【文献】
CANNY, John,"A Computational Approach to Edge Detection",IEEE Transactions on Pattern Analysis and Machine Intelligence,1986年11月,Vol. PAMI-8, No. 6,p. 679-698
(58)【調査した分野】(Int.Cl.,DB名)
前記候補領域設定部は、前記検査候補領域を設定する位置に映る前記検査対象までの代表的な撮像距離を算出する代表撮像距離算出部を備え、前記代表的な撮像距離に応じたサイズの前記検査候補領域を設定することを特徴とする請求項1に記載の画像処理装置。
前記候補領域設定部は、前記検査候補領域を設定する位置に映る前記検査対象の代表的な撮像距離勾配を算出する代表撮像距離勾配算出部を備え、前記代表的な撮像距離勾配に応じたサイズの前記検査候補領域を設定することを特徴とする請求項1に記載の画像処理装置。
前記検査領域設定部は、前記画像内の各画素と前記輪郭エッジ領域又は前記画像の端部との距離を画素値に変換した距離変換画像を算出する距離変換画像算出部を備え、前記距離変換画像を基に前記検査領域を設定することを特徴とする請求項1に記載の画像処理装置。
前記検査領域設定部は、前記距離変換画像において画素値が最大値となる画素を前記検査領域の中心とし、該中心から前記検査領域の境界までの距離が前記最大値に対応する距離よりも小さくなるように前記検査領域を設定することを特徴とする請求項4に記載の画像処理装置。
前記検査領域が未設定の領域に対して、前記検査領域設定部が実行する処理を繰返すよう制御する繰返し制御部をさらに備えることを特徴とする請求項1に記載の画像処理装置。
【発明を実施するための形態】
【0011】
以下、本発明の実施の形態に係る画像処理装置、画像処理方法、及び画像処理プログラムについて、図面を参照しながら説明する。なお、これら実施の形態によって本発明が限定されるものではない。また、各図面の記載において、同一部分には同一の符号を付して示している。
【0012】
また、以下に説明する各実施の形態においては、一例として、内視鏡により撮像された生体の管腔内画像(以下、単に画像ともいう)を処理対象とし、該管腔内画像から、検査対象である粘膜の表面における微細構造の異常を識別する画像処理を説明する。管腔内画像は、通常、各画素位置においてR(赤)、G(緑)、B(青)の波長成分(色成分)に対して、所定の(例えば256階調の)画素レベル(画素値)を有するカラー画像である。
【0013】
(実施の形態1)
図1は、本発明の実施の形態1に係る画像処理装置を示すブロック図である。
図1に示すように、画像処理装置1は、該画像処理装置1全体の動作を制御する制御部10と、内視鏡によって撮像された画像に対応する画像データを取得する画像取得部20と、外部から入力される入力信号を受け付ける入力部30と、各種表示を行う表示部40と、画像取得部20によって取得された画像データや種々のプログラムを格納する記録部50と、画像データに対して所定の画像処理を実行する演算部100とを備える。
【0014】
制御部10は、CPU等のハードウェアによって実現され、記録部50に記録された各種プログラムを読み込むことにより、画像取得部20から入力される画像データや入力部30から入力される操作信号等に従って、画像処理装置1を構成する各部への指示やデータの転送等を行い、画像処理装置1全体の動作を統括的に制御する。
【0015】
画像取得部20は、内視鏡を含むシステムの態様に応じて適宜構成される。例えば、カプセル型内視鏡との間の画像データの受け渡しに可搬型の記録媒体が使用される場合、画像取得部20は、この記録媒体を着脱自在に装着し、記録された画像の画像データを読み出すリーダ装置で構成される。また、内視鏡によって撮像された画像の画像データを保存しておくサーバを設置する場合、画像取得部20は、サーバと接続される通信装置等で構成され、サーバとデータ通信を行って画像データを取得する。或いは、画像取得部20を、内視鏡からケーブルを介して画像信号を入力するインターフェース装置等で構成しても良い。
【0016】
入力部30は、例えばキーボードやマウス、タッチパネル、各種スイッチ等の入力デバイスによって実現され、受け付けた入力信号を制御部10に出力する。
表示部40は、LCDやELディスプレイ等の表示装置によって実現され、制御部10の制御の下で、管腔内画像を含む各種画面を表示する。
【0017】
記録部50は、更新記録可能なフラッシュメモリ等のROMやRAMといった各種ICメモリ、内蔵若しくはデータ通信端子で接続されたハードディスク、又は、CD−ROM等の情報記録媒体及びその読取装置等によって実現される。記録部50は、画像取得部20によって取得された画像データの他、画像処理装置1を動作させると共に、種々の機能を画像処理装置1に実行させるためのプログラムや、このプログラムの実行中に使用されるデータ等を格納する。具体的には、記録部50は、画像内に映った粘膜表面の微細構造の異常を識別するための画像処理プログラム51や、このプログラムの実行中に使用される種々の情報等を格納する。
【0018】
演算部100は、CPU等のハードウェアによって実現され、画像処理プログラム51を読み込むことによって管腔内画像に対する画像処理を施し、検査対象である粘膜の表面の微細構造の異常を識別するための種々の演算処理を実行する。
【0019】
次に、演算部100の詳細な構成について説明する。演算部100は、画像から粘膜の輪郭エッジ領域を抽出する輪郭エッジ領域抽出部110と、抽出された輪郭エッジ領域を内包しないように検査領域を画像内に設定する検査領域設定部120と、検査領域内の粘膜表面の微細構造が異常であるか否かを識別する異常構造識別部130とを備える。
【0020】
このうち、輪郭エッジ領域抽出部110は、画像内の各画素におけるエッジ強度を算出するエッジ強度算出部111と、エッジ強度が所定の閾値以上となる画素を輪郭エッジ候補領域として抽出する輪郭エッジ候補領域抽出部112と、輪郭エッジ候補領域の特徴量を基に輪郭エッジ領域を特定する輪郭エッジ領域特定部113とを備え、画像内のエッジ強度が強い画素からノイズを除外した上で、残った画素の領域を輪郭エッジ領域として抽出する。
【0021】
検査領域設定部120は、画像内に検査候補領域を設定する候補領域設定部121と、上記輪郭エッジ領域に関する情報を基に、検査候補領域から検査領域を確定する領域確定部122とを備え、輪郭エッジ領域を内包しないように検査領域を設定する。より詳細には、領域確定部122は、設定された検査候補領域のうち、輪郭エッジ領域を内包する検査候補領域を除外する輪郭エッジ内包領域除外部122aを備え、輪郭エッジ内包領域除外部122aにより除外されずに残った検査候補領域を、検査領域として確定する。
