特許第6423970号(P6423970)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 川崎重工業株式会社の特許一覧

特許6423970舶用液化ガスタンク及びそれを備える液化ガス運搬船
<>
  • 特許6423970-舶用液化ガスタンク及びそれを備える液化ガス運搬船 図000002
  • 特許6423970-舶用液化ガスタンク及びそれを備える液化ガス運搬船 図000003
  • 特許6423970-舶用液化ガスタンク及びそれを備える液化ガス運搬船 図000004
  • 特許6423970-舶用液化ガスタンク及びそれを備える液化ガス運搬船 図000005
  • 特許6423970-舶用液化ガスタンク及びそれを備える液化ガス運搬船 図000006
  • 特許6423970-舶用液化ガスタンク及びそれを備える液化ガス運搬船 図000007
  • 特許6423970-舶用液化ガスタンク及びそれを備える液化ガス運搬船 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6423970
(24)【登録日】2018年10月26日
(45)【発行日】2018年11月14日
(54)【発明の名称】舶用液化ガスタンク及びそれを備える液化ガス運搬船
(51)【国際特許分類】
   B63B 25/16 20060101AFI20181105BHJP
   F17C 13/00 20060101ALI20181105BHJP
【FI】
   B63B25/16 101Z
   F17C13/00 302E
【請求項の数】6
【全頁数】12
(21)【出願番号】特願2017-544064(P2017-544064)
(86)(22)【出願日】2015年10月5日
(86)【国際出願番号】JP2015005050
(87)【国際公開番号】WO2017060933
(87)【国際公開日】20170413
【審査請求日】2018年2月19日
(73)【特許権者】
【識別番号】000000974
【氏名又は名称】川崎重工業株式会社
(74)【代理人】
【識別番号】110000556
【氏名又は名称】特許業務法人 有古特許事務所
(72)【発明者】
【氏名】松原 直哉
(72)【発明者】
【氏名】長谷川 雄太
(72)【発明者】
【氏名】江口 雄三
(72)【発明者】
【氏名】吉田 巧
【審査官】 川村 健一
(56)【参考文献】
【文献】 特開2016−199092(JP,A)
【文献】 特開平4−87895(JP,A)
【文献】 特開平3−128791(JP,A)
【文献】 特開2008−273609(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B63B 25/16
F17C 13/00
(57)【特許請求の範囲】
【請求項1】
鉛直中心軸のまわりに対称な圧力容器である舶用液化ガスタンクであって、下方に向かって開口する上側タンク体と、上方に向かって開口する下側タンク体と、を含み、
前記上側タンク体及び前記下側タンク体のうちの少なくとも一方のタンク体は、
真球体の一部をなす形状であって、前記鉛直中心軸から広がる真球部と、
前記真球部のまわりに形成された非真球部であって、前記鉛直中心軸を通る垂直断面形状において、中央側端縁と周囲側端縁との間に曲率半径が最小となる最小曲率半径部を有するとともに、前記中央側端縁から前記最小曲率半径部にいくにつれ曲率半径が連続的に減少し、前記最小曲率半径部から前記周囲側端縁にいくにつれ曲率半径が連続的に増大するように形成された非真球部と、を有し、且つ、
前記真球部と前記非真球部とが滑らかにつながるように形成されている、舶用液化ガスタンク。
【請求項2】
前記一方のタンク体は、前記鉛直中心軸を通る垂直断面形状において、前記真球部の曲率中心が、他方のタンク体により囲まれる空間内にあるように形成されている、請求項1に記載の舶用液化ガスタンク。
【請求項3】
前記一方のタンク体は、前記非真球部の前記鉛直中心軸を通る垂直断面形状が、下記式(1)で表される軌跡に合致するように形成されている、請求項1又は2に舶用液化ガスタンク。
|x/r+|y/r=1 ・・・(1)
但し、x,yは、前記鉛直中心軸に直交する直線をx軸、前記鉛直中心軸に一致する直線をy軸としたときのx座標、y座標であり、r及びrは、0.5≦r/r≦2を満たす定数であり、nは、2<n<3を満たす定数である。
