(58)【調査した分野】(Int.Cl.,DB名)
前記半導体回路チップの前記リードフレームと反対側の面および側面を覆う被覆保護樹脂層を備え、前記モールド樹脂部は、前記被覆保護樹脂層を介し前記半導体回路チップを囲む、請求項1〜5の何れか一項に記載の半導体パッケージ。
【発明を実施するための形態】
【0016】
以下、図面を参照して、本発明の一例としての実施形態について説明する。
なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、同様の目的で、特徴とならない部分を省略して図示している場合がある。
【0017】
<圧力センサパッケージ(半導体パッケージ)>
図1は、一実施形態の圧力センサパッケージ100の平面図である。
図2は、
図1の圧力センサパッケージ100におけるII−II線に沿う断面図である。
図3は、
図2に示す領域IIIの部分拡大図である。
なお、各図にはX−Y−Z座標系を示した。以下の説明において、必要に応じて各座標系に基づいて各方向の説明を行う。
【0018】
本実施形態の圧力センサパッケージ100は、防水型の圧力センサとして使用することができる。圧力センサパッケージ100は、半導体回路チップ30がモールド樹脂部10により防水パッケージされた半導体パッケージの一形態である。
【0019】
図2に示すように、圧力センサパッケージ(半導体パッケージ)100は、モールド樹脂部10と、圧力センサチップ20と、圧力センサチップ保護剤(以下、単に保護剤)60と、リードフレーム40と、半導体回路チップ30と、保護部70と、ボンディングワイヤ50、51と、を備える。
リードフレーム40は、−Z側を向く第1の面41と+Z側を向く第2の面42とを有する板材である。リードフレーム40の第2の面42には、圧力センサチップ20が配置されている。リードフレーム40の第1の面41には、保護部70に覆われた半導体回路チップ30が配置されている。保護部70は、保護樹脂層73と被覆保護樹脂層74とを含む。また、保護樹脂層73は、ベース部72と介在部71とを含む。
以下、圧力センサパッケージ100を構成する各部について詳細に説明する。
【0020】
<モールド樹脂部>
モールド樹脂部10は、リードフレーム40、半導体回路チップ30、ボンディングワイヤ51および保護部70を埋め込んで一体とする。モールド樹脂部10は、リードフレーム40、半導体回路チップ30、ボンディングワイヤ51および保護部70を外気や水分から遮断し保護する。
モールド樹脂部10は、例えば、エポキシ、PPS(ポリフェニレンサルファイド樹脂)、PBT(ポリブチレンテレフタレート)等のエンジニアリングプラスチックなどの樹脂からなる。モールド樹脂部10の構成樹脂のヤング率は、例えば1GPa〜50GPa(好ましくは10GPa〜30GPa)である。
【0021】
モールド樹脂部10は、リードフレーム40の第1の面41側(−Z側)に形成される本体部16と、本体部16から+Z側に環状に突出する環状壁部12と、環状壁部12の外周に形成される鍔部13とを有する。本体部16、環状壁部12および鍔部13は、一体に形成されている。
図1に示すように、本実施形態のモールド樹脂部10の本体部16、環状壁部12および鍔部13は、平面視円形である。しかしながら、これらの平面視形状は円形に限らず、矩形その他の多角形など、任意の形状とすることができる。
【0022】
環状壁部12は円筒状に形成され、その内部空間には、圧力センサチップ20が収容される収容部19が構成される。収容部19は、圧力センサチップ20を保護する保護剤60が満たされている。
【0023】
収容部19の底面の一部には、モールド樹脂部10の一部として延出する載置部17が形成されている。載置部17は、リードフレーム40の第2の面42側に形成され、圧力センサチップ20が設置される。
収容部19の底面であって、載置部17が形成されない部分は、リードフレーム40の一部(センサリード部44)が露出している。圧力センサチップ20は、ボンディングワイヤ50によって、露出したリードフレーム40と電気的に接続される。
【0024】
載置部17は、モールド樹脂部10と別体の部材としてもよい。その場合には、載置部17を構成する材料として、モールド樹脂部10を構成する樹脂材料より硬度が低いものを選択することが好ましい。これにより、モールド樹脂部10の吸湿や熱膨張等により圧力センサチップ20に加えられる応力を軽減し、圧力センサパッケージ100の測定精度を高めることができる。また、前述の載置部17は、厚く形成するほどにこの種の応力の影響を軽減でき、より測定精度を高める事ができる。
【0025】
鍔部13は、モールド樹脂部10の外周に突出して設けられている。鍔部13の+Z側に形成された面13aは、平坦に形成されている。圧力センサパッケージ100を携帯用機器に搭載する場合は、鍔部13の面13aと携帯用機器の蓋体との間にガスケットを押圧することで、鍔部13より−Z側の防水を実現させる。
【0026】
<圧力センサチップ>
圧力センサチップ20は、例えば、シリコン等からなる半導体基板の一面側に、ダイアフラム部と、基準圧力室としての密閉空間と、圧力によるダイアフラム部の歪抵抗の変化を測定するための複数の歪ゲージとを備えたものである。複数の歪ゲージは、それぞれボンディングワイヤ50を介しリードフレーム40に電気的に接続されている。
【0027】
圧力センサチップ20は、ダイアフラム部が圧力を受けて撓むと、各歪ゲージにダイアフラム部の歪み量に応じた応力が発生し、この応力に応じて歪ゲージの抵抗値が変化し、この抵抗値変化に応じたセンサ信号が出力される。
この圧力センサチップ20は、MEMS(Micro Electro-Mechanical Systems)技術を利用した圧力センサチップである。
【0028】
圧力センサチップ20は、収容部19内に収容され載置部17上に固定される。