【0022】
異常構造識別部130は、検査領域のテクスチャ情報を基に、粘膜表面の微細構造の異常を識別する。ここで、画像処理におけるテクスチャとは、繰返しの輝度パターンのことである(参考:CG−ARTS協会、「ディジタル画像処理」、第192頁(領域のテクスチャ))。実施の形態1においては、テクスチャの特徴を数値化したテクスチャ特徴量として、特定の空間周波数成分(以下、特定空間周波数成分ともいう)を用いる。特定空間周波数成分については、後述する。
【0023】
異常構造識別部130は、検査領域における特定の空間周波数成分を算出する特定周波数成分算出部131と、該特定の空間周波数成分を基に統計的な分類を行う統計分類部132とを備え、該統計的な分類の結果を用いて、検査領域内に映る粘膜表面の微細構造が異常であるか否かを識別する。
【0024】
次に、画像処理装置1の動作を説明する。
図2は、画像処理装置1の動作を示すフローチャートである。
まず、ステップS11において、演算部100は、記録部50に記録された画像データを読み込むことにより、処理対象の管腔内画像を取得する。ここで、
図3は、内視鏡によって管腔内を撮像する様子を示す模式図である。また、
図4は、内視鏡によって撮像された管腔内画像を示す模式図である。
図3に示すように、内視鏡6は、概ね、視野Vの中心軸を管腔7の長手方向に合わせて撮像を行う。このため、検査対象である粘膜の表面(粘膜表面8)が映った画像Mには、粘膜の襞の重なりが輪郭エッジ領域m1として表れることがある。
【0025】
続くステップS12において、輪郭エッジ領域抽出部110は、取得した画像内から粘膜の輪郭エッジ領域を抽出する。
図5は、輪郭エッジ領域抽出部110が実行する処理の詳細を示すフローチャートである。
【0026】
まず、ステップS121において、エッジ強度算出部111は、画像内の各画素のエッジ強度を算出する。これは、R、G、Bのいずれかの波長成分に対し、公知の微分フィルタ(参考:CG−ARTS協会、「ディジタル画像処理」、第114頁(微分フィルタ))や、モルフォロジカルフィルタ(参考:コロナ社、小畑秀文著、「モルフォロジー」、第100頁(エッジ検出フィルタ))等を用いることで実現することができる。
【0027】
続くステップS122において、輪郭エッジ候補領域抽出部112は、エッジ強度が所定の閾値以上となる画素を、輪郭エッジ候補領域(以下、単に候補領域ともいう)として抽出する。この際、輪郭エッジ候補領域抽出部112は、公知のラベリング処理(参考:CG−ARTS協会、「ディジタル画像処理」、第181頁(ラベリング))等により、所定の閾値以上となる画素を、近傍の画素同士で連結することにより、領域として認識する。
【0028】
続くステップS123において、輪郭エッジ領域特定部113は、抽出された輪郭エッジ候補領域の特徴量を算出する。特徴量としては、輪郭エッジ候補領域内の画素におけるエッジ強度の平均値又は最大値といった代表値や、輪郭エッジ候補領域の面積(即ち、候補領域を構成する画素数)、周囲長(即ち、候補領域の輪郭を追跡して一周する移動量)、幅といった形状特徴量(本願発明者による特開2012−11137号公報参照)が挙げられる。
【0029】
さらに、ステップS124において、輪郭エッジ領域特定部113は、特徴量を基に輪郭エッジ領域を特定する。より詳細には、特徴量であるエッジ強度の代表値が所定の閾値以下である候補領域、面積や長さが所定の閾値以下である候補領域、或いは、幅が所定の閾値以上である候補領域等をノイズとして除外し、残った候補領域を輪郭エッジ領域とする。
【0030】
なお、上述したステップS12においては、特開2012−11137号公報に開示されているように、画素値の変化が検査対象の3次元的な形状に対応する粘膜段差や粘膜溝等の粘膜起伏の抽出処理を適用しても良い。
その後、処理はメインルーチンに戻る。
【0031】
ステップS12に続くステップS13において、検査領域設定部120は、輪郭エッジ領域を内包しないように検査領域を設定する。
図6は、検査領域設定部120が実行する詳細な処理を示すフローチャートである。また、以下においては、一例として、
図4に示す画像Mに対する処理を説明する。
【0032】
まず、ステップS131において、候補領域設定部121は、例えば
図7に示すように、画像M内に所定サイズの複数の矩形の検査候補領域CAを格子状に設定する。
【0033】
続くステップS132において、輪郭エッジ内包領域除外部122aは、検査候補領域CAのうち、輪郭エッジ領域m1を内包する検査候補領域を除外する。例えば、
図7の場合、斜線で示す検査候補領域CA
inが、輪郭エッジ領域m1を内包するものとして除外される。
【0034】
さらに、ステップS133において、領域確定部122は、ステップS132において除外されずに残った検査候補領域CAを、検査領域EAとして確定する。
その後、処理はメインルーチンに戻る。
【0035】
ステップS13に続くステップS14において、異常構造識別部130は、画像Mに映った粘膜表面の微細構造が異常であるか否かを識別する。
図8は、異常構造識別部130が実行する処理の詳細を示すフローチャートである。
【0036】
まず、ステップS141において、特定周波数成分算出部131は、画像Mを構成する波長成分(R成分、G成分、B成分)毎に、検査領域EAにおける特定の空間周波数成分の強度を算出する。ここで、特定の空間周波数成分(以下、特定空間周波数成分ともいう)とは、画像Mに映った粘膜表面の微細構造における異常の有無の識別が可能な空間周波数成分のことであり、教師データ等に基づいて事前に設定されている。
【0037】
特定空間周波数成分の算出は、検査領域EAの各波長成分に対し、公知のバンドパスフィルタ(参考:CG−ARTS協会、「ディジタル画像処理」、第136頁(バンドパスフィルタ)、第141頁(LOGフィルタ))を適用することにより実現される。なお、実施の形態1においては、検査領域EAの端部に位置する画素(端部画素)に対して、バンドパスフィルタ処理(特定空間周波数成分の算出)を行わないものとする。その理由は、検査領域EAの端部画素の特定空間周波数成分を算出する際には、検査領域EAの外部の画素を用いる必要が生じるが、例えば検査領域EA
