(58)【調査した分野】(Int.Cl.,DB名)
前記第1回路および前記第2回路の少なくとも一方は、前記少なくとも1つの受動素子として、前記無線電力伝送システム内で発生する寄生成分の影響をキャンセルするための素子を含む
請求項1ないし3のいずれか一項に記載の無線電力伝送システム。
前記逆伝達関数は、前記第1回路と、前記送電用共振器と、前記磁界を介して交流電力を受電する受電用共振器と、前記交流電力を直流電力に変換する交流/直流変換器とを含む前記対象システムの入力電圧と出力電圧との間の逆伝達関数である
請求項6に記載の送電装置。
前記逆伝達関数は、前記第1回路と、前記送電用共振器と、前記受電用共振器と、前記受電用共振器と前記交流/直流変換器間に配置された、少なくとも1つの受動素子を含む第2回路と、前記交流/直流変換器とを含む前記対象システムの入力電圧と出力電圧との間の逆伝達関数である
請求項7に記載の送電装置。
前記逆伝達関数は、前記送電装置における交流電力源と前記送電用共振器間に配置され、少なくとも1つの受動素子を含む第2回路と、前記送電用共振器と、前記受電用共振器と、前記交流/直流変換器とを含む前記対象システムの入力電圧と出力電圧との間の逆伝達関数である
請求項13に記載の受電装置。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら、本発明の実施形態について説明する。
【0012】
図11に、無線電力伝送システムの基本構成を示す。この無線電力伝送システムは、送電装置と受電装置とを備える。
【0013】
送電装置は、交流電力源102と、送電用コンデンサ103と、送電用コイル104とを備える。
【0014】
受電装置は、受電用コイル106と、受電用コンデンサ105と、交流/直流変換器(整流器)107と、蓄電池101とを備える。
【0015】
送電装置における交流電力源102は、所定の周波数の交流電力(交流電圧および交流電流)を生成する。交流電力は、一例として高周波電力(高周波電圧および高周波電流)である。交流電力源102は、一例として、直流電源と、インバータとを備え、直流電源で生成した直流電圧をインバータにより交流電圧に変換する。この場合、インバータの出力電圧が交流電力源2の出力電圧に対応する。送電用コンデンサ103と送電用コイル104は互いに直列に接続されて、送電用共振器を構成する。送電用共振器は、交流電圧の周波数と同じまたはほぼ同じ値の共振周波数を有する。送電用コイル104は、交流電力源102から供給される交流電流に応じた磁界を発生させる。
【0016】
受電装置における受電用コイル106と受電用コンデンサ5とは互いに直列に接続されて、受電用共振器を構成する。受電用共振器は、送電側の交流電力源102が生成する交流電力の周波数と同じまたはほぼ同じ値の共振周波数を有する。受電用コイル106は、送電用コイル104により発生させられた磁界と結合して、磁界に応じた高周波電流を発生させる。すなわち、送電用共振器と受電用共振器間の磁気結合により、非接触に電力が伝送される。交流/直流変換器107は、受信共振器で受電された交流電力を直流電力に変換し、蓄電池101に供給する。
【0017】
図12に、
図11の無線電力伝送システムにおいて、交流電力源102の出力電圧(インバータの出力電圧)に対する蓄電池101への供給電力(整流器の出力電力)の特性の例を示す。
【0018】
交流電力源102の出力電圧が小さい範囲では、ほぼ一様に蓄電池101へ供給される電力が増加する。つまり、交流電力源102の出力電圧の増加分に対する蓄電池101の供給電力の増加分の比がほぼ一定である。したがって、交流電力源102の出力電圧を徐々に立ち上げながら、受電側の負荷インピーダンスを調整して、大電力伝送に移行する場合にも安定した動作が可能である。
【0019】
ここで近年、無線電力伝送について、高調波の抑圧要求がある。このため、高調波対策として、無線電力伝送システムへ低域通過フィルタなどの導入が検討されている。
図13に、
図11の無線電力伝送システムへ低域通過フィルタを追加した例を示す。
【0020】
送電装置において、交流電力源102と送電用共振器との間に送電側低域通過フィルタ110が追加されている。受電装置において、受電用共振器と直流交流変換器107との間に受電側低域通過フィルタ111が追加されている。
【0021】