【請求項4】
前記上側タンク体及び前記下側タンク体のそれぞれは、前記真球部と前記非真球部を有し、
前記上側タンク体及び前記下側タンク体は、前記鉛直中心軸に垂直な平面に対して互いに対称な形状を有する、請求項1〜3のいずれか一項に記載の舶用液化ガスタンク。
【請求項5】
前記上側タンク体と前記下側タンク体との間に、前記上側タンク体と前記下側タンク体とを連結する鉛直方向に延びる円筒体を含む、請求項1〜4のいずれか一項に記載の舶用液化ガスタンク。
【請求項6】
請求項1〜5のいずれか一項に記載の舶用液化ガスタンクを備える、液化ガス運搬船。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液化ガスを貯留する舶用液化ガスタンク及びそれを備える液化ガス運搬船に関する。
【背景技術】
【0002】
従来、液化天然ガス(以下、「LNG」という)などの液化ガスを運搬するために、液化ガスタンクを複数個搭載した液化ガス運搬船が用いられている。液化ガス運搬船に搭載される液化ガスタンクとしては、例えば独立球形タンク、メンブレン型タンク等が知られている。例えば、特許文献1には、LNGを運搬するLNG運搬船に搭載された独立球形タンク(以下、「球形タンク」という)が開示されている。
【0003】
特許文献1の図1及び図2に示すような球形タンクは、船体から独立した圧力容器であり、船体のファンデーションデッキから鉛直方向に延びるスカートによって船体に支持されている。LNG運搬船に搭載されるタンクは、いずれの形式のタンクであっても、極低温のLNGを高圧状態で貯留するための耐圧性や防熱性を有しているが、タンク形式によって利点や欠点が異なる。例えば、球形タンクは、他の形式のタンクに比べて、タンク形状が真球状であるため、内側に補強用骨材を要せずに、タンクの肉厚だけで内圧に耐えることができる等の利点がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開第2009/084136号
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、近年、同じ大きさの船体に対して液化ガスの積載量を増加させたいという要望がある。球形タンクは船倉の容積に対する空間利用効率が悪いため、この要望に応えるためには、球形タンクに代わり、船体の大きさ(特に船の横幅)を維持しつつ、液化ガス積載量を増加させる新たな形状のタンクが望まれる。しかしながら、球形以外の形状では、形状が急激に変化している部分があるとその近傍の応力が局所的に集中するため、タンクの肉厚を上げるかタンク内側に補強用骨材を設けるなどしてタンク強度を増加させることが必要になることがある。
【0006】
そこで、本発明は、応力集中が起こりにくく、球形タンクよりも液化ガスの積載量を増加させる舶用液化ガスタンク及びそれを備える液化ガス運搬船を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明の一態様に係る舶用液化ガスタンクは、鉛直中心軸のまわりに対称な圧力容器である舶用液化ガスタンクであって、下方に向かって開口する上側タンク体と、上方に向かって開口する下側タンク体と、を含み、前記上側タンク体及び前記下側タンク体のうちの少なくとも一方のタンク体は、真球体の一部をなす形状であって、前記鉛直中心軸から広がる真球部と、前記真球部のまわりに形成された非真球部であって、前記鉛直中心軸を通る垂直断面形状において、中央側端縁と周囲側端縁との間に曲率半径が最小となる最小曲率半径部を有するとともに、前記中央側端縁から前記最小曲率半径部にいくにつれ曲率半径が連続的に減少し、前記最小曲率半径部から前記周囲側端縁にいくにつれ曲率半径が連続的に増大するように形成された非真球部と、を有し、且つ、前記真球部と前記非真球部とが滑らかにつながるように形成されている。ここで、曲率半径とは、曲線の局所的な曲がり具合を円に近似したときの近似円の中心(曲率中心)からの半径のことである。
【0008】
上記の構成によれば、非真球部の鉛直中心軸を通る垂直断面形状の曲率半径が、中央側端縁から最小曲率半径部にいくにつれ減少し、最小曲率半径部から周囲側端縁にいくにつれ増大しているので、真球よりも膨らんだ形状となって、球形タンクよりも液化ガスの積載量を増加させることができる。また、非真球部の鉛直中心軸を通る垂直断面形状の曲率半径が、中央側端縁から周囲側端縁にかけて連続的に変化しているので、非真球部の中央側端縁から周囲側端縁までの応力分布を滑らかにすることができ、非真球部における大きな応力集中を排除することができる。
