(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
《エチレン・α−オレフィン・非共役ポリエン共重合体(A)》
本発明に係るエチレン・炭素数3〜20のα−オレフィン・非共役ポリエン共重合体(A)は、エチレンに由来する構造単位、少なくとも1種類以上の炭素数3〜20のα−オレフィンに由来する構造単位、および少なくとも一種以上の非共役ポリエンに由来する構造単位を含むエチレン・炭素数3〜20のα−オレフィン・非共役ポリエン共重合体(A)〔以下、「エチレン系共重合体(A)」と略称する場合がある。〕である。
【0011】
本発明に係るエチレン系共重合体(A)は、
(1)エチレン[E]に由来する構造単位と、炭素数3〜20のα−オレフィン[F]に由来する構造単位とのモル比〔[E]/[F]〕が、通常、40/60〜90/10の範囲にある。[E]/[F]の下限としては、好ましくは45/55、より好ましくは50/50、特に好ましくは55/45である。また、[E]/[F]の上限としては、好ましくは80/20、より好ましくは75/25、さらに好ましくは70/30、特に好ましくは65/35である。
【0012】
エチレン[E]に由来する構造単位と、α−オレフィン[F]に由来する構造単位とのモル比が上記範囲にあると、低温でのゴム弾性と常温での引張強度とのバランスに優れるエチレン系共重合体が得られる。
【0013】
本発明のエチレン系共重合体は、
(2)非共役ポリエン[G]に由来する構造単位の含有量が、[E]、[F]および[G]の構造単位の合計を100モル%として、0.1〜6.0モル%の範囲ある。[G]に由来する構造単位の含有量の下限としては、好ましくは0.5モル%である。[G]に由来する構造単位の含有量の上限としては、好ましくは4.0モル%、より好ましくは3.5モル%、さらに好ましくは3.0モル%である。
【0014】
本発明のエチレン系共重合体(A)は、
(3)125℃におけるムーニー粘度ML
(1+4)125℃が通常、5〜100、好ましくは20〜95、特に好ましくは50〜90の範囲にある。
ムーニー粘度が上記範囲にあると、良好な後処理(リボンハンドリング性)を示すと共に優れたゴム物性を有する。
【0015】
本発明のエチレン系共重合体(A)を構成する炭素数3〜10のα−オレフィン[F]としては、側鎖の無い直鎖の構造を有する、炭素数3のプロピレンからはじまり、炭素数4の1−ブテン、炭素数9の1−ノネンや炭素数10の1−デセンを経て、炭素数19の1−ノナデセン、炭素数20の1−エイコセン、並びに側鎖を有する4−メチル−1−ペンテン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセンなどがあげられる。これらの中では、炭素数3〜10のα−オレフィンが好ましい。これらのα−オレフィンは単独で、または2種以上組み合わせて用いることができる。
【0016】
本発明のエチレン系共重合体(A)を構成する非共役ポリエン[G]としては、具体的には、1,4−ヘキサジエン、1,6−オクタジエン、2−メチル−1,5−ヘキサジエン、6−メチル−1,5−ヘプタジエン、7−メチル−1,6−オクタジエン等の鎖状非共役ジエン;シクロヘキサジエン、ジシクロペンタジエン、メチルテトラヒドロインデン、5−ビニル−2−ノルボルネン、5−エチリデン−2−ノルボルネン、5−メチレン−2−ノルボルネン、5−イソプロピリデン−2−ノルボルネン、6−クロロメチル−5−イソプロペニル−2−ノルボルネン等の環状非共役ジエン;2,3−ジイソプロピリデン−5−ノルボルネン、2−エチリデン−3−イソプロピリデン−5−ノルボルネン、2−プロペニル−2,5−ノルボルナジエン、1,3,7−オクタトリエン、1,4,9−デカトリエン、4,8−ジメチル−1,4,8−デカトリエン、4−エチリデン−8−メチル−1,7−ノナジエン等のトリエンが挙げられる。
【0017】
これらの非共役ポリエン[G]は、単独で、または2種類以上を組み合わせて用いることができる。これらの中でも、1,4−ヘキサジエンなどの環状非共役ジエン、5−エチリデン−2−ノルボルネン、または5−エチリデン−2−ノルボルネンと5−ビニル−2−ノルボルネンが好ましく、中でも5−エチリデン−2−ノルボルネン、または5−ビニル−2−ノルボルネンが特に好ましい。
【0018】
本発明に係るエチレン系共重合体(A)は、炭素数が3のα−オレフィンとの共重合体、即ち、エチレン・プロピレン・非共役ポリエン共重合体(A1)、炭素数が4〜20のα−オレフィンとの共重合体、即ち、エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(A2)が挙げられる。
【0019】
これらエチレン系共重合体(A)は、2種類以上を用いてもよい。また、その場合は、2種以上のエチレン・プロピレン・非共役ポリエン共重合体(A1)、2種以上のエチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(A2)、あるいは、1種または2種以上のエチレン・プロピレン・非共役ポリエン共重合体(A1)と1種または2種以上のエチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(A2)を用いてもよい。
【0020】
〈エチレン・プロピレン・非共役ポリエン共重合体(A1)〉
本発明に係るエチレン・プロピレン・非共役ポリエン共重合体(A1)としては、具体的には例えば、エチレン・プロピレン・1,4−ヘキサジエン共重合体、エチレン・プロピレン・5−エチリデン−2−ノルボルネン共重合体、エチレン・プロピレン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体などが挙げられる。
【0021】
〈エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(A2)〉
本発明に係るエチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(A2)〔以下、「エチレン系共重合体(A2)」と略称する場合がある。〕は、上記、(1)〜(3)の特性に加え、
(4)下記式(i)で表されるB値が1.20以上であることが好ましく、更には、1.20〜1.80、特に好ましくは1.22〜1.40範囲にある。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
【0022】
ここで[E]はエチレン[E]のモル分率、[X]は炭素数4〜20のα−オレフィン[F]のモル分率、[Y]は非共役ポリエン[G]のモル分率を示し、[EX]はエチレン[E]−炭素数4〜20のα−オレフィン[F]ダイアッド連鎖分率を示す。
【0023】
B値が1.20以上のエチレン系共重合体(A2)は、低温での圧縮永久ひずみが小さく、より、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン系共重合体が得られる。
【0024】
なお、B値は、共重合体中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式(i)中の[E]、[X]、[Y]、[EX]は、
13C−NMRスペクトルを測定し、J. C.Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
【0025】
本発明に係るエチレン系共重合体(A2)としては、エチレン・1−ブテン・非共役ポリエン共重合体(A2−1)が好ましい。
本発明に係るエチレン系共重合体(A2)としては、具体的には、例えば、以下の共重合体を挙げることができる。
エチレン・1−ブテン・1,4−ヘキサジエン共重合体、
エチレン・1−ペンテン・1,4−ヘキサジエン共重合体、
エチレン・1−ヘキセン・1,4−ヘキサジエン共重合体、
エチレン・1−へプテン・1,4−ヘキサジエン共重合体、
エチレン・1−オクテン・1,4−ヘキサジエン共重合体、
エチレン・1−ノネン・1,4−ヘキサジエン共重合体、
エチレン・1−デセン・1,4−ヘキサジエン共重合体、
エチレン・1−ブテン・1−オクテン・1,4−ヘキサジエン共重合体、
エチレン・1−ブテン・5−エチリデン−2−ノルボルネン共重合体、
エチレン・1−ペンテン・5−エチリデン−2−ノルボルネン共重合体、
エチレン・1−ヘキセン・5−エチリデン−2−ノルボルネン共重合体、
エチレン・1−へプテン・5−エチリデン−2−ノルボルネン共重合体、
エチレン・1−オクテン・5−エチリデン−2−ノルボルネン共重合体、
エチレン・1−ノネン・5−エチリデン−2−ノルボルネン共重合体、
エチレン・1−デセン・5−エチリデン−2−ノルボルネン共重合体、
エチレン・1−ブテン・1−オクテン・5−エチリデン−2−ノルボルネン共重合体、
エチレン・1−ブテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、
エチレン・1−ペンテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、
エチレン・1−ヘキセン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、
エチレン・1−へプテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、
エチレン・1−オクテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、
エチレン・1−ノネン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、
エチレン・1−デセン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、
エチレン・1−ブテン・1−オクテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体。
これらエチレン系共重合体(A2)は、必要に応じて1種類、または2種類以上が用いられる。
【0026】
《エチレン・α−オレフィン・非共役ポリエン共重合体(A)の製造方法》
本発明のエチレン・α−オレフィン・非共役ポリエン共重合体(A)は、種々公知の製造方法により製造し得る。
【0027】
〈エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(A2)の製造方法〉
本発明に係るエチレン系共重合体(A2)は、種々公知の製造方法で製造し得る。
上記エチレン・α−オレフィン・非共役ポリエン共重合体(A2)は、例えば、以下の製造方法により得ることができる。
【0028】
具体的には、(a−3)下記一般式[VII]で表される遷移金属化合物(以下の説明では、「架橋メタロセン化合物」と略称する場合がある。)ならびに、(b)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)遷移金属化合物(a−3)と反応してイオン対を形成する化合物からなる群より選ばれる少なくとも1種の化合物、を含むオレフィン重合触媒の存在下において、エチレン、炭素原子数4〜20のα−オレフィンおよび非共役ポリエンとを共重合することにより製造し得る。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。
【0029】
【化1】
式[VII]中の、M、R
5、R
6、Qおよびjを以下に説明する。
上記Yは、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子からなる群より選ばれる原子であるが、好ましくは炭素原子である。
上記Mは、チタン原子、ジルコニウム原子またはハフニウム原子であるが、好ましくはハフニウム原子である。
【0030】
上記R
5およびR
6は、アリール基の水素原子の一つ以上をハメット則の置換基定数σが−0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基(以下「電子供与性基含有置換アリール基」ともいう。)である。