図14に、
図13の無線電力伝送システムにおいて、交流電力源102の出力電圧(インバータの出力電圧)に対する蓄電池101への供給電力(整流器の出力電力)の特性の例を示す。
【0022】
低域通過フィルタを追加した構成では、交流電力源102の出力電圧を低い値から徐々に上昇させる場合、出力電圧がある値より小さい範囲では、蓄電池101へ供給される電力はゼロまたはほぼゼロであり、300V付近の点から徐々に上昇する。しなしながら、ある点(図示の例では350V付近の点)を越えると、出力電圧の増加に対して急激な電力が蓄電池101へ供給され、これより以降は、交流電力源102の出力電圧に対する蓄電池101への供給電力の関係が、一様でなくなる。つまり、交流電力源102の出力電圧の増加分に対する蓄電池101の供給電力の増加分の比率が一定または略一定でなくなる。例えば、350Vを越えた後、交流電力源102の出力電圧の少しの増加で、蓄電池101の供給電力が大きく増加する。このため、交流電力源102の出力電圧を制御して、受電側の負荷インピーダンスを調整、すなわち蓄電池101への供給電力を制御することは困難である。よって、この構成では、送電電圧を徐々に上昇させながら、無線電力伝送を行う場合に、蓄電池101の供給電力を適切に制御できず(受電側のインピーダンスを適切な値に制御できず)、構成部品等へ過電流が流れ込む虞がある。このため、送電側から受電側への無線電力伝送を安全に開始することができない。
【0023】
この問題に対策する手法として、送電周波数を変化させることが知られている。無線電力伝送に利用できる周波数帯域は、アプリケーションごとに規格化及びその準備がされており、自動車向けでは現状、SAE Internationalが定める81.38〜90kHzの比帯域約11%(±5.5%)の帯域しか利用できない。そこで、
図13に示されるシステムの送電周波数を+5%シフトした場合において、交流電力源102の出力電圧に対する蓄電池101への供給電力(整流器の出力電力)の特性の例を
図15に示す。
図15の特性は、
図14の特性に比べれば、若干改善されているものの、依然として、交流電力源102の出力電圧に対する蓄電池101への供給電力の関係が一様でない。すなわち、特に交流電力源102の出力電圧が315V付近の点を越えた後、出力電圧の増加に対して急激な電力が蓄電池101へ供給される。交流電力源102の出力電圧の増加分に対する蓄電池101の供給電力の増加分の比率が一定または略一定でない。このため、
図14を用いて説明したのと同様の理由により、送電側から受電側への無線電力伝送を安全に開始することができない
【0024】
本実施形態では、送電電圧を徐々に上昇させながら、無線電力伝送を行う場合に、構成部品等への過電流を生じさせることのない、安定した送電電圧の起動を実現可能にするものである。
【0025】
(第1の実施形態)
図1に本実施形態に係る無線電力伝送システムを示す。この無線電力伝送システムは、送電装置と受電装置とを備える。
【0026】
送電装置は、交流電力源2と、送電側低域通過フィルタ10と、送電用コンデンサ3と、送電用コイル4とを備える。送電用コンデンサ3のキャパシタンスはC
r1、送電用コイル4のインダクタンスは、L
r1である。
【0027】
受電装置は、受電用コイル6と、受電用コンデンサ5と、受電側低域通過フィルタ11と、交流/直流変換器(整流器)7と、蓄電池1とを備える。受電用コンデンサ5のキャパシタンスはC
r2、受電用コイル4のインダクタンスは、L
r2である。ここでは蓄電池1は受電装置に組み込まれているが、受電装置の外側に配置されてもよい。
【0028】
送電装置における交流電力源2は、所定の周波数の交流電力(交流電圧および交流電流)を生成する。交流電力は、一例として高周波電力(高周波電圧および高周波電流)である。交流電力源2は、一例として、直流電源と、インバータとを備え、直流電源で生成した直流電圧をインバータにより交流電圧に変換する。この場合、インバータの出力電圧が交流電力源2の出力電圧に対応する。送電側低域通過フィルタ110は、交流電力源2により生成された交流電流から高周波成分を除去し、除去後の交流電流を出力する。送電用コンデンサ3と送電用コイル4とは直列に接続されており、送電用共振器を構成する。送電用共振器は、一例として交流電力源2が生成する交流電圧の周波数(基本周波数)と同一またはほぼ同一の値の共振周波数を有する。送電用コイル4は、交流電力源2から供給される交流電流に応じて磁界を発生させる。