圧力センサチップ20は、リードフレーム40の第2の面42側に設けられている。また、圧力センサチップ20は、平面視において、一部領域または全部領域がリードフレーム40から外れた位置に配置されていてもよい。
【0029】
圧力センサチップ20は、載置部17と反対側の上面21を回路が形成された面として配置されている。圧力センサチップ20は、上面21に接続されたボンディングワイヤ50を介して、リードフレーム40のセンサリード部44に接続されている。
【0030】
<保護剤>
保護剤60は、収容部19内に充填されて圧力センサチップ20を覆っている。保護剤60は、水や外気の浸入を防ぎ、圧力センサチップ20をこれらから保護する。
【0031】
保護剤60としては、例えば、シリコーン樹脂やフッ素系の樹脂が使用できる。保護剤60は液状やゲル状とすることができる。保護剤60は高い粘性を持つことが好ましい。
保護剤60としては、例えば、硬度約0(ショアA硬度、JIS K 6253に準拠)の柔らかいゲル剤を用いることが望ましい。これによって、測定対象から加えられる圧力をそのまま圧力センサチップ20に伝達できるため、圧力センサチップ20による圧力検出の精度を低下させることはない。
【0032】
保護剤60は、光透過性が低く、可視光や紫外線を遮断するものであることが好ましい。これにより、圧力センサチップ20の劣化を防ぐことができる。保護剤60に顔料等を含有させて光透過性を低くしてもよい。
【0033】
<半導体回路チップ>
半導体回路チップ30は、例えば集積回路(integrated circuit、IC)である。半導体回路チップ30は、リードフレーム40の第1の面41側に配置される。
半導体回路チップ30は、平面視で矩形状を有し、矩形状の底面33と、その4つ周縁部にそれぞれ形成された側面34と、底面33と反対側の下面31とを有する直方体形状を有する。
【0034】
半導体回路チップ30は、圧力センサチップ20からのセンサ信号が、入力されるとこれを処理して圧力検出信号として出力する。圧力センサチップ20からのセンサ信号は、ボンディングワイヤ50、センサリード部44、ボンディングワイヤ51を介して、半導体回路チップ30に入力される。
【0035】
半導体回路チップ30は、外部温度を測定する温度センサ32と、温度センサ32からの信号をA/D変換して温度信号として出力するA/D変換器(図示略)と、前記温度信号が入力される演算処理部(図示略)とを有する。
前記演算処理部では、前記温度信号に基づいて、圧力センサチップ20からのセンサ信号に補正処理を行うことができる。
温度センサ32としては、抵抗式(ブリッジ抵抗式)、ダイオード式、熱電対式、赤外線式等を採用できる。温度センサ32を内蔵することで、半導体回路チップ30は、系内の温度に応じて圧力検出信号を補正することができる。このため、精度の高い圧力測定が可能となる。
温度センサ32は、半導体回路チップ30内部において下面31に近接した位置に設けて、温度測定の精度を高めることが望ましい。
【0036】
半導体回路チップ30の底面33は、リードフレーム40の第1の面41に対向する。半導体回路チップ30は、平面視において、全部領域がリードフレーム40の台座部46に収まるように配置されていることが好ましい。
【0037】
また、半導体回路チップ30は、少なくとも一部が、平面視において圧力センサチップ20に重なる位置に配置される。このように半導体回路チップ30と圧力センサチップ20とが平面視で重なるように配置されることで、圧力センサパッケージ100を小型化することができる。また、これにより配線長を短くしてノイズの影響を低減できる。さらに、半導体回路チップ30と圧力センサチップ20とが、リードフレーム40を介して近接した位置に配置されていることにより、両者の温度差を小さくできる。これにより、半導体回路チップ30の温度センサ32において正確な温度測定を行い、圧力検出値を高精度で補正して検出精度を高めることができる。
【0038】
半導体回路チップ30は、リードフレーム40と反対側を向く下面31側に回路が設けられている。半導体回路チップ30の回路は、下面31に接続されたボンディングワイヤ51を介して、リードフレーム40のセンサリード部44およびターミナル端子45に接続されている。
【0039】
<リードフレーム>
リードフレーム40は、導電体からなる板状体である。リードフレーム40の第1の面41側には、半導体回路チップ30が配置されている。また、リードフレーム40の第2の面42側には、載置部17を介し圧力センサチップ20が配置されている。
【0040】
リードフレーム40は、熱伝導性に優れた材料からなることが好ましい。これにより、圧力センサチップ20および半導体回路チップ30の過熱または過冷却を防ぐことができる。したがって圧力センサチップ20および半導体回路チップ30の動作を安定化させるうえで有利となる。このような材料として、リードフレーム40は、銅(Cu)、鉄(Fe)等の金属から形成することが好ましい。
【0041】
図4に、リードフレーム40の第1の面41側(−Z側)から見た平面図を示す。なお、
図4に示すリードフレーム40は、半導体回路チップ30が実装された状態である。また、
図4に示すリードフレーム40は、圧力センサパッケージ100の内部で折曲されている部分(折曲部45a)を展開した状態で示す。
リードフレーム40は半導体回路チップ30が実装される台座部46と、2つのターミナル端子45と、4つのセンサリード部44とから構成されている。なお、ターミナル端子45およびセンサリード部44の数は、本実施形態に限定されるものではなく、圧力センサパッケージ100の機能に応じて適宜決定される。
【0042】