【0031】
アリール基としては、フェニル基、1−ナフチル基、2−ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などの芳香族化合物から誘導された置換基等が挙げられる。上記アリール基としては、フェニル基または2−ナフチル基が好ましい。なお、上記芳香族化合物としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどの芳香族炭化水素および複素環式芳香族化合物等が挙げられる。
【0032】
ハメット則の置換基定数σが−0.2以下の電子供与性基は、以下のように定義および例示される。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則で求められた置換基定数にはベンゼン環のパラ位に置換した際のσpおよびメタ位に置換した際のσmがあり、これらの値は多くの一般的な文献に見出すことができる。例えば、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]には非常に広範な置換基について詳細な記載がなされている。ただし、これらの文献に記載されているσpおよびσmは、同じ置換基であっても文献によって値が僅かに異なる場合がある。本発明ではこのような状況によって生じる混乱を回避するために、記載のある限りの置換基においてはHanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された値をハメット則の置換基定数σpおよびσmと定義する。本発明においてハメット則の置換基定数σが−0.2以下の電子供与性基とは、該電子供与性基がフェニル基のパラ位(4位)に置換している場合はσpが−0.2以下の電子供与性基であり、フェニル基のメタ位(3位)に置換している場合はσmが−0.2以下の電子供与性基である。また、該電子供与性基がフェニル基のオルト位(2位)に置換している場合、またはフェニル基以外のアリール基の任意の位置に置換している場合は、σpが−0.2以下の電子供与性基である。
【0033】
ハメット則の置換基定数σpまたはσmが−0.2以下の電子供与性置換基としては、p−アミノ基(4−アミノ基)、p−ジメチルアミノ基(4−ジメチルアミノ基)、p−ジエチルアミノ基(4−ジエチルアミノ基)、m−ジエチルアミノ基(3−ジエチルアミノ基)などの窒素含有基、p−メトキシ基(4−メトキシ基)、p−エトキシ基(4−エトキシ基)などの酸素含有基、p−t−ブチル基(4−t−ブチル基)などの三級炭化水素基、p−トリメチルシロキシ基(4−トリメチルシロキシ基)などのケイ素含有基などが挙げられる。尚、本発明で定義されるハメット則の置換基定数σpまたはσmが−0.2以下の電子供与性置換基は、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された置換基に限定されない。該文献に記載のない置換基であっても、ハメット則に基づいて測定した場合の置換基定数σpまたはσmがその範囲となるであろう置換基は、本発明で定義するハメット則の置換基定数σpまたはσmが−0.2以下の電子供与性基に含まれる。このような置換基としては、p−N−モルフォリニル基(4−N−モルフォリニル基)、m−N−モルフォリニル基(3−N−モルフォリニル基)などが挙げられる。
【0034】
電子供与性基含有置換アリール基において、該電子供与性置換基が複数個置換している場合それぞれの電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外に炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基が置換していてもよく、該置換基が複数個置換している場合それぞれの置換基は同一でも異なっていてもよいが、一つの置換アリール基に含まれる該電子供与性置換基および該置換基の各々のハメット則の置換基定数σの総和は−0.15以下であることが好ましい。このような置換アリール基としては、m,p−ジメトキシフェニル基(3,4−ジメトキシフェニル基)、p−(ジメチルアミノ)−m−メトキシフェニル基(4−(ジメチルアミノ)−3−メトキシフェニル基)、p−(ジメチルアミノ)−m−メチルフェニル基(4−(ジメチルアミノ)−3−メチルフェニル基)、p−メトキシ−m−メチルフェニル基(4−メトキシ−3−メチルフェニル基)、p−メトキシ−m,m−ジメチルフェニル基(4−メトキシ−3,5−ジメチルフェニル基)等が挙げられる。
【0035】
電子供与性基含有置換アリール基が有してもよい炭素数1から20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の環状飽和炭化水素基、炭素数2〜20の鎖状不飽和炭化水素基、炭素数3〜20の環状不飽和炭化水素基等が挙げられる。
【0036】
炭素数1〜20のアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デカニル基などの直鎖状飽和炭化水素基;イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、t−アミル基、ネオペンチル基、3−メチルペンチル基、1,1−ジエチルプロピル基、1,1−ジメチルブチル基、1−メチル−1−プロピルブチル基、1,1−ジプロピルブチル基、1,1−ジメチル−2−メチルプロピル基、1−メチル−1−イソプロピル−2−メチルプロピル基、シクロプロピルメチル基などの分岐状飽和炭化水素基等が挙げられる。上記アルキル基の炭素数は好ましくは1〜6である。
【0037】
炭素数3〜20の環状飽和炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1−アダマンチル基、2−アダマンチル基などの無置換の環状飽和炭化水素基; 3−メチルシクロペンチル基、3−メチルシクロヘキシル基、4−メチルシクロヘキシル基、4−シクロヘキシルシクロヘキシル基、4−フェニルシクロヘキシル基などの無置換の環状飽和炭化水素基の水素原子が炭素数1から17の炭化水素基で置き換えられた基等が挙げられる。上記環状飽和炭化水素基の炭素数は好ましくは5〜11である。
【0038】
炭素数2〜20の鎖状不飽和炭化水素基としては、エテニル基(ビニル基)、1−プロペニル基、2−プロペニル基(アリル基)、1−メチルエテニル基(イソプロペニル基)などのアルケニル基;、アルキニル基であるエチニル基、1−プロピニル基、2−プロピニル基(プロパルギル基)等が挙げられる。上記鎖状不飽和炭化水素基の炭素数は好ましくは2〜4である。
【0039】
炭素数3〜20の環状不飽和炭化水素基としては、シクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基などの無置換の環状不飽和炭化水素基;3−メチルフェニル基(m−トリル基)、4−メチルフェニル基(p−トリル基)、4−エチルフェニル基、4−t−ブチルフェニル基、4−シクロヘキシルフェニル基、ビフェニリル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基(メシチル基)などの無置換の環状不飽和炭化水素基の水素原子が炭素数1から15の炭化水素基で置き換えられた基;ベンジル基、クミル基などの直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が、炭素数3から19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基等が挙げられる。環状不飽和炭化水素基の炭素数は好ましくは6〜10である。
【0040】
電子供与性基含有置換アリール基が有してもよいケイ素含有基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基などのアルキルシリル基;ジメチルフェニルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基などのアリールシリル基;ペンタメチルジシラニル基、トリメチルシリルメチル基などの炭素数1から20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基等が挙げられる。アルキルシリル基の炭素数は1〜10が好ましく、アリールシリル基の炭素数は6〜18が好ましい。
【0041】
電子供与性基含有置換アリール基が有してもよい窒素含有基としては、アミノ基、ニトロ基、N−モルフォリニル基や、上述した炭素数1から20の炭化水素基またはケイ素含有基において、=CH−構造単位が窒素原子で置き換えられた基、−CH
2−構造単位が炭素数1から20の炭化水素基が結合した窒素原子で置き換えられた基、または−CH
3構造単位が炭素数1から20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基等が挙げられる。窒素含有基としては、ジメチルアミノ基、N−モルフォリニル基が好ましい。
【0042】
電子供与性基含有置換アリール基が有してもよい酸素含有基としては、水酸基や、上述した炭素数1から20の炭化水素基、ケイ素含有基または窒素含有基において、−CH
2−構造単位が酸素原子またはカルボニル基で置き換えられた基、または−CH
3構造単位が炭素数1から20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t−ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t−ブトキシメチル基、1−ヒドロキシエチル基、1−メトキシエチル基、1−エトキシエチル基、2−ヒドロキシエチル基、2−メトキシエチル基、2−エトキシエチル基、n−2−オキサブチレン基、n−2−オキサペンチレン基、n−3−オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基等が挙げられる。酸素含有基としては、メトキシ基が好ましい。
【0043】
電子供与性基含有置換アリール基が有していてもよいハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素等が挙げられる。
電子供与性基含有置換アリール基が有していてもよいハロゲン含有基としては、上述した炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等が挙げられる。
【0044】
Qは、ハロゲン原子、炭素数1から20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子なる群より選ばれる原子、置換基または配位子であり、Qが複数ある場合には同一でも異なっていてもよい。
【0045】
Qとなるハロゲン原子および炭素数1から20の炭化水素基の具体例は、上記電子供与性基含有置換アリール基が有していてもよいハロゲン原子および炭素数1〜20の炭化水素基と同様である。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1から20の炭化水素基である場合は、該炭化水素基の炭素数は1から7であることが好ましい。
【0046】
アニオン配位子としては、メトキシ基、t-ブトキシ基、フェノキシ基などのアルコキシ基;アセテート、ベンゾエートなどのカルボキシレート基;メシレート、トシレートなどのスルホネート基等が挙げられる。
【0047】
孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物;テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2−ジメトキシエタンなどのエーテル化合物等が挙げられる。
jは1から4の整数であり、好ましくは2である。
【0048】