endのように、検査領域EAが画像Mの端部に位置している場合、検査領域EAの外部は即ち画像Mの外部となり、画素が存在しないことがあるからである。また、検査領域EAの外部に画素が存在する場合であっても、検査領域EAの外部では、検査領域EAの内部画素の画素値と大きく値が異なっている可能性があるからである。
【0038】
続くステップS142において、統計分類部132は、検査領域EAに対し、特定空間周波数成分の画素間での平均強度を波長成分ごとに算出し、これらの平均強度を成分とする特徴ベクトルxを作成する。なお、実施の形態1においては、R、G、Bの3つの波長成分について演算を行うため、特徴ベクトルxは3つの成分からなる3行1列の行列となる。
【0039】
ここで、粘膜表面の微細構造が異常である場合、粘膜表面の形状を表わす低周波成分と撮像ノイズを表す高周波成分とを除いた中間帯域の特定の空間周波数成分において、微細構造が正常である場合との間で強度に差が生じる。
【0040】
そこで、ステップS143において、異常構造識別部130は、事前に作成した異常領域の識別関数と、特定空間周波数成分から作成した特徴ベクトルxとを基に、各検査領域EAが異常であるか否かの分類を行う。実際の処理としては、次式(1)に示す確率モデルに基づく分類指標P(x)を算出し、この値が閾値以上である場合に、検査領域EAは異常であると分類する。
【数1】
式(1)において、記号μは、事前に取得された複数の異常領域のサンプルにおける特徴ベクトルの平均ベクトル(3行1列)である。記号Zは、事前に取得された複数の異常領域のサンプルにおける特徴ベクトルの分散共分散行列(3行3列)である。記号|Z|は、分散共分散行列の行列式である。記号Z
-1は、分散共分散行列の逆行列である。記号kは、特徴ベクトルxの次元数であり、実施の形態1においては、k=3である。
【0041】
なお、実施の形態1においては、確率モデルを用いた異常領域の分類方法を示したが、検査領域EAが正常であるか異常であるかを分類できれば、上記説明以外の方法を用いても良い。例えば、代表的な特徴ベクトルとの特徴空間距離に基づく方法や、特徴空間内において分類境界を設定する方法等により分類を行っても良い。
その後、処理はメインルーチンに戻る。
【0042】
ステップS14に続くステップS15において、演算部100は、ステップS14における異常識別結果を出力し、表示部40に表示させると共に、記録部50に記録させる。その後、画像処理装置1における処理を終了する。
【0043】
以上説明したように、実施の形態1によれば、検査対象である粘膜の輪郭エッジ領域を含まないように検査領域を設定し、設定された検査領域に対して微細構造が異常であるか否かを識別するので、画像内に粘膜の輪郭エッジが存在する場合においても、粘膜表面の微細構造の異常を精度良く識別することが可能となる。
【0044】
(変形例1−1)
次に、本発明の実施の形態1の変形例1−1について説明する。
上記実施の形態1においては、粘膜表面のテクスチャ情報として空間周波数成分を利用する例を示したが、空間周波数成分の代わりに、同時生起行列を用いた統計的特徴量、Local Binary Pattern、高次局所自己相関、SIFT(Scale-Invariant Feature Transform)、HOG(Histograms of Oriented Gradients)等の公知のテクスチャ情報を用いても良い。
【0045】
(変形例1−2)
次に、本発明の実施の形態1の変形例1−2について説明する。
図9は、変形例1−2に係る画像処理装置が備える演算部の構成を示すブロック図である。
図9に示す演算部100Aは、輪郭エッジ領域抽出部110Aと、検査領域設定部120Aと、異常構造識別部130Aとを備える。なお、演算部100A以外の画像処理装置の構成及び動作については、実施の形態1と同様である(
図1参照)。
【0046】
輪郭エッジ領域抽出部110Aは、
図1に示す輪郭エッジ領域抽出部110に対し、低吸収波長選択部114をさらに備える。低吸収波長選択部114は、画像を構成する複数の波長成分のうち、生体内における吸収又は散乱の度合いが最も低い波長成分(低吸収波長成分)を選択する。輪郭エッジ領域抽出部110Aは、選択された低吸収波長成分の値を基に、画像内から輪郭エッジ領域を抽出する。
【0047】
検査領域設定部120Aは、
図1に示す検査領域設定部120が備える候補領域設定部121の代わりに、候補領域設定部123を備える。候補領域設定部123は、検査候補領域を設定する位置に映る検査対象までの代表的な撮像距離を算出する代表撮像距離算出部123aを備え、算出された代表的な撮像距離に応じたサイズの検査候補領域を画像内に設定する。
【0048】
異常構造識別部130Aは、生体内における吸収又は散乱の度合いに応じて特定される特定波長成分を選択する特定波長成分選択部133と、選択された特定波長成分に対して特定空間周波数成分を算出する特定周波数成分算出部134と、特定空間周波数成分を基に統計的な分類を行う統計分類部135とを備え、特定波長成分に対する特定空間周波数成分に基づく上記分類の結果を基に、検査領域内の微細構造の異常を識別する。
【0049】
次に、演算部100Aの動作について説明する。演算部100Aの動作は、全体として
図2に示すものと同様であり、輪郭エッジ領域抽出部110A(ステップS12)、検査領域設定部120A(ステップS13)、及び異常構造識別部130A(ステップS14)の各部が実行する処理の詳細が実施の形態1とは異なる。
【0050】
図10は、ステップS12において輪郭エッジ領域抽出部110Aが実行する処理を示すフローチャートである。
まず、ステップa121において、低吸収波長選択部114は、低吸収波長成分としてR成分を選択する。これは、粘膜表面の血管等によるエッジを輪郭エッジと誤判別しないように、血管等による吸収又は散乱の影響を抑制し、粘膜表面までの撮像距離を最も良く反映する画素値を得るためである。R成分、G成分、及びB成分からなる画像においては、R成分が血液の吸収帯域から最も離れており、且つ、最も長波長の成分であるため、生体内における吸収又は散乱の影響を受け難い。従って、本実施の形態1においては、R成分を選択する。
【0051】
続くステップa122において、エッジ強度算出部111は、ステップa121において選択された波長成分の値を基に、画像内の各画素のエッジ強度を算出する。
その後のステップS122〜S124における処理は、実施の形態1と同様である(
図5参照)。
【0052】
図11は、ステップS13において検査領域設定部120Aが実行する処理を示すフローチャートである。また、
図12及び
図13は、検査領域設定部120Aが実行する処理を説明するための模式図である。
【0053】