図4において、センサリード部44および台座部46の周縁に破線で除去部47を示した。これらの除去部47は、モールド樹脂部10によって、リードフレーム40をインサート成形する際に、金型によって把持するタイバーとして機能する。除去部47は、モールド樹脂部10を形成した後に、切断され除去される。
【0043】
ターミナル端子45は、半導体回路チップ30とボンディングワイヤ51を介し電気的に接続される。ターミナル端子45は、圧力センサパッケージ100と外部との信号および電源のやり取りに用いられる端子であり、例えば、電源端子、接地端子、信号入力端子、信号出力端子等に対応して設けられる。
【0044】
ターミナル端子45は、ボンディングワイヤ51が接続される接続部45bと、溝部45cと折曲部45aとを有する。
溝部45cは、第1の面41側にエッチングなどにより形成された溝である。
図2に示すように、ターミナル端子45は、溝部45cを谷として、接続部45bに対し折曲部45aを−Z側に立ち上げて折り曲げられる。ターミナル端子45は、折曲部45aが立ち上がるように成形されることで、折曲部45aの一面がモールド樹脂部10の下面(−Z側の面)において十分な面積で露出し、外部との接点を確保する。
【0045】
センサリード部44は、半導体回路チップ30と圧力センサチップ20の間の信号のやり取りを行う中継端子として設けられている。
図2に示すように、センサリード部44は、第1の面41において、半導体回路チップ30とボンディングワイヤ51により電気的に接続される。また、センサリード部44は、第2の面42において、圧力センサチップ20とボンディングワイヤ50により電気的に接続される。半導体回路チップ30と圧力センサチップ20とは、ボンディングワイヤ50、51およびセンサリード部44を介し電気的に接続されている。
【0046】
台座部46には、半導体回路チップ30が実装され、さらにこの半導体回路チップ30を覆う保護部70が形成されている。保護部70は、半導体回路チップ30とリードフレーム40との間に位置して半導体回路チップ30を台座部46に接着する保護樹脂層73を含む。保護樹脂層73は、台座部46の第1の面41上に設けられるベース部72と、ベース部72の表面72aを覆ってベース部72と半導体回路チップ30とを接着する介在部71と、を有する。
【0047】
図5に第1の面41側(−Z側)から見たリードフレーム40の平面図を示す。
台座部46は、1辺が楕円形状であり3辺が直線状である縁部46aで囲まれている。台座部46には、第1の面41側に複数の凹溝43が形成されている。複数の凹溝43は、2つの境界凹溝43Aと、3つの包囲凹溝43Bと、2つの外形凹溝43Cとに分類される。
【0048】
図5に示すように、2つの境界凹溝43Aのうち、一方はX軸方向に延び、他方はY方向に延びる。2つの境界凹溝43Aは、第1の面41において、台座部46の中央で十字状に(すなわち、互いのなす角が90°となるように)交差している。2つの境界凹溝43Aは、交差点において互いに繋がっている。
【0049】
3つの包囲凹溝43Bのうち2つは、Y軸方向に延びて上述の十字状に交差する2つの境界凹溝43AをX軸方向両側から囲む。また、他の包囲凹溝43Bは、X軸方向に延びて十字状に交差する2つの境界凹溝43Aを台座部46の縁部46aの一辺とともにY軸方向から囲む。
【0050】
境界凹溝43Aおよび包囲凹溝43Bは、第1の面41を4つの領域(ベース部領域)A1、A2、A3、A4に区画する。ここでは、
図5における右上、左上、左下、右下の領域を順に第1の領域A1、第2の領域A2、第3の領域A3、第4の領域A4と呼ぶこととする。
境界凹溝43Aは、4つの領域A1〜A4同士の間に位置する。本実施形態において、一方の境界凹溝43Aは、第1の領域A1と第2の領域A2の間および第3の領域A3と第4の領域A4の間に延びており、これらを区画する。また、他方の境界凹溝43Aは、第1の領域A1と第4の領域A4の間および第2の領域A2と第3の領域A3の間に延びており、これらを区画する。
包囲凹溝43Bは、4つの領域A1〜A4全体を囲む。包囲凹溝43Bと台座部46の縁部46aで囲まれた範囲の内側には、第1〜第4の領域A1〜A4全てが含まれる。
第1〜第4の領域A1〜A4には、それぞれ保護樹脂層73のベース部72が設けられる。
【0051】
第1〜第4の領域A1〜A4は、平面視で互いに同形状である。本明細書において、「平面視で同形状」とは、+Z側から見た1つの領域の形状と、−Z側から見た場合の他の領域の形状とが、同じである場合も含む。すなわち、第1〜第4の領域A1〜A4の何れか1つ以上の領域が他の領域に対し、線対称または回転対称である場合も「平面視で同形状」の概念に含むものとする。
【0052】
図6に示すように、境界凹溝43Aおよび包囲凹溝43Bにより区画された第1〜第4の領域A1〜A4には、ベース部72を構成する硬化前の(液状の)樹脂材料72Aが供給される。凹溝43は、保護部70の一部であるベース部72を構成する硬化前の樹脂材料が第1〜第4の領域A1〜A4の外に濡れ広がることを抑制する。
【0053】
境界凹溝43Aの端部43Aaと3つの包囲凹溝43Bとの間には、それぞれ隙間Wが設けられている。同様に、境界凹溝43Aの−Y側を向く1つの端部43Aaと台座部46の縁部46aとの間には、隙間Wが設けられている。区画された領域A1〜A4同士は、隙間Wを介し互いに繋がっている。したがって、第1〜第4の領域A1〜A4にそれぞれ供給されたベース部72を構成する硬化前の樹脂材料72Aは、隙間Wにおいて濡れ広がりが許容され、隣接する領域の樹脂材料と互いに繋がる。
【0054】
外形凹溝43Cは、台座部46の縁部46aとともに、略矩形状の被覆保護樹脂層領域Cを形成する。被覆保護樹脂層領域Cは、保護部70の一部である被覆保護樹脂層74を構成する硬化前の樹脂材料が濡れ広がる領域である。
【0055】
次に、
図3を基に、凹溝43の具体的な構成とその機能について説明する。