上記一般式[VII]で表される架橋メタロセン化合物(a)に含まれる2,3,6,7−テトラメチルフルオレニル基は、2、3、6および7位に四つの置換基を有するために電子的な効果が大きく、これにより高い重合活性で、かつ高分子量のエチレン系共重合体を生成するものと推測される。一方、概して非共役ポリエンはα−オレフィンに比して嵩高くなるため、これを重合する重合触媒、特に重合活性点となるメタロセン化合物の中心金属近傍は嵩高くない方が非共役ポリエンの共重合性能向上に繋がると推測される。2,3,6,7−テトラメチルフルオレニル基に含まれる四つのメチル基は、他の炭化水素基等に比べて嵩高くないため、このことが高い非共役ポリエン共重合性能に寄与しているものと考えられる。以上より、特に2,3,6,7−テトラメチルフルオレニル基を含む上記一般式[VII]で表される架橋メタロセン化合物が、生成するエチレン系共重合体の高い分子量と、高い非共役ポリエン共重合性能と、高い重合活性とを同時に高いレベルでバランス良く実現するものと推測される。
【0049】
架橋メタロセン化合物(a−3)は、例えば下式[VIII]のような簡便な方法で合成することが可能である。
【0050】
【化2】
(式[VIII]において、M、R
5、R
6の定義具体例および好適例は式[VII]の場合と同様である。)
【0051】
上記式[VIII]において、R
5およびR
6は上記のとおりであるが、一般式R
5−C(=O)−R
6で表される、このような条件を満たす種々のケトンが一般の試薬メーカーより市販されているため、該架橋メタロセン化合物(a−3)の原料の入手が容易である。また、仮にこのようなケトンが市販されていない場合でも、例えばOlahらによる方法[Heterocycles, 40, 79 (1995)]などにより、該ケトンは容易に合成することが可能である。このように、該架橋メタロセン化合物(a−3)は、比較的製造工程が簡素かつ容易であり、製造コストがさらに低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレ系共重合体の製造コストが低減されるという利点が得られる。さらに、該架橋メタロセン化合物(a−3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点も得られる。
【0052】
上記一般式[VII]で表される架橋メタロセン化合物(a−3)において、R
5およびR
6はアリール基および置換アリール基からなる群より選ばれる基であることが好ましい。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する場合、重合活性のさらなる向上および生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。また同時に、非共役ポリエンの共重合性能の向上、例えば、共重合体中の非共役ポリエン単位の含有量を高める、共重合体中に非共役ポリエン単位が均一に分散されやすくなるという利点も得られる。
【0053】
上記一般式[VII]で表される架橋メタロセン化合物(a−3)において、R
5およびR
6は同一の基であることがさらに好ましい。R
5およびR
6をこのように選択することにより、該架橋メタロセン化合物の合成工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることで共重合体の製造コストが低減されるという利点が得られる。また、該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。
【0054】
本出願人は、種々の架橋メタロセン化合物(a)について鋭意検討した結果、上記一般式[VII]で表される架橋メタロセン化合物(a−3)において、R
5およびR
6を上記基とした場合に、該架橋メタロセン化合物(a−3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する際、生成する共重合体の分子量がさらに高くできることを初めて見出した。
【0055】
本発明の架橋メタロセン化合物(a−3)のような有機金属錯体触媒によるオレフィンの配位重合においては、触媒の中心金属上でオレフィンが繰り返し重合することにより、生成するオレフィン重合体の分子鎖が生長し(生長反応)、該オレフィン重合体の分子量が増大することが知られている。一方、連鎖移動と呼ばれる反応において、オレフィン重合体の分子鎖が触媒の中心金属から解離することにより、該分子鎖の生長反応が停止し、従って該オレフィン重合体の分子量の増大も停止することも知られている。以上より、オレフィン重合体の分子量は、それを生成する有機金属錯体触媒に固有の、生長反応の頻度と連鎖移動反応の頻度との比率によって特徴づけられる。即ち、生長反応の頻度と連鎖移動反応の頻度との比が大きいほど生成するオレフィン重合体の分子量は高くなり、逆に小さいほど分子量は低くなるという関係である。ここで、それぞれの反応の頻度はそれぞれの反応の活性化エネルギーから見積もることができ、活性化エネルギーが低い反応はその頻度が高く、逆に活性化エネルギーが高い反応はその頻度が低いと見做すことができると考えられる。一般に、オレフィン重合における生長反応の頻度は連鎖移動反応の頻度に比して十分に高い、即ち生長反応の活性化エネルギーは連鎖移動反応の活性化エネルギーに比して十分に低いことが知られている。従って、連鎖移動反応の活性化エネルギーから生長反応の活性化エネルギーを減じた値(以下、ΔEc)は正となり、この値が大きいほど連鎖移動反応の頻度に比して生長反応の頻度が大きくなり、生成するオレフィン重合体の分子量が高くなることが推定される。このようにして行うオレフィン重合体の分子量の推定の妥当性は、例えばLaineらの計算結果によっても裏付けられている[Organometallics, 30, 1350 (2011)]。上記一般式[VII]で表される架橋メタロセン化合物(a−3)においては、R
5およびR
6を、特にハメット則の置換基定数σが−0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とした場合に、上記ΔEcが増大し、該架橋メタロセン化合物(a−3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する際に、生成する共重合体の分子量が高くなるものと推測される。
【0056】
上記一般式[VII]で表される架橋メタロセン化合物(a−3)において、R
5およびR
6に含まれる電子供与性置換基は、窒素含有基および酸素含有基からなる群より選ばれる基であることがさらに好ましい。
【0057】
上記一般式[VII]で表される架橋メタロセン化合物(a−3)において、R
5およびR
6は、上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、原料となる種々のベンゾフェノンが一般の試薬メーカーより市販されているため原料の入手が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることで上記共重合体(A2)の製造コストが低減されるという利点が得られる。
【0058】
ここで、上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基としては、o−アミノフェニル基(2−アミノフェニル基)、p−アミノフェニル基(4−アミノフェニル基)、o−(ジメチルアミノ)フェニル基(2−(ジメチルアミノ)フェニル基)、p−(ジメチルアミノ)フェニル基(4−(ジメチルアミノ)フェニル基)、o−(ジエチルアミノ)フェニル基(2−(ジエチルアミノ)フェニル基)、p−(ジエチルアミノ)フェニル基(4−(ジエチルアミノ)フェニル基)、m−(ジエチルアミノ)フェニル基(3−(ジエチルアミノ)フェニル基)、o−メトキシフェニル基(2−メトキシフェニル基)、p−メトキシフェニル基(4−メトキシフェニル基)、o−エトキシフェニル基(2−エトキシフェニル基)、p−エトキシフェニル基(4−エトキシフェニル基)、o−N−モルフォリニルフェニル基(2−N−モルフォリニルフェニル基)、p−N−モルフォリニルフェニル基(4−N−モルフォリニルフェニル基)、m−N−モルフォリニルフェニル基(3−N−モルフォリニルフェニル基)、o,p−ジメトキシフェニル基(2,4−ジメトキシフェニル基)、m,p−ジメトキシフェニル基(3,4−ジメトキシフェニル基)、p−(ジメチルアミノ)−m−メトキシフェニル基(4−(ジメチルアミノ)−3−メトキシフェニル基)、p−(ジメチルアミノ)−m−メチルフェニル基(4−(ジメチルアミノ)−3−メチルフェニル基)、p−メトキシ−m−メチルフェニル基(4−メトキシ−3−メチルフェニル基)、p−メトキシ−m,m−ジメチルフェニル基(4−メトキシ−3,5−ジメチルフェニル基)等が挙げられる。
【0059】
上記一般式[VII]で表される架橋メタロセン化合物(a−3)において、R
5およびR
6は、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、該基がオルト位に置換した場合に比べて合成が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン系共重合体の製造コストが低減されるという利点が得られる。
【0060】
上記一般式[VII]で表される架橋メタロセン化合物(a−3)において、R
5およびR
6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基を含む置換フェニル基である場合、該窒素含有基は下記一般式[II]で表される基であることがさらに好ましい。
【0061】
【化3】
(式[II]において、R
7およびR
8は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよく、Nの右に描かれた線はフェニル基との結合を表す。)
【0062】
R
7およびR
8としての炭素数1から20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基の具体例および好適例は、上記式[VII]の場合と同様である。
このような架橋メタロセン化合物(a−4)は、下記一般式[IX]で表される。
【0063】
【化4】
(式[IX]において、M、Qおよびjの定義、具体例および好適例は式[VII]の場合と同様である。R
7、R
8およびR
10は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基であり、それぞれ同一でも異なっていてもよく、R
7、R
8およびR
10のうちの隣接した置換基は互いに結合して環を形成していてもよく、NR
7R
8はハメット則の置換基定数σが−0.2以下の窒素含有基であり、該窒素含有基が複数個存在する場合にはそれぞれの窒素含有基は互いに同一でも異なっていてもよく、nは1から3の整数であり、mは0から4の整数である。)
【0064】
上記一般式[VII]で表される架橋メタロセン化合物(a−3)において、R
5およびR
6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての酸素含有基を含む置換フェニル基である場合、該酸素含有基は下記一般式[III]で表される基であることがさらに好ましい。
【0065】
【化5】
(式[III]において、R
9は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基からなる群より選ばれる原子または置換基であり、Oの右に描かれた線はフェニル基との結合を表す。)
【0066】
R
9としての炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基の具体例および好適例は、式[VII]の場合と同様である。
このような架橋メタロセン化合物(a−5)は、下記一般式[X]で表される。
【0067】
【化6】
(式[X]において、M、Qおよびjの定義、具体例および好適例は式[VII]の場合と同様である。R
9およびR