【0009】
ところで、タンク体全体を上記の非真球部のような形状とした場合、即ち、タンク体が、鉛直中心軸を通る垂直断面形状の曲率半径が最小曲率半径部から鉛直中心軸にいくにつれ増大するような形状である場合、そのタンク体における鉛直中心軸近傍の強度が不足することがある。これに対し、上記一方のタンク体における鉛直中心軸近傍には、鉛直中心軸を通る垂直断面形状の曲率半径が一定である真球部が形成されているので、タンクの内圧に起因して真球部に生じる引張応力を小さく保つことができる。このため、タンク部材の肉厚を薄くすることができる。また、真球部と非真球部とが滑らかにつながっているため、非真球部と真球部とがつながる箇所での大きな応力集中を起こりにくくすることができる。
【0010】
上記の舶用液化ガスタンクにおいて、前記一方のタンク体は、前記鉛直中心軸を通る垂直断面形状において、前記真球部の曲率中心が、他方のタンク体により囲まれる空間内にあるように形成されていてもよい。この構成によれば、真球部の曲率中心がタンク外部に位置するときよりも、真球部の鉛直中心軸を通る垂直断面形状の曲率半径が小さくなるので、舶用液化ガスタンクの内圧に起因して真球部に生じる引張応力を小さく保つことができる。
【0011】
上記の舶用液化ガスタンクにおいて、前記一方のタンク体は、前記非真球部の前記鉛直中心軸を通る垂直断面形状が下記式(1)で表される軌跡に合致するように形成されていてもよい。
|x/r+|y/r=1 ・・・(1)
但し、x,yは、前記鉛直中心軸に直交する直線をx軸、前記鉛直中心軸に一致する直線をy軸としたときのx座標、y座標であり、r及びrは、0.5≦r/r≦2を満たす定数であり、nは、2<n<3を満たす定数である。この構成によれば、上記の非真球部を容易に設計することができる。
【0012】
上記の舶用液化ガスタンクにおいて、前記上側タンク体及び前記下側タンク体のそれぞれは、前記真球部と前記非真球部を有し、前記上側タンク体及び前記下側タンク体は、前記鉛直中心軸に垂直な平面に対して互いに対称な形状を有してもよい。この構成によれば、上側タンク体と下側タンク体とを同じ形状にできるため、舶用液化ガスタンクの製造が容易になる。
【0013】
上記の舶用液化ガスタンクにおいて、前記上側タンク体と前記下側タンク体との間に、前記上側タンク体と前記下側タンク体とを連結する鉛直方向に延びる円筒体を含んでもよい。この構成によれば、舶用液化ガスタンクの円筒体で船体と接続されるように設計すれば、船体に接続される部分(円筒体)と、それ以外の部分(上側タンク体及び下側タンク体)とを独立に設計及び製造することができ、タンクの設計及び製造を容易にすることができる。
【0014】
また、本発明の一態様に係る液化ガス運搬船は、上記の舶用液化ガスタンクのいずれかを備える。
【発明の効果】
【0015】
本発明によれば、応力集中が起こりにくく、球形タンクよりも液化ガスの積載量を増加させる舶用液化ガスタンク及びそれを備える液化ガス運搬船を提供することができる。
【図面の簡単な説明】
【0016】
図1】本発明の第1実施形態に係る液化ガス運搬船の側面図である。
図2】本発明の第1実施形態に係る液化ガス運搬船の上面図である。
図3図1に示す液化ガス運搬船のIII-III矢視の断面図である。
図4図3に示された舶用液化ガスタンクの構成を説明する図である。
図5】第1変形例に係る舶用液化ガスタンクの断面図である。
図6図5に示された舶用液化ガスタンクの断面の一部を拡大した図である。
図7】第2変形例に係る舶用液化ガスタンクの断面図である。
【発明を実施するための形態】
【0017】
(第1実施形態)
以下、第1実施形態に係る舶用液化ガスタンク及びそれを搭載した液化ガス運搬船を図面に基づいて説明する。
【0018】
図1及び図2は、第1実施形態に係る液化ガス運搬船1Aの側面図及び上面図である。液化ガス運搬船1Aで運搬される液化ガスは、例えばLNGや液体水素である。本実施形態の液化ガス運搬船1Aは、複数個(この例では、4個)の舶用液化ガスタンク(以下、単に「タンク」という。)10が船長方向に並ぶように船体20に備えられている。また、本実施形態の液化ガス運搬船1Aには、その後方部(図1の左側)に、航海中に操船を行うための場所である船橋21が設けられている。図1に示すように、タンク10の上部は、船体20の上甲板22から上方に突出している。上甲板22には、タンク10から所定の距離だけ離間して配置されるようにタンクカバー22aが支持されている。