まず、ステップa131において、候補領域設定部123は、
図12に示すように、画像M内の複数箇所に、検査候補領域の中心とする位置(x
i,y
i)をランダムに決定する。
【0054】
続くステップa132において、代表撮像距離算出部123aは、各位置(x
i,y
i)に映る粘膜までの撮像距離を、検査候補領域の代表的な撮像距離として算出する。より詳細には、代表撮像距離算出部123aは、各位置(x
i,y
i)の画素の低吸収波長成分(R成分)の値を基に、粘膜表面8(
図3参照)が均等拡散面であると仮定した場合の撮像距離rを、次式(2)を用いて推定する。
【0055】
【数2】
式(2)において、記号Iは、内視鏡6が内蔵する光源の放射強度であり、事前に測定された測定値が適用される。記号Kは、粘膜表面8の拡散反射係数であり、平均的な値が事前に測定されて適用される。記号θは、粘膜表面8の法線ベクトルと該粘膜表面8から光源(内視鏡6)までのベクトルとのなす角度である。なお、角度θは、実際には内視鏡6の先端に設けられる光源と粘膜表面8との位置関係により個別に決まる値であるが、平均的な値が事前に設定されて適用される。記号Lは、撮像距離rの粘膜表面8上の推定対象領域が映った画素のR成分値である。なお、代表的な撮像距離としては、検査候補領域の中心となる位置(x
i,y
i)における撮像距離の他、位置(x
i,y
i)の近傍の所定範囲内の複数箇所における撮像距離の平均等を用いても良い。
【0056】
ここで、画像においては一般に、遠景部の被写体(粘膜)ほど小さく映るため、撮像距離が長いほど検査領域を小さく設定すると、検査領域内に輪郭エッジ領域を内包しない可能性が高くなる。そこで、ステップa133において、候補領域設定部123は、
図13に示すように、各位置(x
i,y
i)を中心とし、撮像距離に応じたサイズを有する検査候補領域CA
iを設定する。なお、
図13においては、矩形の検査候補領域CA
iを示しているが、検査領域の形状は特に限定されず、矩形の他にも、円形や楕円形等、様々な形状を用いることができる。
その後のステップS132及びS133における処理は、実施の形態1と同様である(
図6参照)。
【0057】
図14は、ステップS14において異常構造識別部130Aが実行する処理を示すフローチャートである。
ここで、実施の形態1においては、全ての波長成分(R成分、G成分、B成分)を用いて、粘膜表面の微細構造の異常を識別したが、粘膜表面の微細構造の異常は、毛細血管の形成状態に起因する場合が多い。このため、異常領域と正常領域との間では、血液の吸収帯域に近い波長成分ほど、顕著な変化が見られる。
【0058】
そこで、ステップa141において、特定波長成分選択部133は、生体内における吸収又は散乱の度合いが高い特定波長成分を選択する。具体的には、G成分又はB成分が選択される。
【0059】
続くステップa142において、特定周波数成分算出部134は、各検査領域に対し、選択された波長成分における特定空間周波数成分の強度を、各画素について算出する。
【0060】
続くステップa143において、統計分類部135は、選択された波長成分における特定空間周波数成分の平均強度を算出し、この平均強度の値を特徴量とする。
【0061】
さらに、ステップa144において、異常構造識別部130Aは、事前に作成した異常領域の識別関数と、ステップa143において算出した特徴量とを基に、各検査領域が異常であるか否かの分類を行う。なお、識別関数を用いた処理は、実施の形態1と同様である。ただし、式(1)に示す分類指標P(x)の算出式においては、特徴ベクトルxの代わりに、ステップa143において算出された特徴量が適用される。また、式(1)における平均ベクトルμの代わりに、事前に取得された複数の異常領域のサンプルにおける特徴量の平均値が適用される。さらに、式(1)における分散共分散行列Zの代わりに、事前に取得された複数の異常領域のサンプルにおける分散が適用され、逆行列Z
-1の代わりに、該サンプルにおける分散の逆数が適用される。また、式(1)において、k=1となる。
その後、処理はメインルーチンに戻る。
【0062】
以上説明したように、変形例1−2によれば、検査領域を設定する位置における撮像距離に応じて検査候補領域のサイズを変更するので、効率良く検査領域を設定することができる。従って、より広範囲の粘膜表面に対し、異常構造識別処理を実行することができ、結果的に、粘膜表面の微細構造の異常を精度良く識別することが可能となる。
【0063】
また、変形例1−2によれば、低吸収波長成分の値を基に輪郭エッジ領域を抽出するので、血管等によって生じるエッジ(吸光エッジとも呼ばれる)を、粘膜の輪郭エッジと誤判別することを抑制できる。従って、微細構造の異常の識別に有効な吸光エッジを検査領域内に含めることができ、結果的に、粘膜表面の微細構造の異常を精度良く識別することが可能となる。
【0064】
さらに、変形例1−2によれば、高吸収波長成分の値を基に異常の識別処理を実行するので、粘膜表面の吸光変化を伴う微細構造の異常を精度良く識別することが可能となる。
【0065】
(変形例1−3)
次に、本発明の実施の形態1の変形例1−3について説明する。
図15は、変形例1−3に係る画像処理装置が備える演算部の構成を示すブロック図である。
図15に示す演算部100Bは、輪郭エッジ領域抽出部110と、検査領域設定部120Bと、異常構造識別部130Bとを備える。なお、演算部100B以外の画像処理装置の構成及び動作については、実施の形態1と同様である(
図1参照)。また、輪郭エッジ領域抽出部110の構成及び動作も、実施の形態1と同様である。
【0066】
検査領域設定部120Bは、
図1に示す検査領域設定部120が備える候補領域設定部121の代わりに、候補領域設定部124を備える。候補領域設定部124は、検査候補領域を設定する位置に映る検査対象の代表的な撮像距離勾配を算出する代表撮像距離勾配算出部124aを備え、算出した代表的な撮像距離勾配に応じたサイズの検査候補領域を画像内に設定する。
【0067】
異常構造識別部130Bは、生体内における吸収又は散乱の度合いが互いに異なる特定の波長成分間の比率を算出する特定波長間比率算出部136と、算出された特定波長成分間の比率に対して特定空間周波数成分を算出する特定周波数成分算出部137と、特定空間周波数成分を基に統計的な分類を行う統計分類部138とを備え、波長成分間の比率に対する特定空間周波数成分に基づく上記分類の結果を基に、検査領域内の微細構造の異常を識別する。
【0068】
次に、演算部100Bの動作について説明する。演算部100Bの動作は、全体として