10は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、R
10の隣接した置換基は互いに結合して環を形成していてもよく、OR
9はハメット則の置換基定数σが−0.2以下の酸素含有基であり、該酸素含有基が複数個存在する場合にはそれぞれの酸素含有基は互いに同一でも異なっていてもよく、nは1から3の整数であり、mは0から4の整数である。)
【0068】
上記一般式[VII]で表される本発明の架橋メタロセン化合物(a−3)、上記一般式[IX]で表される本発明の架橋メタロセン化合物(a−4)または上記一般式[X]で表される本発明の架橋メタロセン化合物(a−5)において、Mはハフニウム原子であることがさらに好ましい。Mがハフニウム原子である上記架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能となり、非共役ポリエンの共重合性能の向上という利点が得られる。
【0069】
このような架橋メタロセン化合物(a)としては、
[ジメチルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-n-ブチルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、 [ジシクロペンチルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[シクロペンチリデン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[シクロヘキシリデン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジフェニルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-1-ナフチルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-2-ナフチルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-メチルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メチルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメチルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-n-ヘキシルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-シクロヘキシルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-t-ブチルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-メトキシフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメトキシフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3-メチルフェニル)メチレン(η
5−シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3,4-ジメチルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-エトキシフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フェノキシフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリメチルシロキシ)フェニル}メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス{3-(ジメチルアミノ)フェニル}メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(ジメチルアミノ)フェニル}メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-N-モルフォリニルフェニル)(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス{4-(トリメチルシリル)フェニル}メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-クロロフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-クロロフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3-フルオロフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フルオロフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{3-(トリフルオロメチル)フェニル}メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリフルオロメチル)フェニル}メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[メチルフェニルメチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メチルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メトキシフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル{4-(ジメチルアミノ)フェニル}メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-N-モルフォリニルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジメチルシリレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルシリレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルシリレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルシリレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ(4-メチルフェニル)シリレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジメチルゲルミレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルゲルミレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[1-(η
5-シクロペンタジエニル)-2-(η
5-2,3,6,7-テトラメチルフルオレニル)エチレン]ハフニウムジクロリド、[1-(η
5-シクロペンタジエニル)-3-(η
5-2,3,6,7-テトラメチルフルオレニル)プロピレン]ハフニウムジクロリド、[1-(η
5-シクロペンタジエニル)-2-(η
5-2,3,6,7-テトラメチルフルオレニル)-1,1,2,2-テトラメチルシリレン]ハフニウムジクロリド、[1-(η
5-シクロペンタジエニル)-2-(η
5-2,3,6,7-テトラメチルフルオレニル)フェニレン]ハフニウムジクロリド、および、これらの化合物のハフニウム原子をジルコニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物等が挙げられる。これら触媒の中でも、[ビス(4-メチルフェニル)メチレン(η
5-シクロペンタジエニル)(η
5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドが好ましい。
【0070】
上記共重合体(A2)の製造に使用される架橋メタロセン化合物は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。製造方法としては、例えば、J.Organomet.Chem.,63,509(1996)、本出願人による出願に係る公報であるWO2006123759号公報、WO01/27124号公報、特開2004−168744号公報、特開2004−175759号公報、特開2000−212194号公報等記載の製造方法等が挙げられる。
【0071】
次に上記架橋メタロセン化合物を、エチレン・α―オレフィン・非共役ポリエン共重合体(A2)の製造用触媒(オレフィン重合触媒)として用いる場合の好ましい形態について説明する。
【0072】
架橋メタロセン化合物をオレフィン重合触媒成分として用いる場合、触媒は、
(a)上記一般式[VII]で表される架橋メタロセン化合物と、
(b)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)架橋メタロセン化合物(a)と反応してイオン対を形成する化合物、からなる群より選ばれる少なくとも1種の化合物と、
さらに必要に応じて、
(c)粒子状担体とから構成される。
以下、各成分について具体的に説明する。
【0073】
〈(b−1)有機金属化合物〉
上記共重合体(A2)の製造に用いられる(b−1)有機金属化合物として、具体的には下記一般式[X]〜[XII]のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
(b−1a)一般式 R
amAl(OR
b)
nH
pX
q・・・[X]
(式[X]中、R
aおよびR
bは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
【0074】
上記一般式[X]で表される化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn−オクチルアルミニウムなどのトリアルキルアルミニウム、トリシクロアルキルアルミニウム、イソブチルアルミニウムジクロリド、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジイソブチルアルミニウムハイドライド等が挙げられる。
(b−1b)一般式 M
2AlR
a4・・・[XI]
(式[XI]中、M
2はLi、NaまたはKを示し、R
aは炭素原子数が1〜15、好ましくは1〜4の炭化水素基である。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
【0075】
上記一般式[XI]で表される化合物として、LiAl(C
2H
5)
4、LiAl(C
7H
15)
4等が挙げられる。
(b−1c)一般式 R
aR
bM
3・・・[XII]
(式[XII]中、R
aおよびR
bは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、M
3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属を有するジアルキル化合物。
【0076】
上記の有機金属化合物(b−1)の中では、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn−オクチルアルミニウムなどの有機アルミニウム化合物が好ましい。また、これら有機金属化合物(b−1)は、1種単独で用いてもよいし2種以上組み合わせて用いてもよい。
【0077】
〈(b−2)有機アルミニウムオキシ化合物〉
上記共重合体(A2)の製造に用いられる(b−2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。(b−2)有機アルミニウムオキシ化合物は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