【0019】
図3は、液化ガス運搬船1Aに搭載されたタンク10とそれを支持する構造を示す断面図である。船体20の船幅方向の両側で船側外板24に沿って船長方向に延びる一対の縦通隔壁25が、一対の船側外板24から所定距離内方に設けられており、タンク10は、一対の縦通隔壁25の間に配置されている。
【0020】
タンク10の周囲には、スカート27を介してタンク10を支持するファンデーションデッキ26が設けられている。ファンデーションデッキ26は、船体20における上甲板22より下方の所定高さ位置に設けられており、このファンデーションデッキ26の上面に、上記縦通隔壁25の下端部が接続されている。ファンデーションデッキ26は、船側外板24同士を船幅方向に接続するように設けられている。スカート27は、円筒状であって、スカート27の下端部がファンデーションデッキ26の上面に接続されており、スカート27の上端部がタンク10の外周面に接続されている。ファンデーションデッキ26におけるタンク10が設けられる位置には、スカート27の直径とほぼ同じ大きさの円形開口部が設けられている。
【0021】
また、タンク10の下方には、船底外板23の所定距離上方で、船底外板23に沿って船長方向に延びるインナーボトムプレート28が設けられている。またインナーボトムプレート28の船幅方向の両端部とファンデーションデッキ26との間に、一対のビルジホッパープレート29が設けられている。このビルジホッパープレート29も、船長方向に延びるように設けられている。ビルジホッパープレート29は、インナーボトムプレート28の両端部から船幅方向の外側に向かって傾斜している。
【0022】
次に、本実施形態のタンク10について図4を参照して説明する。タンク10は、鉛直中心軸Cまわりに対称な圧力容器である。図4は、タンク10の鉛直中心軸Cを通る垂直断面形状を概略的に示している。タンク10は、タンク10の下側部分を形成し、上方に向かって開口する下側タンク体12と、タンク10の上側部分を形成し、下方に向かって開口する上側タンク体13とを有する。本実施形態では、下側タンク体12と上側タンク体13は、下側タンク体12の上端部12aと上側タンク体13の下端部13aとで直接的に連結されている。下側タンク体12及び上側タンク体13のそれぞれの外側表面は、断熱材(図示せず)に覆われている。
【0023】
まず、下側タンク体12について説明する。下側タンク体12は、真球体の一部をなす形状である真球部31と、非真球体の一部をなす形状である非真球部32を有する。真球部31と非真球部32とはつながっており、図3及び図4では、下側タンク体12における真球部31と非真球部32の境界を破線で示している。
【0024】
真球部31は、下側タンク体12における鉛直中心軸C近傍を構成するように、鉛直中心軸Cから広がるように形成されている。真球部31は、鉛直線方向から見て円形状であって、環状の外縁33を有している。
【0025】
下側タンク体12は、鉛直中心軸Cを通る垂直断面形状において、真球部31の曲率中心cは、鉛直中心軸C上であって、下側タンク体12の上端部12aより上方に位置している。本実施形態では、下側タンク体12は、鉛直中心軸Cを通る垂直断面形状において、真球部31の曲率中心cが上側タンク体13により囲まれる空間内にあるように形成されている。
【0026】
非真球部32は、下側タンク体12における鉛直中心軸Cに対して遠位側の部分を構成するように、真球部31のまわりに形成されている。非真球部32は、鉛直線方向から見て環状であって、中央側端縁34と、周囲側端縁35とを有している。中央側端縁34は、非真球部32における鉛直中心軸Cに対して近位側の端縁であり、真球部31の外縁33とつながっている。周囲側端縁35は、非真球部32における鉛直中心軸Cに対して遠位側の端縁である。つまり、周囲側端縁35は、下側タンク体12の上端部12aを構成する。
【0027】