図2に示すものと同様であり、検査領域設定部120B(ステップS13)、及び異常構造識別部130B(ステップS14)の各部が実行する処理の詳細が実施の形態1とは異なる。
【0069】
図16は、ステップS13において検査領域設定部120Bが実行する処理を示すフローチャートである。
まず、ステップb131において、候補領域設定部124は、画像内の複数箇所に、検査候補領域の中心とする位置(x
i,y
i)をランダムに決定する。
【0070】
続くステップb132において、代表撮像距離勾配算出部124aは、各位置(x
i,y
i)に映る粘膜における撮像距離勾配を、検査候補領域の代表的な撮像距離勾配として算出する。より詳細には、代表撮像距離勾配算出部124aは、各位置(x
i,y
i)及びその近傍の画素における粘膜までの撮像距離を、式(2)を用いて算出する。そして、これらの撮像距離の値に対し、公知の1次微分フィルタ(参考:CG−ARTS協会、「ディジタル画像処理」、第114頁(微分フィルタ))を適用し、算出した値の絶対値を求める。なお、代表的な撮像距離勾配としては、検査候補領域の中心となる位置(x
i,y
i)における撮像距離勾配の他、位置(x
i,y
i)の近傍の所定範囲内の複数箇所における撮像距離勾配の平均等を用いても良い。
【0071】
ここで、管腔内画像においては、撮像距離勾配が大きいほど、粘膜に対する傾斜が大きい方向から撮像していることになるため、画像内の単位面積当たりの領域に映る実際の粘膜の面積は大きくなる。このため、検査領域を設定する位置に映る粘膜の撮像距離勾配が大きいほど、検査領域を小さくする方が、検査領域内に輪郭エッジ領域を内包しない可能性が高くなる。
【0072】
そこで、ステップb133において、候補領域設定部124は、撮像距離勾配に応じたサイズの検査候補領域を、各位置(x
i,y
i)を中心として設定する。具体的には、撮像距離勾配が大きくなるほど検査領域が大きくなるように、検査領域のサイズを決定する。
その後のステップS132及びS133における処理は、実施の形態1と同様である(
図6参照)。
【0073】
図17は、ステップS14において異常構造識別部130Bが実行する処理を示すフローチャートである。
ここで、上記変形例1−2においては、生体内における吸収又は散乱の度合いが高い特定波長における特定空間周波数成分を用いて微細構造の異常を識別した。しかしながら、そのような特定波長の画素値変化は撮像距離の影響を受け易いため、遠景部では変化が小さく、近景部では変化が大きくなる。このため、高吸収波長成分について算出した特定空間周波数成分の平均強度には、撮像距離に応じた変化が含まれてしまい、遠景部と近景部とで同一の識別関数を用いて異常構造識別処理を実行すると、識別精度が低下してしまうおそれがある。そこで、本変形例1−3においては、撮像距離に伴う画素値変化の影響を抑制するため、生体内における吸収又は散乱の度合いが互いに異なる特定波長成分間の比率を算出し、該比率における特定空間周波数成分を基に、検査領域における異常構造識別処理を実行する。
【0074】
詳細には、ステップb141において、特定波長間比率算出部136は、検査領域内の各画素の画素値に基づいて、生体内における吸収又は散乱の度合いが互いに異なる特定波長成分間の比率として、例えば、R成分値に対するG成分値の比率(G/R)を算出する。以下、この比率のことを、波長間比率という。
【0075】
続くステップb142において、特定周波数成分算出部137は、各検査領域に対し、算出された波長間比率の特定空間周波数成分の強度を各画素について算出する。なお、特定空間周波数成分は、教師データ等に基づいて事前に設定されている。
【0076】
続くステップb143において、統計分類部138は、各検査領域に対し、波長間比率の特定空間周波数成分の画素間での平均強度を算出し、この平均強度の値を特徴量とする。
【0077】
さらに、ステップb144において、異常構造識別部130Bは、事前に作成した異常領域の識別関数と、ステップb143において算出した特徴量とを基に、各検査領域が異常であるか否かの分類を行う。なお、識別関数を用いた処理は、変形例1−2と同様である。
その後、処理はメインルーチンに戻る。
【0078】
以上説明したように、変形例1−3によれば、検査領域を設定する位置における撮像距離勾配に応じて検査領域のサイズを変更するので、効率良く検査領域を設定することができる。従って、より広範囲の粘膜表面に対して異常構造識別処理を実行することができ、結果的に、粘膜表面の微細構造の異常を精度良く識別することが可能となる。
【0079】
また、変形例1−3によれば、粘膜表面における微細構造の異常を識別する際に波長間比率を用いるので、撮像距離に伴う画素値変化が特定空間周波数成分の強度変化に及ぼす影響を抑制し、微細構造の異常を精度良く識別することが可能となる。
【0080】
(変形例1−4)
次に、本発明の実施の形態1の変形例1−4について説明する。
図18は、変形例1−4に係る画像処理装置が備える演算部の一部の構成を示すブロック図である。変形例1−4に係る画像処理装置は、
図1に示す検査領域設定部120の代わりに、
図18に示す検査領域設定部120Cを備える。
【0081】
検査領域設定部120Cは、候補領域設定部121及び領域確定部125を備える。このうち、候補領域設定部121の動作は、実施の形態1と同様である。また、領域確定部125は、候補領域設定部121により設定された検査候補領域内に存在する輪郭エッジ領域を除外する輪郭エッジ領域除外部125aを備え、輪郭エッジ領域が除外された後に残る検査候補領域を、検査領域として確定する。
【0082】
次に、検査領域設定部120Cが実行する処理について説明する。
図19は、検査領域設定部120Cが実行する処理を示すフローチャートである。以下においては、一例として、
図4に示す画像Mに対する処理を説明する。
【0083】
まず、ステップc131において、候補領域設定部121は、処理対象の画像M内に、所定サイズの複数の矩形の検査候補領域CAを格子状に設定する(
図7参照)。
【0084】
続くステップc132において、輪郭エッジ領域除外部125aは、検査候補領域CA内の輪郭エッジ領域m1を除外する。それにより、
図20に示すように、斜線で示す輪郭エッジ領域m1が除外される。
【0085】
さらに、ステップc133において、領域確定部125は、除外されずに残った領域を検査領域として確定する。例えば、
図20の場合、もともと輪郭エッジ領域m1を包含しない検査候補領域CAが検査領域EAとして確定されるのに加えて、輪郭エッジ領域m1を包含する検査候補領域CA