【0078】
〈(b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物〉
上記共重合体(A2)の製造に用いられる架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)(以下、「イオン化イオン性化合物」という。)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、USP−5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
【0079】
上記(b−3)イオン化イオン性化合物の中では、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましい。(b−3)イオン化イオン性化合物は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
【0080】
上記一般式[VII]で表される遷移金属化合物(a)を触媒とする場合、トリイソブチルアルミニウムなどの有機金属化合物(b−1)、メチルアルミノキサンなどの有機アルミニウムオキシ化合物(b−2)またはトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b−3)を併用すると、エチレン・α―オレフィン・非共役ポリエン共重合体(A2)の製造に際して非常に高い重合活性を示す。
【0081】
また、共重合体(A2)の製造に使用されるオレフィン重合用触媒は、上記遷移金属化合物(a)と、(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)イオン化イオン性化合物からなる群より選ばれる少なくとも1種の化合物(b)とともに、必要に応じて担体(c)を用いることもできる。
【0082】
上記担体(c)は、無機化合物または有機化合物であって、顆粒状ないしは微粒子状の固体である。
上記無機化合物の中でも、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
【0083】
多孔質酸化物としては、SiO
2、Al
2O
3、MgO、ZrO、TiO
2、B
2O
3、CaO、ZnO、BaO、ThO
2などの無機酸化物、またはこれら無機酸化物を含む複合物または混合物を主成分とする多孔質材が挙げられ、多孔質酸化物としては、
具体的には、天然または合成ゼオライト;SiO
2−MgO、SiO
2−Al
2O
3、SiO
2−TiO
2、SiO
2−V
2O
5、SiO
2−Cr
2O
3、SiO
2−TiO
2−MgOなどを主成分とする多孔質酸化物が挙げられる。これらのうち、SiO
2および/またはAl
2O
3を主成分とする多孔質酸化物が好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が10〜300μm、好ましくは20〜200μmであって、比表面積が通常50〜1000m
2/g、好ましくは100〜700m
2/gの範囲にあり、細孔容積が0.3〜3.0cm
3/gの範囲にあることが望ましい。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成してから使用される。
【0084】
無機ハロゲン化物としては、MgCl
2、MgBr
2、MnCl
2、MnBr
2等が挙げられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。
【0085】
上記担体(c)として用いられる粘土は、通常粘土鉱物を主成分として構成される。また、本発明で用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
【0086】
また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl
2型、CdI
2型などの層状の結晶構造を有するイオン結晶性化合物等が挙げられる。
【0087】
粘土および粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイト等が挙げられる。
【0088】
イオン交換性層状化合物としては、α−Zr(HAsO
4)
2・H
2O、α−Zr(HPO
4)
2、α−Zr(KPO
4)
2・3H
2O、α−Ti(HPO
4)
2、α−Ti(HAsO
4)
2・H
2O、α−Sn(HPO
4)
2・H
2O、γ−Zr(HPO
4)
2、γ−Ti(HPO
4)
2、γ−Ti(NH
4PO
4)
2・H
2Oなどの多価金属の結晶性酸性塩等が挙げられる。
【0089】
このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3〜5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20〜30000Åの範囲について測定される。
【0090】
半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
上記担体(c)として用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理としては、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
【0091】
上記担体(c)として用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl
4、ZrCl
4などの陽イオン性無機化合物;Ti(OR)
4、Zr(OR)
4、PO(OR)
3、B(OR)
3などの金属アルコキシド(Rは炭化水素基など);、[Al
13O
4(OH)
24]
7+、[Zr
4(OH)
14]
2+、[Fe
3O(OCOCH
3)
6]
+などの金属水酸化物イオン等が挙げられる。これらの化合物は1種単独で用いることもできるし2種以上組み合わせて用いることもできる。また、これらの化合物をインターカレーションする際に、Si(OR)
4、Al(OR)
3、Ge(OR)
4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO
2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
【0092】
上記粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。これら担体(c)となる物質は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0093】
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
有機化合物としては、粒径が10〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどの炭素原子数が2〜14のα−オレフィンを主成分として生成される(共)重合体、ビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体が挙げられる。
【0094】
上記共重合体(A2)の製造に使用されるオレフィン重合用触媒は、架橋メタロセン化合物(a)と、(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)イオン化イオン性化合物からなる群より選ばれる少なくとも1種の化合物(b)と、必要に応じて用いられる担体(c)を含むこともできる。
【0095】
エチレン、α−オレフィン、及び非共役ポリエンを共重合させる際、重合触媒を構成する各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
(1)前記化合物(a)を単独で重合器に添加する方法。
(2)前記化合物(a)および前記化合物(b)を任意の順序で重合器に添加する方法。
(3)前記化合物(a)を前記担体(c)に担持した触媒成分、前記化合物(b)を任意の順序で重合器に添加する方法。
(4)前記化合物(b)を前記担体(c)に担持した触媒成分、前記化合物(a)を任意の順序で重合器に添加する方法。
(5)前記化合物(a)と前記化合物(b)とを前記担体(c)に担持した触媒成分を重合器に添加する方法。
【0096】
上記(2)〜(5)の各方法においては、化合物(a)、化合物(b)、担体(c)の少なくとも2つは予め接触されていてもよい。
化合物(b)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない化合物(b)を、任意の順序で添加してもよい。この場合化合物(b)は、担体(c)に担持されている化合物(b)と同一でも異なっていてもよい。
【0097】
また、上記の担体(c)に化合物(a)が担持された固体触媒成分、担体(c)に化合物(a)および化合物(b)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
【0098】
エチレン・α−オレフィン・非共役ポリエン共重合体(A2)は、上記のようなエチレン・α−オレフィン・非共役ポリエン共重合体用触媒の存在下に、エチレン、α−オレフィン、および非共役ポリエンを共重合することにより製造し得る。
上記共重合体(A2)の製造は、溶液(溶解)重合、懸濁重合などの液相重合法または気相重合法のいずれによっても可能である。
【0099】
液相重合法において用いられる不活性炭化水素媒体としては、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素等が挙げられる。上記不活性炭化水素媒体は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、オレフィン自身を溶媒として用いることもできる。
【0100】
上記のような共重合体用触媒を用いて、エチレンなどの重合を行うに際して、架橋メタロセン化合物(a)は、反応容積1リットル当り、通常10
-12〜10
-2モル、好ましくは10
-10〜10
-8モルになるような量で用いられる。
【0101】
有機金属化合物(b−1)は、該化合物(b−1)と、架橋メタロセン化合物(a)中の全遷移金属原子(M)とのモル比〔(b−1)/M〕が通常0.01〜50000、好ましくは0.05〜10000となるような量で用いられる。有機アルミニウムオキシ化合物(b−2)は、該化合物(b−2)中のアルミニウム原子と、化合物(a)中の全遷移金属(M)とのモル比〔(b−2)/M〕が、通常10〜50000、好ましくは20〜10000となるような量で用いられる。イオン化イオン性化合物(b−3)は、化合物(b−3)と、化合物(a)中の遷移金属原子(M)とのモル比〔(b−3)/M〕が、通常1〜20、好ましくは1〜15となるような量で用いられる。
【0102】
上記共重合体(A2)の重合温度は、通常−50〜+200℃、好ましくは0〜+200℃の範囲、より好ましくは、+80〜+200℃の範囲である。
目標とする到達分子量、用いる触媒の重合活性によるが、生産性の観点から、重合温度は、より高温(+80℃以上)であることが望ましい。
【0103】
上記共重合体(A2)の重合圧力は、通常常圧〜10MPaゲージ圧、好ましくは常圧〜5MPaゲージ圧の範囲である。また、上記共重合体(A2)の重合反応形式は、回分式、半連続式、連続式のいずれであってもよい。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
【0104】
得られる共重合体(A2)の分子量は、例えば重合系内に水素を存在させることにより、あるいは重合温度を変化させることにより調整できる。水素を重合系内に存在させることに分子量を調整する場合には、水素の添加量はオレフィン1kgあたり0.001〜100NL程度が適当である。また、化合物(b)(例えば、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等)を触媒成分と使用する場合には、共重合体の分子量は、化合物(b)の使用量により調節できる。