【0029】
送電用共振器の構成は、送電用コンデンサ3と送電用コイル4の直列接続以外の構成も可能であり、例えば別の送電用コンデンサが、送電用コイル4の両端子のうち送電用コンデンサ3と反対側の端子に追加されてもよいし、あるいは送電用コンデンサ3に代えて配置されていてもよい。また、送電用コイル4は複数のコイルが直列に接続されたものでもよい。また送電用コイル4内部に磁性体が配置されていてもよい。ここで述べた以外の構成でもよい。
【0030】
受電装置における受電用コイル6と受電用コンデンサ5とは直列に接続されており、受電用共振器を構成する。受電用共振器は、送電用共振器と同一またはほぼ同一の共振周波数を有する。受電用コイル6は、送電用コイル4により発生させられた磁界と結合して、磁界に応じた交流電流を発生させる。つまり、送電用共振器と受電用共振器間の磁気結合により、送電側から受電側に非接触に電力が伝送される。受電側低域通過フィルタ11は、受電用共振器から入力される交流電流に含まれる高周波成分を除去して、除去後の交流電流を出力する。交流/直流変換器7は、受信共振器で受電された交流電力を直流電力に変換し、蓄電池1に供給する。交流/直流変換器7は、ブリッジダイオード等、任意の回路で構成できる。
【0031】
受電用共振器の構成は、受電用コンデンサ5と受電用コイル6の直列接続以外の構成も可能であり、例えば別の受電用コンデンサが、受電用コイル6の両端子のうち受電用コンデンサ5と反対側の端子に追加されてもよいし、あるいは受電用コンデンサ5に代えて配置されていてもよい。また、受電用コイル6は複数のコイルが直列に接続されたものでもよい。また受電用コイル6内に磁性体が配置されていてもよい。ここで述べた以外の構成でもよい。
【0032】
ここで、送電側低域通過フィルタ10と、送電用コンデンサ5と、送電用コイル6と、受電用コンデンサ7と、受電用コイル8と、受電側低域通過フィルタ119と、交流/直流変換器(整流器)7とが従属接続されたシステム(ここでは対象システムと呼ぶ)を想定する。
【0033】
本実施形態では、交流電力源の出力電圧を初期値から所望の値まで立ち上げる間、交流電力源の出力電圧の周波数において、対象システムの入力電圧および出力電圧間の逆伝達関数T(伝達関数は1/T)が、下記の式1を満足するように、送電側低域通過フィルタ10および受電側低域通過フィルタ11を構成する素子のパラメータ値が設定されていることを特徴の1つとしている。v
invは交流電力源2の出力電圧であり、対象システムの入力電圧に対応する。V
batは、蓄電池電圧(バッテリー電圧)であり、対象システムの出力電圧に対応する。|T|は逆伝達関数の絶対値である。したがって、この式は、逆伝達関数Tの絶対値の逆数が、対象システムの入力電圧と出力電圧の除算値以下になることを意味している。
【数1】
【0034】
この式によれば、逆伝達関数Tの絶対値の逆数(すなわち伝達関数の絶対値)にv
invを乗じた値が、V
bat以上に維持される。このため、v
invの初期値から出力電圧を徐々に上昇させる場合、蓄電池1へ電力が入力開始された後も、蓄電池1に供給される電力(交流/直流変換器の出力電力)は、出力電圧の増加に応じて、一様またはほぼ一様に変動する。このため、送電電圧の増加に対して、蓄電池1に急激に大きな電力が突入されることは阻止され、送電電圧の安定した立ち上げが可能になる。前述した
図13のシステムでは、送電電圧の増加時に、少なくともこの式1を満たしていない送電電圧の区間が存在しており、例えば送電電圧を上昇させている間、送電側から見た負荷インピーダンスが急激に変動して、蓄電池1に急激に電力が供給されることも生じ得る。このため、部品に過電流等が発生し、
図14又は
図15のような非一様な関係が発生し得る。
【0035】
以下、上述の式1を満たすように、送電側低域通過フィルタ10および受電側低域通過フィルタ11の各素子のパラメータ値を決定する例を示す。具体的に、式1を満たすような、低域通過フィルタのフィルタ特性を表すパラメータ値(本例ではカットオフ周波数)を決定し、当該カットオフ周波数を実現するように各素子のパラメータ値を決定および設定する。所望のカットオフ周波数を実現するように各素子のパラメータ値を決定する方法は、当業者によって自明であるため、以下ではフィルタ特性を表すパラメータ値を決定する例を示す。