図3に示すように、本実施形態の凹溝43は、断面U字状に形成されており、深さ方向に延びる二つの斜面43bを有する。この斜面43bと領域A1〜A4の境界には、エッジ部43aが形成されている。即ち、領域A1〜A4は、凹溝43の特にエッジ部43aによって区画されている。また、凹溝43は、領域A1〜A4の反対側にエッジ部43cを形成する。
【0056】
ベース部72を構成する硬化前の液状の樹脂材料は、第1〜第4の領域A1〜A4の何れかに供給されることで供給された領域内に広がる。さらに、領域A1〜A4の周縁に位置するエッジ部43aに達すると、表面張力により濡れ広がりが止まる。これにより、硬化前の樹脂材料の濡れ広がりを抑制する。この状態で、樹脂材料を硬化させることで、領域A1〜A4内においてそれぞれ表面張力により盛り上がったベース部72が形成される。
【0057】
介在部71を構成する硬化前の液状の樹脂材料は、包囲凹溝43Bの外側のエッジ部43cにより、濡れ広がりが抑制されている。これにより、介在部71を構成する樹脂材料が、包囲凹溝43Bの外側に流れ出すことがない。ベース部72と半導体回路チップ30との間に位置する介在部71の量を十分に確保して、接着の確実性を高めることができる。
【0058】
被覆保護樹脂層74は、包囲凹溝43Bの外側に位置する外形凹溝43Cのエッジ部43aと台座部46の縁部46aとによって、濡れ広がりが抑制される。これにより、被覆保護樹脂層領域Cのみに被覆保護樹脂層74を形成できる。被覆保護樹脂層領域Cを外形凹溝43Cにより囲み、被覆保護樹脂層74が濡れ広がる領域を制限することで、被覆保護樹脂層74の樹脂材料の容量を節約できる。広い領域に樹脂材料が濡れ広がる場合には、半導体回路チップ30を覆う十分な高さを得るために、大量の樹脂材料が必要となる。樹脂材料の濡れ広がる領域を制限することで、少量の樹脂材料で半導体回路チップ30を覆うことができる。
【0059】
介在部71および被覆保護樹脂層74の濡れ広がる領域の境界は、上述した例に限定されない。例えば介在部71は、外形凹溝43Cの内側のエッジ部43aまたは外側のエッジ部43cまで濡れ広がっても良い。同様に、被覆保護樹脂層74は、半導体回路チップ30を覆うことができれば、包囲凹溝43Bのエッジ部43cおよび外形凹溝43Cのエッジ部43a、43cのうち、何れで濡れ広がりが抑止されていてもよい。
さらに、介在部71および被覆保護樹脂層74は、必ずしも凹溝43のエッジ部43a、43cで濡れ広がりが止まる必要は無い。介在部71および被覆保護樹脂層74は、リードフレーム40の平坦な面で濡れ広がりが止まっていてもよく、また凹溝43の内部で濡れ広がりが止まっていてもよい。
【0060】
凹溝43(すなわち、境界凹溝43A、包囲凹溝43B、外形凹溝43C)の深さDは、10μm以上とすることが好ましい。深さDを10μm以上とすることで、表面応力により保護部70を構成する硬化前の各樹脂材料の濡れ広がりを確実に抑制できる。なお、境界凹溝43A、包囲凹溝43B、外形凹溝43Cは、濡れ広がりを抑制する対象樹脂の粘性に応じてそれぞれ異なる深さに形成されていてもよい。
また、凹溝43の深さDは、リードフレーム40の厚さに対して1/2以下とすることが好ましく、2/3以下とすることがより好ましい。これにより、リードフレーム40の強度を確保し、組み立て工程における破損を防ぐことができる。なお、リードフレーム40の厚さは、特に限定されるものではないが、例えば150μm程度である。
【0061】
凹溝43は、エッチングにより形成することができる。これにより、鋭利なエッジ部43a、43cを形成し、表面張力により確実に保護部70を構成する硬化前の各樹脂材料の濡れ広がりを抑制できる。また、凹溝43の形成方法は、フォトリソグラフィにより形成してもよく、また、機械加工により形成してもよい。
【0062】
<保護部>
保護部70は、半導体回路チップ30の底面33、4つ側面34、並びに下面31と覆っている。保護部70は、未硬化の状態で供給し硬化させることで形成される。
保護部70は、モールド樹脂部10を構成する材料、およびリードフレーム40を構成する材料よりも低いヤング率を有し、モールド樹脂部10およびリードフレーム40と半導体回路チップ30との間に加わる応力を緩和する機能を果たす。
【0063】
半導体回路チップ30は、保護部70を介してモールド樹脂部10により囲まれている。モールド樹脂部10は、樹脂の硬化時に生じる応力や、硬化温度と室温との温度差により生じる熱応力などがかかった状態となっている。この状態で、外部環境により温度ストレスや湿度ストレスが加えられると、モールド樹脂部10等は変形しやすくなる。また、モールド樹脂部10等の変形に伴ってリードフレーム40にも変形が及ぶ可能性がある。特に、高温、高湿環境下では、モールド樹脂部10が吸湿しやすく、モールド樹脂部10の変形が起こりやすい。圧力センサパッケージ100は、半導体回路チップ30が保護部70に接し、囲まれているため、モールド樹脂部10およびリードフレーム40の変形に起因する圧力が半導体回路チップ30に及ぶのを抑制できる。
【0064】
保護部70は、保護樹脂層73と被覆保護樹脂層74とを有する。保護樹脂層73は、半導体回路チップ30とリードフレーム40との間に位置する。被覆保護樹脂層74は、半導体回路チップ30の下面31(すなわちリードフレーム40と反対側の面)および側面34を覆う。なお、保護樹脂層73の一部が、リードフレーム40の側面34の一部又は全部を覆っていてもよい。この場合、被覆保護樹脂層74は、保護樹脂層73を介して側面34を覆う。
【0065】
<保護樹脂層>
保護樹脂層73は、半導体回路チップ30の底面33の全域を覆っている。また、介在部71は、底面33とリードフレーム40の第1の面41との間に介在して形成されている。したがって、半導体回路チップ30の底面33は、リードフレーム40から離隔され、リードフレーム40と接触しない。