【0105】
《軟化剤(B)》
本発明で用いられる軟化剤(B)は、フィッシャ−・トロプシュ誘導基油からなり、40℃における動粘度が50cSt未満の軟化剤である。
【0106】
本発明において、軟化剤(B)は、フィッシャ−・トロプシュ誘導基油からなり、40℃における動粘度が50cSt未満であれば、特に制限はない。
フィッシャー・トロプシュ誘導基油は当該技術分野において公知である。「フィッシャー・トロプシュ誘導」という用語は、基油が、フィッシャー・トロプシュプロセスの合成生成物であるか、又はそれから誘導されることを意味する。「フィッシャー・トロプシュ誘導基油」との用語は、例えば、特許第4674342号公報、特許第5546857号公報等の多くの特許文献において用いられている。
以下、「フィッシャー・トロプシュ誘導基油」を適宜「GTL」という。
【0107】
本発明で用いられるGTLは、コンパウンドの高流動化と耐フォギング性を両立させる点で、40℃における動粘度が50cSt未満であることが必要であり、8〜48cStであることが好ましく、100℃における動粘度が2〜10cStであることが好ましく、7〜10cStであることが更に好ましい。
【0108】
本発明で用いられるGTLは分子量分布が狭く揮発分が少ないため、熱可塑性エラストマー組成物に配合すると通常のプロセスオイルよりもフォギングが少ない製品が得られる。
【0109】
本発明で用いられるGTLは、ガスからの液体燃料製造プロセス(GTL)法(Gas-To-Liquids process)の一部であるフィッシャ−・トロプシュ(Fischer-Tropsch)工程で合成されたワックス状の炭化水素から誘導される原料油又はオイルからなり、潤滑油相当の粘度の液体である。
【0110】
前記ワックス状の合成炭化水素は、水素、二酸化炭素、一酸化炭素、水、メタン、エタン、エチレン、アセチレン、プロパン、プロピレン、プロピン、ブタン、ブチレン、ブチン等の、ガス状の炭素含有化合物と、ガス状の水素含有化合物とを原料に用いた、1以上の合成反応、混合、転換反応、及び/又は、転移反応により誘導される。
【0111】
好ましい原料は、天然ガス及び/又は石炭等の適切な原料から生成させた「合成ガス」(実質的に一酸化炭素と水素からなる合成ガス)である。
GTL原料油又はオイルには、水素化異性化合成ワックス、水素化異性化フィッシャ−・トロプシュワックス(ワックス状炭化水素と、これに類似する酸素含有化合物を含む)、あるいはこれらの混合物等の、異性化されたワックスが含まれる。
【0112】
更に、GTL原料油又はオイルは、その他の水素化異性化された原料や原料油からなる。
特に好ましいGTL原料油又はオイルは、大部分が水素化異性化されたフィッシャ−・トロプシュワックス、及び/又はその他のフィッシャ−・トロプシュ合成反応で得られる炭化水素液体からなるものである。
【0113】
ワックス炭化水素の合成を含め、フィッシャ−・トロプシュ合成反応による炭化水素の合成反応には、スラリー法、固定床法、炭化水素液体中の触媒粒子の流動床等の、公知の適切なプロセスが用いられる。
【0114】
前記触媒は、例えばFe、Ni、Co、Ru、及びRe等の第VIII族金属を適切な無機担体に担持させた不均一系触媒、あるいはゼオライト触媒等の結晶性触媒である。
ワックス状原料から潤滑油原料又は原料油を製造するプロセスは、水素化脱ワックス(hydrodewaxing)プロセスと特徴付けられる。水素化処理工程は、一般にフィッシャ−・トロプシュワックスの場合は必要ないが、所望により水素化脱ワックスの前工程で行うことができる。水素化脱ワックス工程の前にある種のフィッシャ−・トロプシュワックスは酸素含有化合物を除去し、他のフィッシャ−・トロプシュワックスは酸素含有化合物処理を行うことが好ましい。
【0115】
水素化脱ワックスプロセスは、一般に、水素の存在下で、触媒、又は触媒及び高温高圧の条件下で行われる。触媒は、例えば適切な酸化物担体に担持されたCo、Mo、W等の不均一系触媒、あるいは、ZSM−23やZSM−48、その他米国特許第4,906,350号に開示され、しばしばPdやPtなどの第VIII族金属と組み合わせて用いられる、ゼオライト触媒などの均一系触媒である。
【0116】
このプロセスに次いで、溶剤及び/又は触媒脱ワックス工程が行われ、水素化異性化反応生成物の流動点が低下する。溶剤脱ワックス工程では、水素化異性化反応生成物からワックス状成分を物理的に分別する。
【0117】
触媒脱ワックス工程では、水素化異性化反応生成物の一部を低沸点炭化水素に転換する。触媒脱ワックス工程は、ゼオライトやシリコアルミノリン酸塩などの形状選択性モレキュラーシーブと、Pt等の触媒金属とが組み合わせて用いられ、固定床、流動床、又はスラリープロセスにより、水素の存在下、高温高圧の条件下で行われる。
【0118】
GTL原料油又はオイル、フィッシャ−・トロプシュ炭化水素から誘導された原料油又はオイル、及び水素化異性化された原料油又はオイルに有用な触媒、プロセス及び組成物は、例えば、米国特許第2,817,693号、第4,542,122号、第5,5456,74号、第4,568,663号、第4,621,072号、第4,663,305号、第4,897,178号、第4,900,407号、第4,921,594号、第4,923,588号、第4,937,399号、第4,975,177号、第5,059,299号、第5,158,671号、第5,182,248号、第5,200,382号、第5,290,426号、第5,516,740号、第5,580,442号、第5,885,438号、第5,935,416号、第5,935,417号、第5,965,475号、第5,976,351号、第5,977,425号、第6,025,305号、第6,080,301号、第6,090,989号、第6,096,940号、第6,103,099号、第6,165,949号、第6,190,532号、第6,332,974号、第6,375,830号、第6,383,366号、第6,475,960号、第6,620,312号、第6,676,827号;欧州特許第324528号、第532116号、第532118号、第537815号、第583836号、第666894号、第668342号、第776959号;国際公開第97/31693号、第99/20720号、第99/45085号、第02/64710号、第02/64711号、第02/70627号、第02/70629号、第03/33320号、及び英国特許第1350257号、第1390359号、第1429494号及び第1440230号に開示されている。
【0119】
特に好ましいプロセスは欧州特許出願公開第464546号及び第464547号に開示されている。フィッシャ−・トロプシュワックス供給原料を用いたプロセスは、米国特許第4,594,172号、第4,943,672号、第6,046,940号、第6,103,099号、第6,332,974号、第6,375,830号、第6,475,960に開示されている。
【0120】
好ましいGTLから誘導された液体は、Chevron社、ConocoPhillips社、ExxonMobil社、Sasol社、SasolChevron社、Shell社、Statoil社及びSyntroleum社などの供給者から入手できる。
【0121】
本発明において、「水素化異性化」とは、ノルマルパラフィン及び/又は僅かに分岐したイソパラフィンが、転移により、より分岐したイソパラフィンに転換される触媒プロセスであり(イソ脱ワックス化としても知られる。)、「ワックス」とは、主にパラフィン分子からなり、大部分がノルマルパラフィンで、融点が0℃以上であり、室温又は室温近くで固形の炭化水素状の物質である。
【0122】
軟化剤(B)に用いられるGTLは、通常、粘度指数が95より高く、好ましくは100より高い。
軟化剤(B)は、エチレン・α−オレフィン・非共役ポリエン共重合体(A)に油展してもよいし、油展せずに後から加えてもよい。
【0123】
《補強剤(C)》
本発明に係る補強剤は、ゴム組成物の補強剤として、通常用いられる補強剤である。補強剤の具体例としては、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、微粉タルク、微分ケイ酸などがあり、配合する場合には、エチレン・α−オレフィン・非共役ポリエン共重合体および必要に応じて他のポリマー(エラストマー、ゴム等)の合計100質量部に対して、一般に30〜200質量部、好ましくは50〜180質量部である。
補強剤として、カーボンブラックを用いる場合は、より機械的強度、耐候性が優れるゴム組成物が得られる。
【0124】
〈カーボンブラック〉
本発明に係るカーボンブラックとしては、各種の市販品を特に制限なく用いることができる。具体的には、FEF級カーボンブラック[旭カーボン(株)製、商品名;旭#60G]、「旭#55G」、「旭#50HG」(商品名;旭カーボン(株)製)、「シースト(商品名)」シリーズ:V、SO、SRF、GPF、FEF、MAF、HAF、ISAF、SAF、FT、MT等のカーボンブラック(東海カーボン(株)製)、これらカーボンブラックをシランカップリング剤等で表面処理したものが挙げられる。
【0125】
《架橋剤(D)》
本発明に係る架橋剤(D)としては、種々公知の架橋剤、具体的には、例えば、有機過酸化物、フェノール樹脂、硫黄系化合物、ヒドロシリコーン系化合物、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート等のゴムを架橋する際に一般に使用される架橋剤が挙げられる。これらのうちでは、有機過酸化物、硫黄等の架橋剤(「加硫剤」とも言う。)が好適である。
【0126】
有機過酸化物としては、ジクミルペルオキシド、ジ−tert−ブチルペルオキシド、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p−クロロベンゾイルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、tert−ブチルペルオキシベンゾエート、ert−ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert−ブチルクミルペルオキシド等が挙げられる。
【0127】
このうちでは、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル-2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル-2,5−ジ−(tert−ブチルペルオキシ)ヘキシン−3、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルペルオキシ)バレレート等の2官能性の有機過酸化物が好ましく、中でも、2,5−ジ−(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(tert−ブチルペルオキシ)ヘキサンが最も好ましい。
【0128】
《ゴム組成物》
本発明のゴム組成物は、前記エチレン・炭素数3〜20のα−オレフィン・非共役ポリエン共重合体(A)100質量部に対し、前記軟化剤(B)を3〜100質量部、好ましく10〜100質量部、さらに好ましく20〜100質量部、前記補強剤(C)を50〜250質量部、好ましく70〜200質量部、さらに好ましく90〜150質量部及び前記架橋剤(D)を含む組成物である。
【0129】
軟化剤(B)の含有量が3質量部未満のゴム組成物は、加工性に劣り、一方、100質量部を超えるゴム組成物は、ゴム弾性に劣る。
補強剤(C)の50質量部未満のゴム組成物は、機械強度に劣り、一方、250質量部を超えるゴム組成物は、加工性に劣る。
【0130】