kから輪郭エッジ領域m1を除外した残りの領域も、1つの検査領域として設定される。
その後、処理はメインルーチンに戻る。
【0086】
以上説明したように、変形例1−4においては、格子状に設定された検査候補領域のうち、輪郭エッジ領域を内包する候補領域を全て除外するのではなく、輪郭エッジ領域のみを除外し、残りの領域を検査領域として設定する。従って、より広範囲の粘膜表面に対して異常構造識別処理を実行することができ、結果的に、粘膜表面の微細構造の異常を精度良く識別することが可能となる。
【0087】
なお、本変形例1−4を変形例1−2又は1−3と組み合わせ、撮像距離又は撮像距離勾配に応じたサイズとなるように設定された検査候補領域から輪郭エッジ領域を除外し、除外されずに残った領域を検査領域に設定しても良い。
【0088】
(変形例1−5)
次に、本発明の実施の形態1の変形例1−5について説明する。
図21は、変形例1−5に係る画像処理装置が備える演算部の一部の構成を示すブロック図である。変形例1−5に係る画像処理装置は、
図1に示す検査領域設定部120の代わりに、
図21に示す検査領域設定部120Dを備える。
【0089】
検査領域設定部120Dは、候補領域設定部121及び領域確定部126を備える。このうち、候補領域設定部121の動作は、実施の形態1と同様である。また、領域確定部126は、検査候補領域内に存在する輪郭エッジ領域を除外する輪郭エッジ領域除外部126aと、除外されずに残った検査候補領域の面積を算出する面積算出部126bとを備え、算出された検査候補領域の面積を基に、検査領域を確定する。
【0090】
次に、検査領域設定部120Dが実行する処理について説明する。
図22は、検査領域設定部120Dが実行する処理を示すフローチャートである。以下においては、一例として、
図4に示す画像Mに対する処理を説明する。
【0091】
まず、ステップd131において、候補領域設定部121は、処理対象の画像M内に、所定サイズの複数の矩形の検査候補領域CAを格子状に設定する(
図7参照)。
【0092】
続くステップd132において、輪郭エッジ領域除外部126aは、検査候補領域CA内の輪郭エッジ領域を除外する。それにより、
図23に示すように、斜線で示す輪郭エッジ領域m1が除外される。
【0093】
ここで、輪郭エッジ領域m1を除外することにより互いに切り離された検査候補領域(例えば、検査候補領域CA
kが分断されて生じた領域CA
k1、CA
k2)には、実空間において不連続な粘膜表面が映っている可能性が高い。このため、これらを合わせて、1つの検査領域として以後の処理を行うと、異常構造の識別精度が低下するおそれがある。また、切り離された結果、非常に小さくなってしまった領域(例えば、領域CA
k2)は画素数が少なく、十分な識別精度が得られないため、事前に除外する方が好ましい。
【0094】
そこで、ステップd133において、面積算出部126bは、輪郭エッジ領域m1を除外した後に残る各検査候補領域CAの面積を算出する。この際、分断された領域(例えば、領域CA
k1、CA
k2)については、領域ごとに面積を算出する。
【0095】
さらに、ステップd134において、領域確定部126は、面積算出部126bにより算出された面積を基に検査領域を確定する。具体的には、切り離された結果、面積が所定の閾値以下となる検査候補領域(例えば、領域CA
k2)を除外し、残った各検査候補領域を、検査領域として確定する。
その後、処理はメインルーチンに戻る。
【0096】
以上説明したように、変形例1−5によれば、輪郭エッジ領域を除外することにより互いに切り離された各検査候補領域の面積を基に検査領域を確定するので、実空間において不連続な粘膜表面が映っていると考えられる領域を分けつつ、異常構造の識別に有効な大きさの検査領域を設定することができる。従って、粘膜表面の微細構造の異常を精度良く識別することが可能となる。
【0097】
なお、本変形例1−5を変形例1−2又は1−3と組み合わせ、撮像距離又は撮像距離勾配に応じたサイズとなるように設定された検査候補領域から輪郭エッジ領域を除外し、除外されずに残った検査候補領域の面積に基づいて検査領域を設定しても良い。
【0098】
(実施の形態2)
次に、本発明の実施の形態2について説明する。
図24は、実施の形態2に係る画像処理装置の構成を示すブロック図である。
図24に示すように、実施の形態2に係る画像処理装置2は、
図1に示す演算部100の代わりに、演算部200を備える。なお、演算部200以外の画像処理装置2の各部の構成及び動作は、実施の形態1と同様である。
【0099】
演算部200は、異常構造識別処理の対象としない領域(非検査対象領域)を検査領域の設定対象から除外する非検査対象領域除外部210と、輪郭エッジ領域抽出部110と、検査領域設定部120と、検査領域が未設定の領域に対して検査領域の設定を繰返し実行させる制御を行う繰返し制御部220と、異常構造識別部130とを備える。このうち、輪郭エッジ領域抽出部110、検査領域設定部120、及び異常構造識別部130の構成及び動作は、実施の形態1と同様である。
【0100】
次に、画像処理装置2の動作について説明する。
図25は、画像処理装置2の動作を示すフローチャートである。
まず、ステップS21において、演算部200は、記録部50に記録された画像データを読み込むことにより、処理対象の管腔内画像を取得する。
【0101】
続くステップS22において、非検査対象領域除外部210は、画像から取得可能な色情報、周波数情報、形状情報等を基に、暗部、明部、残渣、泡といった非検査対象領域を特定し、検査領域の設定対象から除外する。
【0102】
ここで、管腔内画像には、検査対象となる粘膜領域以外にも、管腔の深部が映った領域(暗部)、被写体の表面から鏡面反射されたハレーション領域(明部)、残渣や泡が映った領域等が存在する。これらの領域が検査領域内に混在すると、微細構造の異常の識別精度が低下してしまう。そこで、非検査対象領域除外部210は、画像から明部、暗部、残渣や泡等が映った領域を抽出し、非検査対象領域として予め除外する。なお、これらの非検査対象領域は、公知の種々の方法により抽出することができる。例えば、暗部は、画像内の各画素の色情報(R成分、G成分、B成分の各値等)に基づく色特徴量を基に黒色領域を抽出し、この黒色領域の周囲の画素値変化の方向に基づいて、当該黒色領域が暗部であるか否かを判別することにより抽出することができる(参考:特開2011−234931号公報)。また、明部は、例えば、画像内の各画素の色特徴量を基に白色領域を抽出し、この白色領域の境界付近の画素値の変化に基づいて、当該白色領域がハレーション領域であるか否かを判別することにより抽出することができる(同上)。残渣は、例えば、画像内の各画素の色特徴量を基に非粘膜領域とみられる残渣候補領域を検出し、この残渣候補領域と画像内の構造エッジとの位置関係に基づいて残渣候補領域が粘膜領域であるか否かを判別することにより抽出することができる。泡は、例えば、画像内からエッジを抽出し、泡画像の特徴を基に予め設定された泡モデルと抽出されたエッジとの相関値を算出することにより抽出することができる(参考:特開2007−313119号公報)。