非真球部32は、その鉛直中心軸Cを通る垂直断面形状において、中央側端縁34と周囲側端縁35との間に曲率半径が最小となる最小曲率半径部36を有している。また、非真球部32は、その鉛直中心軸Cを通る垂直断面形状において、中央側端縁34から最小曲率半径部36にいくにつれ曲率半径が連続的に減少し、最小曲率半径部36から周囲側端縁35にいくにつれ曲率半径が連続的に増大するように形成されている。即ち、非真球部32は、斜め下向きに膨出するように形成されている。
【0028】
非真球部32の形状についてより詳しく説明すれば、非真球部32は、その鉛直中心軸Cを通る垂直断面形状が下記の式(1)で表される軌跡に合致するように形成されている。
|x/r+|y/r=1 ・・・(1)
【0029】
上記式(1)のx,yは、鉛直中心軸Cに直交する直線をx軸、鉛直中心軸Cに一致する直線をy軸としたときのx座標、y座標である。本実施形態では、鉛直中心軸Cに直交するとともに、非真球部32の周囲側端縁35を通る水平面上にある直線をx軸に設定している。
【0030】
上記式(1)のr及びrは、0.5≦r/r≦2を満たす定数である。式(1)の軌跡の曲率の変化が極端に大きくならずに、下側タンク体12の強度を確保するために、r及びrは、0.9≦r/r≦1.1を満たす定数であることが更に好ましい。本実施形態では、rは、鉛直中心軸Cから周囲側端縁35までの長さであり、rは、鉛直中心軸C方向における周囲側端縁35から下側タンク体12の下端から少し上側までの長さである。また、本実施形態では、式(1)のrとrとが同じ長さである。
【0031】
上記式(1)のnは、2<n<3を満たす定数であり、好ましくは、2.3≦n<3を満たす定数である。本実施形態では、式(1)のnの値は2.5である。比較のために、図4に、幅と高さがタンク10と等しい球形タンク90を一点鎖線で示す。式(1)のnの値が2より大きいため、球形タンク90と比べて、下側タンク体12は、タンク10の中心から斜め下方に向かって膨出した形状となっている。
【0032】
本実施形態において、式(1)のrとrとが同じ長さであるため、上記式(1)に関する座標で設定された原点Oと最小曲率半径部36とを結ぶ直線lが鉛直中心軸Cとなす角αは45°である。
【0033】
下側タンク体12は、真球部31と非真球部32とが滑らかにつながるように形成されている。例えば本実施形態では、鉛直中心軸Cを通る垂直断面形状における真球部31の外縁33における接線と非真球部32の中央側端縁34における接線とは一致している。但し、外縁33における上記接線と中央側端縁34における上記接線とは概ね一致していればよい。
【0034】
真球部31と非真球部32とが接続する箇所(即ち、外縁33及び中央側端縁34)と上記式(1)に関する座標で設定された原点Oとを結ぶ直線lが鉛直中心軸Cとなす角βは、好ましくは、45°以下であって、より好ましくは、20°〜30°である。本実施形態では、角βは25°である。
【0035】
本実施形態において、上側タンク体13は、上述した下側タンク体12と同様の構成である。即ち、上側タンク体13は、下側タンク体12と同様に、真球体の一部をなす形状である真球部41と、非真球体の一部をなす形状である非真球部42を有する。真球部41と非真球部42とはつながっており、図3及び図4では、上側タンク体13における真球部41と非真球部42の境界を破線で示している。
【0036】
また、本実施形態において、上側タンク体13は、その下端部13a(即ち、周囲側端縁45)を通る鉛直中心軸Cに垂直な平面に対して、下側タンク体12と対称な形状を有している。即ち、上側タンク体13の非真球部42は、その鉛直中心軸Cを通る垂直断面形状において、真球部41の外縁43とつながる中央側端縁44と周囲側端縁45との間に曲率半径が最小となる最小曲率半径部46を有するとともに、中央側端縁44から最小曲率半径部46にいくにつれ曲率半径が連続的に減少し、最小曲率半径部46から周囲側端縁45にいくにつれ曲率半径が連続的に増大するように形成されている。
【0037】
また、上側タンク体13の非真球部42も、その鉛直中心軸Cを通る垂直断面形状が、上記式(1)で表される軌跡に合致するように形成されている。本実施形態において、上側タンク体の場合のx軸及びy軸の設定位置、定数r、r及びnの設定された値も、下側タンク体12の場合と同じである。上側タンク体13のその他の構成については、同一形状である下側タンク体12の説明と重複するため省略する。例えば、下側タンク体12の曲率中心cは、上側タンク体13の曲率中心cと読み替える。
【0038】