【0036】
図2(A)に、
図1の無線電力伝送システムの具体的な構成例を示す。
【0037】
送電側低域通過フィルタは、直列に接続されたコイルL
f1およびコイルL
f2と、これらのコイルの接続点に、交流電力源(または送電用共振器のコイルL
r1)と並列に接続されたコンデンサC
f1とを備える。L
f1およびL
f2は、コイルのインダクタンスを表すが、コイルの参照符号としても利用する。C
f1は、コンデンサのキャパシタンスを表すが、コンデンサの参照符号としても利用する。
【0038】
受電側低域通過フィルタは、直列に接続されたコイルL
f3およびコイルL
f4と、これらのコイルの接続点に、受電用共振器のコイルL
f2と並列に接続されたコンデンサC
f2とを備える。L
f3およびL
f4は、コイルのインダクタンスを表すが、コイルの参照符号としても利用する。C
f2は、コンデンサのキャパシタンスを表すが、コンデンサの参照符号としても利用する。
【0039】
また、交流/直流変換器はダイオードブリッジにより構成されている。Rsは、交流電力源の出力インピーダンス(インバータの出力インピーダンス)である。V
batは蓄電池電圧(バッテリー電圧)である。
【0040】
送電電圧立ち上げ時の交流/直流変換器7は、蓄電池1の負荷を一定に割合で増加させる働きがあるのみであり、蓄電池1の負荷(R
bat)の代わりに、送電側から見た負荷インピーダンスZ
bat(
図2(A)の一点鎖線参照)を考える。蓄電池電圧(バッテリー電圧)V
bat=300V、電力伝送開始時の蓄電池1への供給電力500Wとすると、蓄電池1の負荷(バッテリー負荷)R
bat=300
2[V]/500[W]=180Ωとなる。また、送電側から見た交流/直流変換器以降の回路部分の負荷Z
batは、交流/直流変換器によるインピーダンス変換を考慮して、Z
bat=(180[Ω])×8/π
2≒146[Ω]となる。
【0041】
図2(A)において、送電側低域通過フィルタ10、送電用共振器(送電用コンデンサC
r1、送電用コイルL
r1)と、受電用共振器(受電用コンデンサC
r2、受電用コイルL
r2)と、受電側低域通過フィルタ11とが従属接続された対象システムを考える。この対象システムを、
図2(B)の点線に示すように複数の部分回路に区分し、各部分回路のF行列をそれぞれF
1、F
2、F
3、F
4、F
5、F
6、F
7とする。すなわち、F
1は、コイルL
f1のF行列、F
2は、コンデンサC
f1のF行列、F
3は、コイルL
f2のF行列、F
4は、送電用共振器(C
r1、L
r1)および受電用共振器(C
r2、L
r2)を合わせた回路のF行列、F
5は、コイルL
f3のF行列、F
6は、コンデンサC
f2のF行列、F
7は、コイルL
f4のF行列である。なお、F行列は、2端子対回路の特性を表現する4つのパラメータ(Fパラメータ)を、行列の各要素に格納したものである。
【0042】
対象システムのF行列をF
allとすると、F
allは以下で表される。
【数2】
【0043】
対象システムの逆伝達関数Tは、F
allと、交流電力源の出力インピーダンス(インバータの出力インピーダンス)Rsと、前述した負荷インピーダンスZ
batから、以下で表される。
【数3】
【0044】
また各部分回路のF行列F
1、F
2、F
3、F
4、F
5、F
6、F
7は、以下のように表される。
【数4】
【0045】
また、
図2(A)の送電側低域通過フィルタおよび受電側低域通過フィルタが、バターワース(Butterworth)動作するとした場合、カットオフ周波数f
c、電力伝送系(すなわち送電装置側)の負荷インピーダンスR
Lを用いて、L
f1、L
f2、L
f3、L
f4、C
f1、C
f2は、以下のようになる。
L
f1=L
f2=L
f3=L
f4=R
L/2πf
c
C
f1=C
f2=1/(2πf
cR
L×2)
カットオフ周波数f
cは、決定すべきパラメータで、ここでは未定である。
【0046】
送電側共振器および受電側共振器は同一の構成を有するものとし、送電周波数(あるいは共振周波数)f=85kHz、L
r1=L
r2=31.2μH、C
r1=C