【0103】
続くステップS23において、輪郭エッジ領域抽出部110は、粘膜の輪郭エッジ領域を抽出する。なお、この抽出処理は、実施の形態1(
図5参照)と同様である。
【0104】
続くステップS24において、検査領域設定部120は、非検査対象領域が除外された残りの画像領域に対し、輪郭エッジ領域を内包しないように検査領域を設定する。なお、この検査領域の設定処理は、実施の形態1(
図6参照)と同様である。その結果、例えば
図7に示すように、斜線で示す検査候補領域CA
inを除く領域が検査領域EAに設定される。
【0105】
ステップS25において、繰返し制御部220は、検査領域が未だ設定されていない領域である未検査領域の面積が所定の閾値(閾値Aとする)よりも小さいか、又は、これまでに設定された検査領域の設定回数が所定の閾値(閾値Nとする)よりも大きいか否かを判定する。例えば設定回数が1回目の場合、検査領域EAから除外された検査候補領域CA
in全体(斜線部分)の面積が閾値Aと比較される。
【0106】
ここで、画像内に検査領域が十分に設定されない場合、微細構造の異常の識別精度が低下するおそれがある。そこで、未検査領域の面積が閾値A以上であり、且つ、検査領域の設定回数が閾値N以下である場合(ステップS25:No)、繰返し制御部220は、検査領域の設定がさらに必要であると判断し、設定する検査領域のサイズを前回の設定時よりも小さくする(ステップS26)。そして、ステップS24に移行し、検査領域設定部120に検査領域の設定を再度実行させる。
【0107】
例えば
図7の場合、前回、検査領域EAとして設定されなかった検査候補領域CA
inに対し、サイズを小さくした検査領域の設定処理がなされる。このように検査領域のサイズを小さくすることにより、検査候補領域が輪郭エッジ領域m1を内包しない可能性が高くなるので、検査領域として設定され得る画像M内の領域が増加する可能性が高くなる。
【0108】
一方、未検査領域の面積が閾値Aよりも小さいか、又は、検査領域の設定回数が閾値Nよりも大きい場合(ステップS25:Yes)、繰返し制御部220は、さらなる検査領域の設定は不要であると判断し、ステップS27に移行する。
【0109】
ステップS27において、異常構造識別部130は、設定された検査領域に対し、粘膜表面の微細構造が異常であるか否かを識別する。なお、この識別処理は、実施の形態1(
図8参照)と同様である。
【0110】
その後、ステップS28において、演算部200は、ステップS27における異常識別結果を出力し、表示部40に表示させると共に、記録部50に記録させる。その後、画像処理装置2における処理を終了する。
【0111】
以上説明したように、実施の形態2によれば、非検査対象領域を事前に除外して検査領域を設定するので、微細構造の異常を精度良く識別することが可能になる。また、検査領域の設定を繰返し行うので、広範囲の粘膜表面に対して微細構造の異常を識別することができる。この際、処理の繰返しを行うごとに検査領域のサイズを小さくするので、設定可能な検査領域の数が増加し、より広範囲の粘膜表面に対して微細構造の異常を識別することが可能になる。その結果、微細構造の異常の識別精度を向上させることが可能になる。
【0112】
なお、上記実施の形態2において説明した非検査対象領域除外部210や繰返し制御部220を、変形例1−2又は1−3に係る画像処理装置に設けても良い。
【0113】
(実施の形態3)
次に、本発明の実施の形態3について説明する。
図26は、本発明の実施の形態3に係る画像処理装置の構成を示すブロック図である。
図26に示すように、実施の形態3に係る画像処理装置3は、
図1に示す演算部100の代わりに演算部300を備える。演算部300以外の画像処理装置3の各部の構成及び動作は、実施の形態1と同様である。
【0114】
演算部300は、輪郭エッジ領域抽出部110と、後述する距離変換画像に基づいて検査領域を設定する検査領域設定部310と、検査領域が未設定の領域に対して検査領域の設定を繰返し実行させる制御を行う繰返し制御部320と、粘膜表面までの撮像距離に応じて特定される特定周波数成分の強度に基づき、検査領域内の微細構造の異常を識別する異常構造識別部330とを備える。このうち、輪郭エッジ領域抽出部110の構成及び動作は、実施の形態1と同様である。
【0115】
検査領域設定部310は、画像内の各画素と輪郭エッジ領域又は画像の端部との間の距離を画素値に変換した距離変換画像を算出する距離変換画像算出部311を備え、算出した距離変換画像を基に、画像内に検査領域を設定する。
【0116】
異常構造識別部330は、検査領域に映る粘膜までの代表的な撮像距離を取得する代表撮像距離取得部331と、該代表的な撮像距離に応じて特定される特定空間周波数成分を算出する特定周波数成分算出部332と、この特定空間周波数成分を基に統計的な分類を行う統計分類部333とを備え、代表的な撮像距離に応じた特定空間周波数成分に基づく上記分類の結果を基に、検査領域内の微細構造の異常を識別する。
【0117】
次に、画像処理装置3の動作について説明する。
図27は、画像処理装置3の動作を示すフローチャートである。
まず、ステップS31において、演算部300は、記録部50に記録された画像データを読み込むことにより、処理対象の管腔内画像を取得する。
続くステップS32において、輪郭エッジ領域抽出部110は、粘膜の輪郭エッジ領域を抽出する。なお、この抽出処理は、実施の形態1(
図5参照)と同様である。
【0118】
ステップS33において、検査領域設定部310は、輪郭エッジ領域を内包しないように検査領域を設定する。ここで、実施の形態1のように、検査候補領域を設定し、その中から、輪郭エッジ領域を内包しないという条件にあった候補領域を検査領域として確定する場合、条件に合う候補領域が少ないと、十分な識別精度が得られなくなるおそれがある。そこで、本実施の形態3においては、輪郭エッジ領域の抽出結果を基に、より効率的に検査領域を設定するために、距離変換画像を用いる。
