電極52に代えて、捕集電極54を上下から挟むように配設された一対の電界発生電極を筐体22に設け、この一対の電界発生電極間に印加した電圧により生じる電界で、帯電微粒子Pを捕集電極54に向けて移動させてもよい。この点は、印加電極42も同様である。
【0061】
上述した実施形態において、電界発生電極52には電圧V1を印加したが、電圧を印加せず電界発生電極52による電界を発生させない場合でも、流路幅Wを微小な値(例えば0.01mm以上0.2mm未満)としておくことで、ブラウン運動の激しい粒径の比較的小さな帯電微粒子Pを捕集電極54に衝突させることができる。これにより、捕集電極54が帯電微粒子Pを捕集できる。この場合、微粒子検出素子20は電界発生電極52を備えなくてもよい。
【0062】
上述した実施形態では、微粒子検出器10をエンジンの排気管12に取り付ける場合を例示したが、特にエンジンの排気管12に限定されるものではなく、微粒子を含むガスが流通する管であればどのような管であってもよい。
【0063】
上述した実施形態では、微粒子検出素子20は微粒子の数を検出するものとしたが、微粒子の質量や表面積などを検出するものとしてもよい。微粒子の質量は、例えば、微粒子の数に微粒子の平均質量を乗じることにより求めることができるし、予め蓄積電荷量と捕集された微粒子の質量との関係をマップとして記憶装置に記憶しておき、このマップを用いて蓄積電荷量から微粒子の質量を求めることもできる。微粒子の表面積についても、微粒子の質量と同様の方法で求めることができる。
微粒子検出素子は、ガスが通過するガス流路を有する筐体と、その筐体内に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、その筐体内で電荷発生部よりもガスの流れの下流側に設けられ、帯電微粒子を捕集する捕集電極と、を備える。ガス流路は、矩形のガス導入口からガス導入口と同形のガス排出口まで連なる直方体形状の空間であり、ガスの流れの中に微粒子検出素子を配置してガス流路にガスを通過させると、ガス排出口よりも下流領域に、ガスの流速がガス流路の内部を通過するガスの流速よりも低速になる低流速部が発生する。