以上説明したように、上記タンク10の下側タンク体12は、非真球部32の鉛直中心軸Cを通る垂直断面形状の曲率半径が、中央側端縁34から最小曲率半径部36にいくにつれ減少し、最小曲率半径部36から周囲側端縁35にいくにつれ増大しているので、真球よりも膨らんだ形状となり、幅と高さが同じ球形タンク90よりも液化ガスの積載量を増加させることができる。
【0039】
また、下側タンク体12の非真球部32の鉛直中心軸Cを通る垂直断面形状の曲率半径が、中央側端縁34から周囲側端縁35にかけて連続的に変化しているので、非真球部32の中央側端縁34から周囲側端縁35までの応力分布が滑らかにすることができ、非真球部32における大きな応力集中を排除することができる。
【0040】
ところで、仮に下側タンク体12全体を非真球部32のような形状とした場合、即ち、下側タンク体12が、鉛直中心軸Cを通る垂直断面形状の曲率半径が最小曲率半径部36から鉛直中心軸Cにいくにつれ増大するような形状である場合、下側タンク体12における鉛直中心軸C近傍の強度が不足することがある。より詳しくは、このようなタンク体の構造では、鉛直中心軸Cにいくにつれ曲率半径が増大し、タンクの内圧に起因して生じる引張応力は大きくなる。これに対し、本実施形態では、下側タンク体12における鉛直中心軸C近傍には、鉛直中心軸Cを通る垂直断面形状の曲率半径が一定である真球部31が形成されている。このため、タンク10の内圧に起因して真球部31に生じる引張応力を小さく保つことができる。このため、タンク10を構成する部材の肉厚を薄くすることができる。また、真球部31と非真球部32とが滑らかにつながっているため、非真球部32と真球部31とがつながる箇所での大きな応力集中を起こりにくくすることができる。
【0041】
また、本実施形態では、下側タンク体12は、鉛直中心軸Cを通る垂直断面形状において、真球部31の曲率中心cが、上側タンク体13により囲まれる空間内にあるように形成されている。このため、真球部31の曲率中心cがタンク10外部に位置するときよりも、真球部31の鉛直中心軸Cを通る垂直断面形状の曲率半径が小さくなるので、タンク10の内圧に起因して真球部31に生じる引張応力を小さく保つことができる。
【0042】
また、本実施形態では、下側タンク体12は、非真球部32の鉛直中心軸Cを通る垂直断面形状が、上記の式(1)で表される軌跡に合致するように形成されている。上記の非真球部32を容易に設計することができる。また、式(1)のnの値を3より小さく設定しているため、非真球部32の最小曲率半径部36から周囲側端縁35までの曲率の変化が緩やかになるとともに、非真球部32の鉛直中心軸Cを通る垂直断面形状の曲率半径を小さく保つことができる。これにより、タンク10の内圧に起因して非真球部32に生じる引張応力を小さく保つことができる。
【0043】
上述した下側タンク体12の特徴によりもたらされる効果は、下側タンク体12と同様の特徴を有する上側タンク体13でも得ることができる。また、上側タンク体13は、鉛直中心軸Cに垂直な平面に対して、下側タンク体12と対称な形状を有するので、上側タンク体13と下側タンク体12とを同じ形状にできるため、タンク10の製造が容易になる。
【0044】
本実施形態では、定数r及びrが同じ(即ち、r=r)であるため、タンク10の幅及び高さを従来の球形タンク90とほぼ同じにすることができる。このため、船体20については、従来の球形タンク90を備える船体と同様に設計することができる。
【0045】
(変形例)
タンク50の構成は、前記実施形態で説明したとおりである必要はなく、種々の変形が可能である。
【0046】
例えば、図5に第1変形例に係るタンク50の断面図を示す。タンク50は、上側タンク体13と下側タンク体12との間に、上側タンク体13と下側タンク体12とを連結する鉛直方向に延びる円筒体51を有する。円筒体51の外周面には、スカート27の上端部が接続されている。この変形例でも、下側タンク体12及び上側タンク体13の非真球部32,42は、それぞれ、その鉛直中心軸Cを通る垂直断面形状が、上記の式(1)で表される軌跡に合致するように形成されている。但し、上記実施形態とは、式(1)のx軸の設定の仕方が異なる。第1変形例に係るタンク50では、下側タンク体12及び上側タンク体13の非真球部32,42は、いずれも、その鉛直中心軸Cを通る垂直断面形状が、円筒体51の高さ方向中央で水平方向に延びるx軸(図5及び図6のx)を設定したときの上記の式(1)で表される軌跡に合致するように形成されている。