【0066】
保護樹脂層73は、リードフレーム40に半導体回路チップ30を接着する機能を果たす。また、保護樹脂層73は、リードフレーム40と半導体回路チップ30との熱膨張率の差またはリードフレーム40の変形に起因する応力が、半導体回路チップ30に加わることを抑制する機能を果たす。
【0067】
保護樹脂層73は、ベース部72と介在部71とを含む。ベース部72および介在部71は、同じ樹脂材料から形成してもよいし、異なる樹脂材料から形成してもよい。
ベース部72および介在部71を構成する材料として、熱硬化型樹脂、紫外線硬化型樹脂などが使用できる。具体的にベース部72および介在部71は、例えばシリコーン樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂等からなる。また、これらの材料のうち、2つ以上を併用して用いてもよい。特にシリコーン樹脂は、吸湿しにくいため、高温・高湿環境でも物性が変化しにくく、保護樹脂層73を構成する樹脂材料として最も好ましい。
【0068】
保護樹脂層73のヤング率(すなわち、ベース部72および介在部71のヤング率)は、0.6MPa以上1.4MPa未満であることが好ましい。
保護樹脂層73のヤング率を1.4MPa未満とすることで、リードフレーム40の変形、熱膨張率の差等に起因する応力が半導体回路チップ30に伝達されることを十分に抑制できる。
また、保護樹脂層73を0.6MPa以上とすることで、リードフレーム40に対し半導体回路チップ30を安定的に保持できる。半導体回路チップ30は、保護樹脂層73によりリードフレーム40に接着固定した後に、ワイヤボンディング工程によりリードフレーム40と電気的に接続される。保護樹脂層73を0.6MPa以上とすることで、リードフレーム40に対する半導体回路チップ30の安定性を高め、ワイヤボンディング工程の確実性を高めることができる。
【0069】
保護樹脂層73の厚みは、20μm以上とすることが好ましい。保護樹脂層73を20μm以上とすることで、リードフレーム40の変形および半導体回路チップ30との熱膨張率の差等に起因する応力が半導体回路チップ30に伝達されることを十分に抑制できる。
【0070】
次に、
図5〜
図9を基に、保護樹脂層73の形成手順を説明する。
まず、
図5に示すリードフレーム40を用意し、リードフレーム40の第1の面41を上に向けた状態(
図2において、上下逆転させた状態)で、保持する。上述したように、リードフレーム40の第1の面41には、複数の凹溝43(43A、43B、43C)が設けられている。凹溝43は、第1の面41を4つの領域A1〜A4に区画している。
【0071】
次に、
図6に示すように、ベース部72を構成する硬化前の(液状の)樹脂材料72Aを第1〜第4の領域A1〜A4にそれぞれ供給する。樹脂材料72Aの供給は、ディスペンサ等の供給装置を用いて行う。第1から第4の領域A1〜A4に供給された樹脂材料72Aは、それぞれの領域内で濡れ広がる。また、境界凹溝43Aおよび包囲凹溝43Bにおいて、濡れ広がりが制限されて、それぞれの領域内にとどまる。一方で、隙間Wにおいては、樹脂材料72Aの濡れ広がりが許容される。これにより、互いに隣接する領域に供給された硬化前の樹脂材料72A同士は、隙間Wにおいて繋がる。
【0072】
次に、硬化前の樹脂材料72Aを硬化させリードフレーム40に接着固定した状態のベース部72を形成する。
図7に、ベース部72が形成されたリードフレーム40の台座部46の断面図を示す。なお、
図7は、
図6のVII−VII線に沿った断面図である。
図7に示すように、4つのベース部72は、それぞれ表面張力により略中央が盛り上がったドーム形状を有する。ベース部72は、頂点Tを有し、ベース部72の表面72aは、頂点Tからなだらかに傾斜する曲面形状を有する。
【0073】
一般的に、領域A1〜A4に、硬化前の樹脂材料72Aを供給する場合、同じ量の樹脂材料72Aを供給することは困難である。すなわち、領域A1〜A4に供給する樹脂量には、ばらつきが生じ、これに起因してベース部72の高さがばらつくという問題があった。
本実施形態によれば、第1〜第4の領域A1〜A4に供給された硬化前の樹脂材料72Aは、
図6に示す隙間Wを介し互いに流入し、4つ領域A1〜A4の樹脂材料72Aの表面張力が均一になる。さらに、第1〜第4の領域A1〜A4は、互いに同形状であるため、4つのベース部72の表面72aは、同形状となる。これにより、4つのベース部72の頂点Tは、それぞれ同じ高さとなる。
【0074】
次に、
図8に示すように、介在部71を構成する硬化前の樹脂材料71Aを4つのベース部72の間にディスペンサ等により供給する。
次に、
図9に示すように、硬化前の樹脂材料71Aの上から半導体回路チップ30を搭載する。このとき、半導体回路チップ30を4つのベース部72の頂点Tと平面視で重ねて配置する。硬化前の樹脂材料71Aは、半導体回路チップ30に押し広げられて、ベース部72の表面72a(
図2参照)を覆う。また、硬化前の樹脂材料71Aは、包囲凹溝43Bの内部に流れ込み、エッジ部43c(
図3参照)で濡れ広がりが制限される。なお、硬化前の樹脂材料71Aは、境界凹溝43Aの内部に流れ込み、境界凹溝43Aを埋め込む。
【0075】
次に、介在部71を硬化させる。これにより、ベース部72と半導体回路チップ30とを接着させる。
以上の工程を経て、ベース部72および介在部71を含む保護樹脂層73を形成することができる。これにより、半導体回路チップ30をリードフレーム40に固定することができる。
【0076】
上述したように、凹溝43によって区画された領域に硬化前の樹脂材料72Aを供給して硬化させることで、表面張力によりうず高く盛り上がった、ベース部72を形成できる。また、ベース部72の頂点Tに半導体回路チップ30を搭載して介在部71により固定することで、リードフレーム40と半導体回路チップ30との間の保護樹脂層73を厚く(より具体的には20μm以上に)形成できる。保護樹脂層73を厚く形成することで、リードフレーム40の変形等に起因する半導体回路チップ30の負荷をより効果的に抑制することが可能となる。