【0119】
図28は、検査領域設定部310が実行する処理の詳細を示すフローチャートである。
ステップS331において、距離変換画像算出部311は、輪郭エッジ領域、画像端、又は検査領域が既設定の領域から各画素までの距離を当該画素の画素値に変換した距離変換画像を算出する。
図29は、輪郭エッジm1が映った画像M(
図4参照)から作成された距離変換画像を示す模式図である。
図29においては、距離変換画像M’内の領域を、画像Mの端部又は輪郭エッジ領域m1からの距離に応じて異なるパターンで示している。
【0120】
続くステップS332において、検査領域設定部310は、距離変換画像における画素値が最大値となる画素を検査領域の中心とし、該中心から検査領域の境界までの距離が、上記最大値より小さくなるように検査領域を設定する。例えば、
図29の場合、画素値が最大となる点、即ち、画像Mの端部又は輪郭エッジ領域m1からの距離が最大となる点(x
max1,y
max1)〜(x
max9,y
max9)がそれぞれ抽出され、これらの点を中心とする検査領域EA1〜EA9がそれぞれ設定される。
その後、処理はメインルーチンに戻る。
【0121】
ステップS33に続くステップS34において、繰返し制御部320は、検査領域が未だ設定されていない領域である未検査領域の面積が所定の閾値(閾値Aとする)よりも小さいか、又は、これまでに設定された検査領域の設定回数が所定の閾値(閾値Nとする)よりも大きいか否かを判定する。
【0122】
未検査領域の面積が閾値A以上であり、且つ、検査領域の設定回数が閾値N以下である場合(ステップS34:No)、繰返し制御部320は、検査領域の設定がさらに必要であると判断し、ステップS33に移行し、検査領域設定部310に検査領域の設定を再度実行させる。例えば、検査領域EA1〜EA9が設定された後は、輪郭エッジ領域m1、画像Mの端部、又は検査領域EA1〜EA9からの距離変換画像が算出され、この距離変換画像を基に新たな検査領域が設定される。
【0123】
一方、未検査領域の面積が閾値Aよりも小さいか、又は、検査領域の設定回数が閾値Nよりも大きい場合(ステップS34:Yes)、繰返し制御部320は、さらなる検査領域の設定は不要であると判断し、ステップS35に移行する。
【0124】
ステップS35において、異常構造識別部330は、検査領域に映る粘膜表面の微細構造が異常であるか否かを識別する。
図30は、異常構造識別部330が実行する処理の詳細を示すフローチャートである。
【0125】
ステップS351において、代表撮像距離取得部331は、各検査領域に映る粘膜までの代表的な撮像距離を取得する。代表的な撮像距離としては、例えば、検査領域に含まれる粘膜までの撮像距離の平均値や、検査領域の重心座標における撮像距離等が用いられる。なお、各画素位置における撮像距離は、式(2)によって与えられる。
【0126】
ここで、内視鏡によって撮像される管腔内画像においては、撮像距離に応じて粘膜表面の微細構造の解像度が異なるので、微細構造の異常を識別可能な特定空間周波数成分も撮像距離に応じて異なってくる。具体的には、撮像距離が長くなるほど、解像度が低下する。このため、例えば、
図31に示すように、撮像距離が短い場合(近景)に、微細構造の異常を識別可能な特定空間周波数がf
1であるとすると、同じ微細構造の異常を識別可能な空間周波数は、撮像距離が長くなると高周波側にシフトする(遠景:空間周波数f
2)。
【0127】
そこで、ステップS352において、特定周波数成分算出部332は、代表的な撮像距離に応じて、微細構造の異常の識別に用いる空間周波数成分を特定する。具体的には、撮像距離が長いほど、特定空間周波数成分を高くして、より微細な構造を検出できるようにする。一方、撮像距離が短いほど特定空間周波数成分を低くして、解像度向上に伴うノイズの影響を抑制する。それにより、粘膜表面の微細構造の異常の識別精度の向上を図る。なお、撮像距離に応じた特定空間周波数成分は、教師データ等に基づいて事前に設定されている。
【0128】
続くステップS353において、特定周波数成分算出部332は、画像を構成する各波長成分に対し、撮像距離に応じた特定空間周波数成分の強度を、各画素について算出する。なお、特定空間周波数成分の強度の算出処理については、実施の形態1と同様である(
図8のステップS141参照)。
続くステップS142及びS143については、実施の形態1と同様である。その後、処理はメインルーチンに戻る。
【0129】
ステップS35に続くステップS36において、演算部300は、ステップS35における異常識別結果を出力し、表示部40に表示させると共に、記録部50に記録させる。その後、画像処理装置3における処理を終了する。
【0130】
以上説明したように、実施の形態3によれば、検査候補領域の設定及び検査領域の確定といった処理を繰り返すことなく、効率良く、画像内の広範囲にわたって検査領域を設定することができる。その結果、粘膜表面の微細構造の異常を精度良く識別することが可能となる。
【0131】
また、実施の形態3によれば、検査領域に映る粘膜までの代表的な撮像距離を基に、微細構造の異常の識別に用いる空間周波数成分を特定するので、微細構造の異常の識別精度をさらに向上させることが可能となる。
【0132】
以上説明した実施の形態1〜3及びこれらの変形例に係る画像処理装置は、記録媒体に記録された画像処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータシステムで実行することによって実現することができる。また、このようなコンピュータシステムを、ローカルエリアネットワーク、広域エリアネットワーク(LAN/WAN)、又は、インターネット等の公衆回線を介して、他のコンピュータシステムやサーバ等の機器に接続して使用しても良い。この場合、実施の形態1〜3に係る画像処理装置は、これらのネットワークを介して管腔内画像の画像データを取得したり、これらのネットワークを介して接続された種々の出力機器(ビュアーやプリンタ等)に画像処理結果を出力したり、これらのネットワークを介して接続された記憶装置(記録媒体及びその読取装置等)に画像処理結果を格納するようにしても良い。
【0133】
なお、本発明は、実施の形態1〜3及びこれらの変形例に限定されるものではなく、各実施の形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。例えば、各実施の形態や変形例に示される全構成要素からいくつかの構成要素を除外して形成しても良いし、異なる実施の形態や変形例に示した構成要素を適宜組み合わせて形成しても良い。