本発明のゴム組成物として、前記エチレン・炭素数3〜20のα−オレフィン・非共役ポリエン共重合体(A)を用いる場合は、前記エチレン・プロピレン・非共役ポリエン重合体(A1)及び前記エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン重合体(A2)をそれぞれ単独で用いてもよいが、前記エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン重合体(A2)を単独で用いると、より、耐寒性に優れる組成物が得られる。
【0131】
更に、本発明のゴム組成物として、前記エチレン・プロピレン・非共役ポリエン重合体(A1)及び前記エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン重合体(A2)を90/10〜10/90の質量比、好ましく80/20〜20/80の質量比で用いると、より、耐寒性と機械強度のバランスに優れる組成物が得られる。
【0132】
架橋剤(D)として、有機過酸化物を用いる場合、その配合量は、エチレン系共重合体(A)100質量部に対して、一般に0.1〜20質量部、好ましくは0.2〜15質量部である、さらに好ましくは0.5〜10質量部である。有機過酸化物の配合量が上記範囲内であると、得られる成形体の表面へのブルームなく、ゴム組成物が優れた架橋特性を示すので好適である。
【0133】
また、有機過酸化物を用いる場合、架橋助剤を併用することが好ましい。このような架橋助剤として、例えば、イオウ、p−キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;その他マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)社製)、酸化マグネシウム、亜鉛華(例えば、「META−Z102」(商品名;井上石灰工業株式会社製)などの酸化亜鉛)等の金属酸化物などが挙げられる。架橋助剤の配合量は、有機過酸化物1モルに対して、通常0.5〜10モル、好ましくは0.5〜7モル、より好ましくは1〜5モルである。
【0134】
架橋剤として硫黄系化合物(加硫剤)を用いる場合、具体例としては、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレン等が挙げられる。
【0135】
架橋剤として硫黄系化合物を用いる場合、その配合量は、エチレン系共重合体(A)100質量部に対して、通常は0.3〜10質量部、好ましくは0.5〜7.0質量部、さらに好ましくは0.7〜5.0質量部である。硫黄系化合物の配合量が上記範囲内であると、成形体の表面へのブルームがなく、優れた架橋特性を示す。
次に、上記架橋剤として硫黄系化合物を用いる場合には、加硫促進剤を併用することが好ましい。
【0136】
前記加硫促進剤としては、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N,N'−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド、2−メルカプトベンゾチアゾール(例えば、サンセラーM(商品名;三新化学工業社製))、2−(4−モルホリノジチオ)ペンゾチアゾール(例えば、ノクセラーMDB−P(商品名;大内新興化学工業社製))、2−(2,4−ジニトロフェニル)メルカプトベンゾチアゾール、2−(2,6−ジエチル−4−モルフォリノチオ)ベンゾチアゾールおよびジベンゾチアジルジスルフィド(例えば、サンセラーDM(商品名;三新化学工業社製))などのチアゾール系加硫促進剤;ジフェニルグアニジン、トリフェニルグアニジンおよびジオルソトリルグアニジンなどのグアニジン系加硫促進剤;アセトアルデヒド・アニリン縮合物およびブチルアルデヒド・アニリン縮合物などのアルデヒドアミン系加硫促進剤;2−メルカプトイミダゾリンなどのイミダゾリン系加硫促進剤;ジエチルチオウレアおよびジブチルチオウレアなどのチオウレア系加硫促進剤;テトラメチルチウラムモノスルフィド(例えば、サンセラーTS(商品名;三新化学工業社製))、テトラメチルチウラムジスルフィド(例えば、サンセラーTT(商品名;三新化学工業社製))、テトラエチルチウラムジスルフィド(例えば、サンセラーTET(商品名;三新化学工業社製))、テトラブチルチウラムジスルフィド(例えば、サンセラーTBT(商品名;三新化学工業社製))およびジペンタメチレンチウラムテトラスルフィド(例えば、サンセラーTRA(商品名;三新化学工業社製))などのチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛(例えば、サンセラーPZ、サンセラーBZおよびサンセラーEZ(商品名;三新化学工業社製))およびジエチルジチオカルバミン酸テルルなどのジチオ酸塩系加硫促進剤;エチレンチオ尿素(例えば、サンセラーBUR(商品名;三新化学工業社製)、サンセラー22−C(商品名;三新化学工業社製))および N,N'−ジエチルチオ尿素などのチオウレア系加硫促進剤;ジブチルキサトゲン酸亜鉛などのザンテート系加硫促進剤;その他、亜鉛華(例えば、META−Z102(商品名;井上石灰工業社製、酸化亜鉛))などが挙げられる。
【0137】
これらの加硫促進剤の配合量は、エチレン系共重合体(A)100質量部に対して、一般に0.1〜20質量部、好ましくは0.2〜15質量部、さらに好ましくは0.5〜10質量部である。この範囲内では、得られるゴム成形体の表面へのブルームなく、優れた架橋特性を示す。
【0138】
〈加硫助剤〉
本発明に係る加硫助剤は、架橋剤が硫黄系化合物である場合に用いられ、例えば、酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)社製)、酸化マグネシウム、亜鉛華(例えば、「メタZ−102」(商品名;井上石灰工業株式会社製)などの酸化亜鉛)などが挙げられる。
その配合量は、通常、エチレン系共重合体(A)100質量部に対して、1〜20質量部である。
【0139】
本発明のゴム組成物は、前記軟化剤(B)、前記補強剤(C)及び前記架橋剤(D)などに加え、用途により、目的に応じて他の添加剤、例えば、加工助剤、活性剤、吸湿剤、さらに耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤および増粘剤等を含んでいてもよい。
【0140】
なお、軟化剤として、プロセスオイル使用すると得られるゴム組成物の耐寒性が悪くなるので、良好は耐寒性を有するゴム組成物を得るには、なるべく、パラフィン系のプロセスオイルを含まないのが好ましいが、やむを得ず使用する場合は、その配合量はなるべく少なくすることが望ましい。
【0141】
〈充填剤〉
本発明に係る充填剤の具体例としては、軽質炭酸カルシウム、重質炭酸カルシウム、活性化炭酸カルシウム、タルク、クレー等が挙げられる。
【0142】
これらの充填剤の種類及び配合量は、その用途により適宜選択できるが、充填剤の配合量は、通常、エチレン・α−オレフィン・非共役ポリエン共重合体100質量部に対して、一般に10〜300重量部、好ましくは15〜200重量部である。
【0143】
〈老化防止剤(安定剤)〉
本発明のゴム組成物に、老化防止剤(安定剤)を配合することにより、これから形成される成形体の寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
【0144】
さらに、老化防止剤として、フェニルブチルアミン、N,N−ジ−2−ナフチル−p―フェニレンジアミン等の芳香族第2アミン系老化防止剤;ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシ)ヒドロシンナメート]メタン等のフェノール系老化防止剤;ビス[2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−t−ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2−メルカプトベンゾイルイミダゾール、2−メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤等がある。
【0145】
これらの老化防止剤は、1種単独であるいは2種以上の組み合わせで用いることができ、その配合量は、エチレン系共重合体(A)100質量部に対して、通常は0.3〜10質量部、好ましくは0.5〜7.0質量部である。このような範囲内とすることにより、得られるゴム組成物から得られる成形体の表面のブルームがなく、さらに加硫阻害が発生を抑制することができる。
【0146】
〈加工助剤〉
本発明に係る加工助剤としては、一般に加工助剤としてゴムに配合されるものを広く用いることができる。
【0147】
加工助剤の具体例としては、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム、エステル類などが挙げられる。これらのうち、ステアリン酸が好ましい。
加工助剤の配合量は、ゴム組成物に含まれるエチレン系共重合体(A)100質量部に対して、通常は10質量部以下、好ましくは8.0質量部以下である。
【0148】
〈活性剤〉
活性剤の具体例としては、ジ−n−ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;クタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物などが挙げられる。
活性剤を含有する場合は、その配合量は、エチレン系共重合体(A)100質量部に対して、通常は0.2〜10質量部、好ましくは0.3〜5質量部である。
【0149】
〈吸湿剤〉
吸湿剤の具体例としては、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンなどが挙げられる。
吸湿剤を含有する場合は、その配合量は、エチレン系共重合体(A)100質量部に対して、通常は0.5〜15質量部、好ましくは1.0〜12質量部である。
【0150】
《成形体》
本発明のゴム組成物から得られる成形体、たとえば、架橋成形体や架橋発泡体などは、様々の用途に用いることができる。
【0151】
具体的には、タイヤ用ゴム、O−リング、工業用ロール、パッキン(例えばコンデンサーパッキン)、ガスケット、ベルト(例えば、断熱ベルト、複写機ベルト)、ホース(例えば、ウォーターホース、ブレーキリザーバーホース、ラジエターホース)、防止ゴム、スポンジ(例えば、ウェザーストリップスポンジ、断熱スポンジ、プロテクトスポンジ、微発泡スポンジ)、ケーブル(イグニッションケーブル、キャブタイヤケーブル、ハイテンションケーブル)、電線被覆材(高圧電線被覆材、低電圧電線被覆材、舶用電線被覆材)、グラスランチャネル、カラー表皮材、給紙ロール、ルーフィングシート等を例示できる。
【実施例】
【0152】
次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。以下の実施例等の記載において、特に言及しない限り「部」は「質量部」を示す。
【0153】
《エチレン・α−オレフィン・非共役ポリエン共重合体》
〔各構造単位のモル量〕
エチレン・α−オレフィン・非共役ポリエン共重合体のエチレン[A]に由来する構造単位、α−オレフィン[B]に由来する構造単位および非共役ポリエン[C]に由来する構造単位のモル量は、1H−NMRスペクトルメーターによる強度測定によって求めた。
【0154】
〔ムーニー粘度〕
エチレン・α−オレフィン・非共役ポリエン共重合体のムーニー粘度ML(1+4)125℃は、ムーニー粘度計(島津製作所社製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
【0155】
〔B値〕
o−ジクロロベンゼン−d4/ベンゼン−d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、エチレン・α−オレフィン・非共役ポリエン共重合体の13C−NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき、B値を算出した。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4〜20のα−オレフィン[B]および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]−炭素数4〜20のα−オレフィン[B]ダイアッド連鎖分率を示す。