【0077】
4つのベース部72は、凹溝43同士の間に設けられた隙間Wを介し互いに繋がっており、これによりディスペンサによる供給がばらつく場合であっても、4つのベース部72の頂点Tを同じ高さに形成できる。また、平面視で4つのベース部72の頂点Tと重なる位置に半導体回路チップ30を搭載することで、半導体回路チップ30をリードフレーム40に対し平行に配置できる。したがって、後工程の半導体回路チップ30とリードフレーム40とを接続するワイヤボンディングを安定して行うことができる。
【0078】
なお、本実施形態において、リードフレーム40に4つの領域A1〜A4が形成され、各領域に対応して4つのベース部72が設けられるが、これに限定されない。ベース部72は、半導体回路チップ30を安定して支持するために同一の直線上に並ばない3点で支持できればよい。したがって、ベース部72の数は、3つ以上であればよい。
【0079】
<被覆保護樹脂層>
図2に示すように、被覆保護樹脂層74は、半導体回路チップ30の全体を覆うようにドーム状に形成されている。
被覆保護樹脂層74は、半導体回路チップ30の4つの側面34と下面31の全域を覆って固着している。したがって、半導体回路チップ30は、被覆保護樹脂層74を介しモールド樹脂部10に囲まれている。また、被覆保護樹脂層74は、リードフレーム40の台座部46において、半導体回路チップ30が実装される周縁の領域(被覆保護樹脂層領域C)を覆って固着している。
【0080】
被覆保護樹脂層74は、半導体回路チップ30とリードフレーム40の一部とを覆うことで、より強固に半導体回路チップ30をリードフレーム40に固定する機能を果たす。
また、被覆保護樹脂層74は、モールド樹脂部10、リードフレーム40および半導体回路チップ30の熱膨張率の差、並びにモールド樹脂部10の吸湿に起因する応力が、半導体回路チップ30に加わることを抑制する機能を果たす。
被覆保護樹脂層74は、モールド樹脂部10に囲まれている。モールド樹脂部10は、半導体回路チップ30をリードフレーム40に実装した後に半導体回路チップ30を埋め込んで射出成型される。被覆保護樹脂層74を備えていない場合には、モールド樹脂部の射出成型時の射出圧力により、半導体回路チップに負荷が加わる虞がある。また、被覆保護樹脂層74を備えていない場合には、モールド樹脂部を構成する樹脂材料が硬化した際に応力が残留し、半導体回路チップに負荷が加わる虞がある。被覆保護樹脂層74は、モールド樹脂部10の射出成型時の射出圧力および射出成型後の残留応力を緩和して、半導体回路チップ30に加わる負荷を軽減する機能を果たす。
【0081】
前述したとおり、凹溝43および凹溝43同士の間に設けられた隙間Wの働きにより、複数形成されるベース部72の頂点Tは同じ高さとなる。また、複数のベース部72の頂点Tの上に搭載される半導体回路チップ30は、傾いて搭載されることなく安定した姿勢で搭載される。このように、ベース部72の形状と、ベース部72上に搭載される半導体回路チップ30の姿勢が安定するので、半導体回路チップ30を覆うようにドーム状に形成される被覆保護樹脂層74についても、製造バラツキを抑えて安定した形状で形成することができる。したがって、モールド樹脂部10の射出成型時の射出圧力および射出成型後の残留応力が被覆保護樹脂層74により緩和されるという効果も、安定して発揮されることとなる。
【0082】
被覆保護樹脂層74の表面74aは、湾曲凸面をなす。即ち、被覆保護樹脂層74は、その中央部分が最も厚く、周縁に近いほど薄くなっている。被覆保護樹脂層74の表面74aを湾曲凸面とすることで、応力集中が起こりにくくなる。これにより、モールド樹脂部10が外力や吸湿、熱応力等により変形した場合であっても、その影響を半導体回路チップ30に及ぶのを抑制する効果を高めることができる。
また、被覆保護樹脂層74の表面74aを湾曲凸面とすることによって、インサート成形でモールド樹脂部10を形成する場合に、モールド樹脂部10を構成する樹脂材料が金型内でスムーズに流れ、モールド樹脂部10中にボイド等の欠陥が形成されることを抑制できる。
【0083】
被覆保護樹脂層74は、半導体回路チップ30をリードフレーム40に実装し、ボンディングワイヤ51によりこれらを電気的に接続した後に形成する。
以下に、被覆保護樹脂層74の形成方法の一例を説明する。
【0084】
まず、前工程として、上述したように、保護樹脂層73を形成するとともに半導体回路チップ30をリードフレーム40に搭載して、
図9に示す状態とする。さらに、ワイヤボンディング工程を経て、半導体回路チップ30とリードフレーム40とをボンディングワイヤ51により電気的に接続した状態とする。
【0085】
次に、リードフレーム40の第1の面41を上に向けた状態(
図2において、上下逆転させた状態)で、
図9に示すように、半導体回路チップ30の上方から硬化前の(液状の)材料をディスペンサ等により供給する。供給された樹脂材料は、表面張力によりドーム形状を形成し、半導体回路チップ30を覆う。この樹脂材料は、保護樹脂層73の表面を覆う。さらに、この樹脂材料は、リードフレーム40の第1の面41の被覆保護樹脂層領域Cにおいて濡れ広がり、外形凹溝43Cおよび台座部46の縁部46aに達すると自身の表面張力により濡れ広がりが制限される。これにより、未硬化の樹脂材料は、リードフレーム40の第2の面42側に達することがない。また、