【0047】
図6は、第1変形例のタンク50の断面の一部を拡大した図である。図6に示すように、x軸(x)は、下側タンク体12の上端部12aより上方にあり、上側タンク体13の下端部13aより下方にある。
【0048】
第1変形例に係る構成によれば、タンク50が円筒体51でスカート27を介して船体20と接続されているため、船体20に接続される部分(円筒体51)と、それ以外の部分(上側タンク体13及び下側タンク体12)とを独立に設計及び製造することができ、タンク50の設計及び製造を容易にすることができる。
【0049】
下側タンク体12及び上側タンク体13の非真球部32,42は、その鉛直中心軸Cを通る垂直断面形状が、互いに異なるx軸を設定したときの上記の式(1)で表される軌跡にそれぞれ合致するように形成されてもよい。
【0050】
例えば、図7に第2変形例に係るタンク60の断面図を示す。第2変形例では、下側タンク体12の非真球部32は、その鉛直中心軸Cを通る垂直断面形状が、非真球部32の周囲側端縁35を通る水平面上にx軸(図7のx)を設定したときの上記の式(1)で表される軌跡に合致するように形成されている。また、第2変形例では、上側タンク体13の非真球部42は、その鉛直中心軸Cを通る垂直断面形状が、非真球部42の周囲側端縁45を通る水平面上にx軸(図7のx)を設定したときの上記の式(1)で表される軌跡に合致するように形成されている。
【0051】
第2変形例に係る構成でも、第1変形例と同様の効果を得ることができる。また、第2変形例に係る構成によれば、円筒体51の高さを大きくするほど、タンク50の液化ガス積載量を増加させることができる。但し、円筒体51の高さが大きくなると、船橋21からの視認性の悪化やタンク50の重心が上方に移動することによる液化ガス運搬船1Aの安定性の悪化を招くおそれがある。このため、円筒体51の高さは、船橋21からの視認性が十分に確保でき、且つ、液化ガス運搬船1Aの重心位置として許容される範囲で設定される。
【0052】
(その他の実施形態)
上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
【0053】
例えば、タンク10の内圧に起因して真球部31,41に生じる引張応力に対してタンク10を構成する部材の強度が十分であれば、真球部31の曲率中心cは、上側タンク体13より上方に位置していてもよく、真球部41の曲率中心cは、下側タンク体12よりも下方に位置していてもよい。
【0054】
上記実施形態において、下側タンク体12と上側タンク体13は、鉛直中心軸Cに垂直な平面に対して対称な形状を有していたが、下側タンク体12と上側タンク体13とは異なる形状であってもよい。例えば、式(1)に関して、下側タンク体12と上側タンク体13とで、異なる定数r、r及びnが設定されてもよい。
【0055】
また、上記実施形態において、上側タンク体13と下側タンク体12のうちの一方のタンク体のみが、非真球部の鉛直中心軸Cを通る垂直断面形状が、式(1)(但し2<n<3)で表される軌跡に合致するように構成されていてもよい。この場合、例えば、上側タンク体13及び下側タンク体12のうちの他方タンク体は、従来の球形タンク90と同じ形状であってもよい。
【0056】
また、非真球部32,42の鉛直中心軸Cを通る各垂直断面形状は、式(1)で表される軌跡に必ずしも合致している必要はなく、少なくとも中央側端縁34から最小曲率半径部36にいくにつれ曲率半径が連続的に減少し、最小曲率半径部36から周囲側端縁35にいくにつれ曲率半径が連続的に増大していればよい。
【0057】
また、上記実施形態では、非真球部32,42の鉛直中心軸Cを通る垂直断面形状が、定数r、r及びnを一定の値としたときの式(1)で表される軌跡に合致していたが、例えば、これに限定されず、例えば、中央側端縁34,44から周囲側端縁35,45までの途中で定数r、r及びnの値を変化させてもよい。
【符号の説明】
【0058】
1A 液化ガス運搬船
10,50,60 舶用液化ガスタンク
12 下側タンク体
13 上側タンク体
31,41 真球部
32,42 非真球部
33,43 真球部の外縁
34,44 非真球部の中央側端縁
35,45 非真球部の周囲側端縁
36,46 最小曲率半径部
51 円筒体
C 鉛直中心軸
,c 真球部の曲率中心
図1
図2
図3
図4
図5
図6
図7