【0156】
〔遷移金属化合物の合成〕
[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリド(触媒−a1)の合成
(i)6,6−ビス(4−メトキシフェニル)フルベンの合成
窒素雰囲気下、500ml三口フラスコにリチウムシクロペンタジエニド8.28g(115mmol)および脱水THF(テトラヒドロフラン)200mlを加えた。氷浴で冷却しながらDMI(1,3−ジメチル−2−イミダゾリジノン)13.6g(119mmol)を添加し、室温で30分間攪拌した。その後4,4’−ジメトキシベンゾフェノン25.3g(105mol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水100mlを徐々に添加し、更にジクロロメタン200mlを加えて室温で30分間攪拌した。得られた二層の溶液を500ml分液漏斗に移し、有機層を水200mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700g、ヘキサン:酢酸エチル=4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6−ビス(4−メトキシフェニル)フルベン9.32g(32.1mmol、30.7%)を得た。6,6−ビス(4−メトキシフェニル)フルベンの同定は1H−NMRスペクトルにて行った。以下にその測定値を示す。
1H−NMRスペクトル(270MHz,CDCl3):δ/ppm 7.28−7.23(m,4H),6.92−6.87(m,4H),6.59−6.57(m,2H),6.30−6.28(m,2H),3.84(s,6H)
【0157】
(ii)ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100ml三口フラスコに2,3,6,7−テトラメチルフルオレン500mg(2.25mmol)および脱水t−ブチルメチルエーテル40mlを添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.63M)1.45ml(2.36mmol)を徐々に添加し、室温で18時間攪拌した。6,6−ビス(4−メトキシフェニル)フルベン591mg(2.03mmol)を添加した後、3日間加熱還流を行った。氷浴で冷却しながら水50mlを徐々に添加し、得られた溶液を300ml分液漏斗に移した。ジクロロメタン50mlを加えて数回振った後水層を分離し、有機層を水50mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタン793mg(1.55mmol、76.0%)を得た。ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタンの同定はFD−MSスペクトルにて行った。以下にその測定値を示す。
FD−MSスペクトル:M/z512(M+)
【0158】
(iii)[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100mlシュレンク管にビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタン272mg(0.531mmol)、脱水トルエン20mlおよびTHF90μl(1.1mmol)を順次添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.63M)0.68ml(1.1mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル20mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム164mg(0.511mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて−20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリド275mg(0.362mmol、70.8%)を得た。[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H−NMRスペクトルおよびFD−MSスペクトルにて行った。以下にその測定値を示す。
1H−NMRスペクトル(270MHz,CDCl3):δ/ppm 7.87(s,2H),7.80−7.66(m,4H),6.94−6.83(m,4H),6.24(t,J=2.6Hz,2H),6.15(s,2H),5.65(t,J=2.6Hz,2H),3.80(s,6H),2.47(s,6H),2.05(s,6H)
FD−MSスペクトル:M/z 760(M+)
得られた触媒−a1の化学式を以下に示す。
【0159】
【化7】
【0160】
〔合成例1〕
攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、1−ブテン、5−エチリデン−2−ノルボルネン(ENB)の重合反応を95℃にて行った。
重合溶媒としてはヘキサン(フィード量:32L/h)を用いて、連続的に、エチレンフィード量が3.2kg/h、1−ブテンフィード量が12kg/h、ENBフィード量が520g/hおよび水素フィード量が0NL(ノルマルリットル)/hとなるように、重合器に連続供給した。
【0161】
重合圧力を1.6MPaG、重合温度を95℃に保ちながら、主触媒として、前記触媒−a1を用いて、フィード量0.030mmol/hとなるよう、重合器に連続的に供給した。また、共触媒として(C6H5)3CB(C6F5)4(CB−3)をフィード量0.15mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TIBA)をフィード量10mmol/hとなるように、それぞれ重合器に連続的に供給した。
【0162】
このようにして、エチレン、1−ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体を15質量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・1−ブテン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
【0163】
以上の操作によって、エチレン、1−ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体(EBDM−1)が、毎時5.4kgの速度で得られた。
得られたEBDM−1の物性を前記記載の方法で測定した。結果を表1に示す。
表1に実施例及び比較例で用いたエチレン・炭素数3〜20のα−オレフィン・非共役ポリエン共重合体(A)の物性を示す。
【0164】
【表1】
表2に実施例及び比較例で用いた軟化剤の物性を示す。
【0165】
【表2】
【0166】
[
参考例1]
《組成物の調整》
MIXTRON BB MIXER((株)神戸製鋼所社製、BB−4型、容積2.95L、ローター4WH)を用いて、充填率75%、を用いて、三井EPT(商標)3090Mを44部と、三井EPT(商標)3062Mを72部(合計でEPDMとして100部、油展量16部)に対して、架橋助剤として酸化亜鉛(ZnO#1・酸化亜鉛2種(JIS規格(K−1410))、ハクスイテック(株)製)を5部、加工助剤としてステアリン酸を1部、補強剤としてカーボンブラック「旭#60HG」(商品名;旭カーボン(株)製)を128部、充填剤として重質炭酸カルシウム「ホワイトンSB」(白石カルシウム株式会社製)30質量、軟化剤としてGTL「Risella X430」(Shell社製)を70部の配合量で配合した後混練し、配合物1を得た。
混練条件は、ローター回転数が50rpm、フローティングウェイト圧力が3kg/cm
2、混練時間が3分間で行い、混練排出温度は138℃であった。
【0167】
次いで、配合物1が温度40℃となったことを確認した後、8インチロールを用いて、配合物1に、架橋剤(加硫剤)としてサンセラーBZ(三新化学工業株式会社製)1.5部、サンセラーCM(三新化学工業株式会社製)0.5部、サンセラーTT(三新化学工業株式会社製)0.5部、サンセラー22−C(三新化学工業株式会社製)0.5部、サンフェルR(三新化学工業株式会社製)1.5部、イオウ「アルファグランS-50EN」(株式会社東知製)0.3部の配合量で添加して混練し、配合物2を得た。
【0168】
混練条件は、ロール温度を前ロール/後ロール=50℃/50℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を1mmとして、混練時間10分間で分出しし、配合物2を得た。
【0169】
《加硫物(架橋物)の評価》
配合物2を、プレス成形機を用いて180℃で10分間架橋を行って、厚み2mmのシート(加硫物)を調製した。
【0170】
得られたシートについて、下記方法により硬度試験、引張り試験、ゲーマン捻り試験を行った。
配合物2を、円柱状の金型がセットされたプレス成形機を用いて180℃で13分間加硫して、厚さ12.7mm、直径29mmの直円柱形の試験片を作成し、圧縮永久歪(CS)試験用試験片(加硫物)を得た。
得られた圧縮永久歪(CS)試験用試験片を用いて、下記方法により、圧縮永久歪みを評価した。
結果を表3に示す。
【0171】
〔硬度試験:硬度(Durometer−A)〕
シートの硬度を、JIS K6253(2006)「加硫ゴム及び熱可塑性ゴム−硬さの求め方」の6項の「デュロメーター硬さ試験」の試験タイプAの記載に準拠して測定した。
【0172】
〔引張り試験:モジュラス、引張破断点応力、引張破断点伸び〕
シートのモジュラス、引張破断点応力、引張破断点伸びを以下の方法で測定した。
シートを打抜いてJIS K 6251(1993年)に記載されている3号形ダンベル試験片を調製し、この試験片を用いてJIS K6251第3項に規定される方法に従い、測定温度25℃、引張速度500mm/分の条件で引張り試験を行ない、伸び率が25%であるときの引張応力(25%モジュラス(M25))、伸び率が50%であるときの引張応力(50%モジュラス(M50))、伸び率が100%であるときの引張応力(100%モジュラス(M100))、伸び率が200%であるときの引張応力(200%モジュラス(M200))、引張破断点応力(TB)および引張破断点伸び(EB)を測定した。
【0173】
〔圧縮永久歪み〕
圧縮永久歪(CS)測定用試験片について、JIS K6262(1997)に従って、100℃×70時間処理後の圧縮永久歪を測定した。
【0174】
〔ゲーマン捻り試験(低温捻り試験)〕
低温捻り試験は、JIS K6261(1993)に従って、ゲーマン捻り試験機を用いて、シートのT2(℃)、T5(℃)およびT10(℃)を測定した。これらの温度は、加硫ゴムの低温柔軟性の指標となる。例えばT2が低いほど、低温柔軟性は良好である。
【0175】
[実施例2〜4]
共重合体(A)を、「三井EPT(商標)3062EM」と製造例1で得られる「EBDM−1」に変更し、軟化剤の配合量を表3に記載したように変更した以外は、
参考例1と同様に行い、実施例2〜4それぞれについて、配合物1、配合物2を得た。
次いで、
参考例1に記載の方法で配合物2の物性を測定した。結果を表3に示す。
【0176】
[比較例1、2]
軟化剤を、「ダイアナプロセス(商標)PS−430(出光興産製)」(比較例1)、「ダイアナプロセス(商標)PW−100(出光興産製)」(比較例2)に変更した以外は、
参考例1と同様に行い、比較例1、2それぞれについて、配合物1、配合物2を得た。
次いで、
参考例1に記載の方法で配合物2の物性を測定した。結果を表3に示す。
【0177】
【表3】