図2に示すように、台座部46には、外形凹溝43Cにより被覆保護樹脂層74の樹脂材料の濡れ広がりが制限された露出領域Bが形成される。露出領域Bには、ターミナル端子45の一部も含まれる。露出領域Bが形成されることで、ターミナル端子45の折曲部45aに被覆保護樹脂層74が達することがなく、折曲部45aを折り曲げる工程において不具合が生じない。また、露出領域Bが形成されることで、被覆保護樹脂層74の使用量を少なくしても、半導体回路チップ30を確実に覆うことができる。
【0086】
次に、未硬化の材料を硬化させることで、被覆保護樹脂層74が形成される。このように形成された被覆保護樹脂層74は、保護樹脂層73とともに半導体回路チップ30の全面(底面33、側面34、下面31)を覆う保護部70を形成する。
【0087】
被覆保護樹脂層74を構成する材料として、熱硬化型樹脂、紫外線硬化型樹脂などが使用できる。具体的に被覆保護樹脂層74は、例えばシリコーン樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂等からなる。また、これらの材料のうち、2つ以上を併用して用いてもよい。これらのうちで、シリコーン樹脂は、吸湿しにくいため、高温・高湿環境でも物性が変化しにくいため、被覆保護樹脂層74を構成する樹脂材料として最も好ましい。
【0088】
被覆保護樹脂層74のヤング率は、保護樹脂層73のヤング率より大きいことが好ましい。
被覆保護樹脂層74および保護樹脂層73は、半導体回路チップ30に加わる応力を緩和する機能を有する点で共通している。一方で、被覆保護樹脂層74の周囲には、モールド樹脂部10が射出成型により形成される。たがって、モールド樹脂部10の射出成型時の射出圧力により、被覆保護樹脂層74が変形する虞がある。被覆保護樹脂層74が変形した場合に、被覆保護樹脂層74が局所的に薄くなり、薄くなった部分で半導体回路チップ30を十分に保護できない虞がある。このため、被覆保護樹脂層74は、モールド樹脂部10の射出成型時の圧力に対して変形を抑制するために十分なヤング率を有することが求められる。
また、被覆保護樹脂層74は、半導体回路チップ30とモールド樹脂部10との間に介在し、保護樹脂層73は、半導体回路チップ30とリードフレーム40との間に介在する。リードフレーム40から半導体回路チップ30に加わる応力と比較して、モールド樹脂部10から半導体回路チップ30に加わる応力は小さい。したがって、被覆保護樹脂層74は、保護樹脂層73と比較してヤング率が高い場合であっても、半導体回路チップ30に加わる負荷を十分に軽減できる。
【0089】
被覆保護樹脂層74のヤング率は、1.4MPa以上1GPa以下であることが好ましい。
被覆保護樹脂層74のヤング率を1GPa以下とすることで、モールド樹脂部10、リードフレーム40および半導体回路チップ30の熱膨張率の差、並びにモールド樹脂部10の吸湿に起因する応力が、半導体回路チップ30に伝わることを十分に抑制できる。
また、被覆保護樹脂層74のヤング率を1.4MPa以上とすることで、被覆保護樹脂層74は、モールド樹脂部10の射出成型時の圧力に対する自身の変形を十分に抑制できる。したがって、射出成型により被覆保護樹脂層74に局所的に薄い部分が形成されることがなく、確実に半導体回路チップ30を保護できる。
【0090】
本実施形態の圧力センサパッケージ100は、被覆保護樹脂層74のヤング率を高くすることにより、モールド樹脂部10の射出成型時に被覆保護樹脂層74に局所的に薄い部分が形成されにくい。これにより、モールド樹脂部10等に温度ストレスや湿度ストレスが加えられた場合でも、被覆保護樹脂層74により半導体回路チップ30を確実に保護し、温度センサ32の測定機能を正常に維持して温度センサ32の出力に誤差が生じるのを抑制することができる。結果として、本実施形態の圧力センサパッケージ100によれば、半導体回路チップ30の動作の正確性を高めることができる。
【0091】
<製造方法>
圧力センサパッケージ100の製造方法の一例を説明する。
まず、プレス加工またはエッチング加工等の従来公知の方法により、リードフレーム40の外形を形成する。さらに、リードフレーム40の第1の面41に、機械加工又はエッチング加工等の従来公知の方法により凹溝43を形成する。
次いで、リードフレーム40の第1面に、上述したように保護樹脂層73を形成するとともに、半導体回路チップ30を実装する。
次いで、ボンディングワイヤ51によって、半導体回路チップ30とリードフレーム40とを接続する。
次いで、半導体回路チップ30を覆うように被覆保護樹脂層74を構成する未硬化の樹脂材料を供給、硬化させ、被覆保護樹脂層74を形成する。
次いで、これまでの工程で形成された半組品を金型内に設置し、樹脂成型によりモールド樹脂部10を形成する。
次いで、モールド樹脂部10の載置部17上に圧力センサチップ20を設置し、ボンディングワイヤ50によって圧力センサチップ20とセンサリード部44とを接続する。
次いで、収容部19内に保護剤60を充填して、圧力センサチップ20を覆う。
以上の工程を経て、圧力センサパッケージ100を形成できる。
【0092】
<変形例>
次に、上述した実施形態に採用可能な、リードフレーム変形例を、変形例1〜変形例7として説明する。変形例1〜変形例4の凹溝は、上述した凹溝43と比較して、外形凹溝43Cの構成は共通しており境界凹溝43Aおよび包囲凹溝43Bうち何れか一方又は両方の構成が異なる。
なお、上述実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
【0093】
(変形例1、変形例2)
図10は、変形例1のリードフレーム140の平面図である。リードフレーム140には、複数の凹溝143が形成されている。複数の凹溝143には、2つの境界凹溝143Aと3つの包囲凹溝143Bと、が含まれる。
図11は、変形例2のリードフレーム240の平面図である。リードフレーム240には、複数の凹溝243が形成されている。複数の凹溝143には、2つの境界凹溝243Aと3つの包囲凹溝243Bと、が含まれる。