r2=112.35nF、送電用共振器および受電用共振器のコイル間の結合係数k=0.6とした場合、最適負荷R
L=2πfkL
r1=10Ωである。また、逆伝達関数の絶対値|T|は、前述した式(3)から以下のようになる。
【数5】
【0047】
前述した式1に従って、カットオフ周波数fcと、交流電力源の出力電圧(インバータの出力電圧)v
invとの関係を図示すると、
図3のようになる。この関係から、例えば電力の投入開始時の交流電力源の出力電圧を200V以下にしたい場合は、カットオフ周波数300kHz以上となるように、送電側低域通過フィルタおよび受電側低域通過フィルタにおける各素子のパラメータ値(インダクタンス、キャパシタンス)を決定すればよい。例えば、当該決定したパラメータ値を有する素子を製造し、当該素子を用いて低域通過フィルタを構成すればよい。
【0048】
このように各素子のパラメータ値が設定された無線電力伝送システムについて、交流電力源2の出力電圧v
invを、50Vから600Vまで5Vずつ増加させた場合の蓄電池1に供給される電力を、シミュレーションソフトであるSPICE(Simulation Program with Integrated Circuit Emphasis)を用いて計算した例を
図4に示す。交流電力源2の出力電圧v
invが約370Vから5Vずつ増加するごとに、ほぼ一定量の電力が増加している。よって、交流電力源2の出力電圧の増加に対して、ほぼ一様に電力が増加していることが確認できる。
【0049】
以上、本発明の実施形態によれば、供給電力に依存して電池負荷が変動する蓄電池へ充電するに際して、規定の電力を超えずに、送電電圧を立ち上げる(あるいは送電電力を立ち上げる)ことが可能となる。
【0050】
(第2の実施形態)
図5に第2の実施形態に係る無線電力伝送システムを示す。この無線電力伝送システムは送電装置と受電装置とを備える。
【0051】
送電装置において、送電側低域通過フィルタ20と送電用共振器との間に、送電側調整用直列コンデンサ12と送電側調整用並列コンデンサ13とが配置されている。直列コンデンサ12は、送電用共振器のコンデンサ3に直列に接続されており、送電側調整用並列コンデンサ13は、送電用共振器のコイル4に並列に接続されている。送電側調整用直列コンデンサ12のキャパシタンスはCwであり、送電側調整用並列コンデンサ13のキャパシタンスはCxである。
【0052】
また、受電装置において、受電側低域通過フィルタ21と受電用共振器との間に、受電側調整用直列コンデンサ15と送電側調整用並列コンデンサ14とが配置されている。受電側調整用直列コンデンサ15は、受電用共振器のコンデンサ5に直列に接続されており、送電側調整用並列コンデンサ13は、受電用共振器のコイル6に並列に接続されている。受電側調整用直列コンデンサ15のキャパシタンスはCw、送電側調整用並列コンデンサ13のキャパシタンスはCyである。本例では、送電側調整用直列コンデンサ12と受電側調整用直列コンデンサ15のキャパシタンスCwはいずれも同じ値であるとするが、これに限定されるものではない。
【0053】
なお、送電側低域通過フィルタ20および受電側低域通過フィルタ21は、
図1の送電側低域通過フィルタ10および受電側低域通過フィルタ11と同じである必要はない(つまり第1の実施形態に従って決定されたパラメータ値が設定されている必要はない)。送電側低域通過フィルタ20および受電側低域通過フィルタ21は、
図13の送電側低域通過フィルタ110および受電側低域通過フィルタ111と同じでもよい。上記に述べた以外の構成は、
図1と同様である。
【0054】
本実施形態において、送電側低域通過フィルタ20と、送電側調整用直列コンデンサ12と、送電側調整用並列コンデンサ13と、送電用コンデンサ3と、送電用コイル4と、受電用コイル6と、受電用コンデンサ5と、受電側調整用並列コンデンサ14と、受電側調整用直列コンデンサ15と、受電側低域通過フィルタ21と、交流/直流変換器7とが従属接続された対象システムを想定する。
【0055】
なお、第1の実施形態の説明で述べたように、交流/直流変換器7は、送電電圧の立ち上げ時は蓄電池1の負荷を一定に割合で増加させる働きがあるのみであるため、送電側から見た交流/直流変換器7以降のインピーダンスを考慮することで、交流/直流変換器7を除去して考えてもよい。