【0094】
変形例1において、互いに交差する2本の境界凹溝143Aのうち一方は、包囲凹溝143Bに達している。
同様に、変形例2において、互いに交差する2本の境界凹溝243Aのうち一方は、包囲凹溝243Bに達している。また、2本の境界凹溝243Aのうち他方は、リードフレーム240の台座部246の縁部246aに達している。
変形例1および変形例2のリードフレーム140、240においては、4つの領域A1〜A4のうち、2つの領域同士が隙間Wを介し繋がっている。
このような構成であっても、ベース部72の頂点Tの高さを均一化する上で、一定の効果を奏することができる。
【0095】
(変形例3)
図12は、変形例3のリードフレーム340の平面図である。リードフレーム340には、複数の凹溝343が形成されている。複数の凹溝343には、2つの境界凹溝243Aと4つの包囲凹溝343Bとが含まれる。2つの境界凹溝343Aの構成は、上述の実施形態における境界凹溝43Aと同様である。4つの包囲凹溝343Bの構成は、上述の実施形態における包囲凹溝43Bと比較して、分断されて同一の直線上に位置する2つの包囲凹溝343Bに分かれた凹溝を含む点が異なる。
変形例3に示すような凹溝343であっても、領域A1〜A4を囲み、領域A1〜A4を同じ面積とするものであれば、上述の実施形態における凹溝43と同様の効果を得ることができる。
【0096】
(変形例4)
図13は、変形例4のリードフレーム440の平面図である。リードフレーム440には、複数の凹溝443が形成されている。複数の凹溝443には、2つの境界凹溝443Aと1つの包囲凹溝443Bとが含まれる。2つの境界凹溝443Aの構成は、上述の実施形態における境界凹溝43Aと同様である。包囲凹溝443Bの構成は、上述の実施形態における3つの包囲凹溝43Bのうちリードフレーム40の台座部46の縁部46b、46c(
図5参照)に近接する2つの包囲凹溝43Bを省略したものである。このような構成とした場合に領域A1〜A4は、1つの包囲凹溝443Bと、リードフレーム440の台座部446の縁部446a、446b、446cにより囲まれる。これにより、ベース部72を構成する硬化前の樹脂材料72A(
図6参照)の濡れ広がりを抑制する。変形例4に示すような凹溝443であっても、上述の実施形態における凹溝43と同様の効果を得ることができる。
【0097】
(変形例5)
図14は、変形例5のリードフレーム540の平面図である。リードフレーム540には、複数の凹溝543が形成されている。複数の凹溝543には、4つの境界凹溝543Aと3つの包囲凹溝543Bとが含まれる。3つの包囲凹溝543Bの構成は、上述の実施形態における包囲凹溝43Bと同様である。4つの境界凹溝543Aは、上述の実施形態における2つの境界凹溝43A(
図5参照)が交差する部分を分断した構成を有する。すなわち、4つの境界凹溝543Aは、交差せずに中央に隙間WCを形成する。したがって、境界凹溝543Aにより区画された領域A1〜A4は、中央の隙間WCで互いに繋がっている。各領域A1〜A4に供給される樹脂材料72A(
図6参照)は、中央の隙間WCにおいても繋がり相互の流入がより顕著に起こる。これにより、ベース部72の頂点Tの高さの均一性を高めることができる。
【0098】
(変形例6)
図15は、変形例6のリードフレーム640の平面図である。リードフレーム640には、複数の凹溝643が形成されている。複数の凹溝643には、2つの境界凹溝643Aと4つの包囲凹溝643Bとが含まれる。2つの境界凹溝643Aは、互いに交差し端部が包囲凹溝643Bと繋がっている。4つの包囲凹溝643Bは、端部同士が繋がり矩形状を描く。変形例6の凹溝643によれば、4つの領域A1〜A4は、完全に分離される。このような構成を有する場合は、4つの領域A1〜A4に形成されたベース部72は互いに繋がることがない。本変形例においては、領域A1〜A4が互いに同形状とすることで、領域A1〜A4に供給する樹脂量の均一性を一定の水準に保つことができる場合において、4つのベース部72の高さを均一にできる。
【0099】
(変形例7)
図16は、変形例7のリードフレーム740の平面図である。リードフレーム740には、複数の凹溝743が形成されている。複数の凹溝743には、3つの境界凹溝743Aと円を描く1つの包囲凹溝743Bとが含まれる。3つの境界凹溝743Aは、包囲凹溝743Bが描く円の内側に配置されている。3つの境界凹溝743Aは、互いに120°間隔で中心から放射状に延びて包囲凹溝743Bに繋がっている。3つの境界凹溝743A同士の中央には、隙間WCが設けられている。変形例7の凹溝743は、互いに同形状に3つの領域A1〜A3を区画する。また、ベース部72は、各領域A1〜A3に対応して3つ設けられる。半導体回路チップ30は、ベース部72の3つの頂点Tと平面視で重なる位置に配置される。
変形例7に示すような凹溝743であっても、上述の実施形態における凹溝43と同様の効果を得ることができる。
【0100】
以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
【0101】
例えば、上述した実施形態および変形例において、凹溝の断面形状をU字状として説明した。しかしながら凹溝の断面形状は、第1の面との境界にエッジ部を形成する形状であればよく、U字状に限定されない。一例として凹溝の断面形状は、V字状であってもよい。
また、凹溝は、長さ方向に沿って破線状に形成されていてもよい。すなわち、複数の凹溝が隙間を空けて並んだ構成としてもよい。
【0102】
なお、上述した実施形態および変形例においては、圧力センサパッケージに関して説明を行った。しかしながら、本発明は、半導体回路チップをモールド樹脂部により覆う半導体パッケージであれば、圧力センサ機能を備えない構成にも採用可能である。