【0056】
当該対象システムの入力電圧および出力電圧間の逆伝達関数T(伝達関数は1/T)が、第1の実施形態における式1を満足するように、送電側調整用直列コンデンサ12と送電側調整用並列コンデンサ13と受電側調整用並列コンデンサ14と受電側調整用直列コンデンサ15のパラメータ値(キャパシタンス)が選択され、設定されている。よって第1の実施形態の説明で述べたのと同様の理由で、交流電力源の出力電圧と、蓄電池1に供給される電力との関係が一様になる。よって、供給電力に依存して電池負荷が変動する蓄電池への充電に際して、規定の電力を超えずに、送電電圧を立ち上げることが可能となる。
【0057】
図5の無線電力伝送システムについて、交流電力源2の出力電圧v
invを、50Vから600Vまで5Vずつ増加させた場合の蓄電池1に供給される電力を、SPICEを用いて計算した例を
図6に示す。交流電力源2の出力電圧v
invの50Vから、5Vずつ出力電圧が増加するごとに、ほぼ一様に送電電力が増加していることが確認できる。
【0058】
(第3の実施形態)
図7に第3の実施形態に係る無線電力伝送システムを示す。第1の実施形態では送電装置の交流電力源と送電用共振器間に低域通過フィルタを配置し、および受電装置の受電用共振器と交流/直流変換器間に低域通過フィルタを配置した。本実施形態では、送電装置の交流電力源2と送電用共振器間に受動回路8を配置し、受電装置の受動共振器と交流/直流変換器7間に受動回路9を配置する。受動回路8および受動回路9は、少なくとも1つの受動素子(コンデンサ、コイルまたは抵抗等)を含む回路であれば、何でもよい。前述した送電側低域通過フィルタまたは受電側低域通過フィルタも、受動回路の一例である。また
図5に示した送電側低域通過フィルタ20と送電調整用直列コンデンサ12と送電調整用並列コンデンサ13との組も、受動回路の一例である。
図5に示した受電側低域通過フィルタ21と受電調整用直列コンデンサ15と受電調整用並列コンデンサ14との組も、受動回路の一例である。
【0059】
図8(A)〜
図8(C)に受動回路の構成を具体化した例を示す。
図8(A)は、受動回路8、9をそれぞれコイル51、52により構成した場合を示す。コイル51、52は、それぞれコンデンサ3、5と直列に接続されているが、コイル4、6の両端子のうちコンデンサ3、5と反対側の端子に直列に接続されてもよい。あるいは、コイル4、6の両側に2つのコイルを配置してもよい。
【0060】
図8(B)は、受動回路8、9をそれぞれコンデンサ53、54により構成した場合を示す。コンデンサ53、54は、それぞれコンデンサ3、5と直列に接続されているが、コイル4、6の両端子のうちコンデンサ3、5と反対側の端子に直列に接続されてもよい。あるいは、コイル4、6の両側に2つのコンデンサを配置してもよい。
【0061】
図8(C)は、受動回路8、9をそれぞれトランス回路により構成した場合を示す。送電回路8は、対向するコイル61、62と、コイル61の一端と交流電力源2間に接続されたコンデンサ63と、コイル62の一端とコンデンサ3間に接続されたコンデンサ64を備える。受動回路9は、対向するコイル71、72と、コイル71の一端と交流/直流変換器7間に接続されたコンデンサ73と、コイル72の一端とコンデンサ5間に接続されたコンデンサ74を備える。
【0062】
図8(A)〜
図8(C)に示した例はほんの一例に過ぎず、他にもさまざまな回路構成が可能である。例えば
図8(A)のコイル51とコンデンサ3間に別のコンデンサまたは抵抗等を配置してもよいし、コイル51とコンデンサ3間に、コイル4と並行に別のコンデンサが配置されてもよい。
【0063】
本実施形態において、受動回路8と、送電用コンデンサ3と、送電用コイル6と、受電用コイル8と、受電用コンデンサ7と、受動回路9と、交流/直流変換器7とが従属接続された対象システムを想定する。
【0064】
なお、第1の実施形態の説明で述べたように、交流/直流変換器7は、送電電圧の立ち上げ時は蓄電池1の負荷を一定に割合で増加させる働きがあるのみであるため、送電側から見た交流/直流変換器7以降のインピーダンスを考慮することで、交流/直流変換器7を除去して考えてもよい。
【0065】
当該対象システムの入力電圧および出力電圧間の逆伝達関数T(伝達関数は1/T)が、第1の実施形態における式1を満足するように、受動回路8および受動回路9のパラメータ値が選択および設定されている。よって第1の実施形態の説明で述べたのと同様の理由で、交流電力源の出力電圧と、蓄電池1に供給される電力との関係が一様になる。よって、供給電力に依存して電池負荷が変動する蓄電池へ充電するに際して、規定の電力を超えずに、送電電圧を立ち上げることが可能となる。
【0066】
図7の示した無線電力伝送システムについて、交流電力源2の出力電圧v
invを50Vから600Vまで5Vずつ増加させた場合の蓄電池1に供給される電力を、SPICEを用いて計算した例を
図9に示す。交流電力源2の出力電圧v
invの50Vから、出力電圧が5Vずつ増加するにごとに、ほぼ一様に送電電力が増加していることが確認できる。
【0067】
なお、受動回路8または受動回路9内の受動素子として、無線電力伝送システムで発生する寄生成分、すなわち、送電装置または受電装置内で発生する寄生成分(寄生容量、寄生インダクタ、寄生抵抗等)の影響をキャンセルするための素子が含まれていてもよい。これにより、製品(送電装置または受電装置等)の製造ばらつきや、実装状態により発生する寄生成分により、所望の設計から交流電力源の出力電圧と蓄電池の受電電力との相関関係(一様な関係)がずれる場合においても、実装後に当該素子を利用(追加等)して当該相関関係の補正が可能となる。これにより、様々な条件化においても安定した電力立ち上げ制御が可能になる。
【0068】
(第4の実施形態)
図10に、第4の実施形態に係る無線電力伝送システムを示す。送電装置の交流電力源2と送電用共振器間に受動回路16を配置し、受電装置の受動共振器と交流/直流変換器7間に受動回路17を配置する。受動回路16、17は、
図7の受動回路16および受動回路17と同様、少なくとも1つの受動素子(コンデンサ、コイルまたは抵抗等)を含む回路である。受動回路16、17内の素子は、負荷制御ユニット18から供給される負荷制御信号に応じてパラメータ値が変更可能になっている。当該素子は、例えば可変容量コンデンサ、可変インダクタンスコイル、または可変抵抗等である。
【0069】
負荷制御ユニット18は、受動回路16および受動回路17に接続されており、受動回路16および受動回路17にパラメータ値を指定した負荷制御信号を出力する。受動回路16および受動回路17は、負荷制御信号に応じて素子のパラメータ値を制御する。これにより、負荷制御ユニット18は、受動回路16および受動回路17を所望のインピーダンスへ制御できる。
【0070】
本実施形態において、受動回路16と、送電用コンデンサ3と、送電用コイル4と、受電用コイル6と、受電用コンデンサ5と、受動回路17と、交流/直流変換器7とが従属接続された対象システムを想定する。
【0071】
なお、第1の実施形態の説明で述べたように、交流/直流変換器7は、送電電圧の立ち上げ時は蓄電池1の負荷を一定に割合で増加させる働きがあるのみであるため、送電側から見た交流/直流変換器7以降のインピーダンスを考慮することで、交流/直流変換器7を除去して考えてもよい。
【0072】
対象システムの入力電圧および出力電圧間の逆伝達関数T(伝達関数は1/T)が、第1の実施形態における式1を満足するように、受動回路16および受動回路17のパラメータ値が設定されている。よって第1の実施形態の説明で述べたのと同様の理由で、交流電力源の出力電圧と、蓄電池1へ入力される電力(交流/直流変換器の出力電力)との関係が一様になり、供給電力に依存して電池負荷が変動する蓄電池への充電に際して、規定の電力を超えずに、送電電圧を立ち上げることが可能となる。また、パラメータ値が設計値に対してずれている場合なども、パラメータ値を外部から調整することで、受動回路16および受動回路17の負荷特性を所望の状態に制御できる。また、製品(送電装置または受電装置等)の製造ばらつきや、実装状態により発生する寄生成分により、交流電力源の出力電圧と蓄電池の受電電力との相関関係(一様な関係)が所望の設計からずれる場合においても、実装後に当該素子のパラメータ値を外部から調整することで、当該相関関係の補正が可能となる。これにより、様々な条件化においても安定した電力立ち上げ制御が可能になる。
【0073】
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。