(58)【調査した分野】(Int.Cl.,DB名)
絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板であって、
前記金属層のうち前記ヒートシンクとの接合面、及び、前記ヒートシンクのうち前記金属層との接合面は、アルミニウム又はアルミニウム合金で構成され、
前記金属層と前記ヒートシンクとは、銅又は銅合金からなる接合材を介して固相拡散接合によって接合されており、
前記金属層と前記ヒートシンクとの接合界面には、AlとCuとの金属間化合物を有する拡散接合層が形成されており、この拡散接合層においては、Cu濃度が50mol%以上となる高濃度Cu層の厚さが30μm以下とされており、前記拡散接合層の厚さが3μm以上110μm以下の範囲内とされていることを特徴とするヒートシンク付パワーモジュール用基板。
絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板の製造方法であって、
前記金属層のうち前記ヒートシンクとの接合面、及び、前記ヒートシンクのうち前記金属層との接合面は、アルミニウム又はアルミニウム合金で構成されており、
前記金属層と前記ヒートシンクとを接合するヒートシンク接合工程を有し、このヒートシンク接合工程においては、前記金属層と前記ヒートシンクとの間に銅又は銅合金からなる接合材を介して固相拡散接合する構成とされており、
前記接合材の厚さが1μm以上50μm未満の範囲内とされており、
前記ヒートシンク接合工程では、前記金属層と前記ヒートシンクとを前記接合材を介して積層し、積層方向に0.29MPa以上3.5MPa以下の荷重を負荷した状態で、400℃以上548℃未満の保持温度で0.1時間以上4時間以下保持することにより、前記金属層と前記ヒートシンクとを固相拡散接合することを特徴とするヒートシンク付パワーモジュール用基板の製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、最近では、パワー半導体素子等の高出力化が進められており、これを搭載するヒートシンク付パワーモジュール用基板に対して厳しいヒートサイクルが負荷されることになり、従来にも増して、ヒートサイクルに対する接合信頼性に優れたヒートシンク付パワーモジュール用基板が要求されている。
【0008】
ここで、特許文献1に記載されたヒートシンク付パワーモジュール用基板において、金属層とヒートシンクとをはんだ付けした場合には、ヒートサイクル負荷時に、はんだにクラックが生じて接合率が低下してしまい、熱抵抗が上昇するといった問題があった。また、金属層とヒートシンクとをろう付けした場合には、ヒートサイクル負荷時に、セラミックス基板に割れが生じるおそれがあった。
【0009】
特許文献2に記載されたヒートシンク付パワーモジュール用基板においては、金属層と銅板、銅板とヒートシンクがそれぞれはんだ付けされているので、やはり、ヒートサイクル負荷時に、はんだにクラックが生じて接合率が低下してしまい、熱抵抗が上昇するといった問題があった。
【0010】
特許文献3に示すヒートシンク付パワーモジュール用基板においては、金属層とヒートシンクとの間に、銅又は銅合金で構成された接合材を介在させ、金属層と接合材及び接合材とヒートシンクとをそれぞれ固相拡散接合しており、金属層とヒートシンクとの接合界面に、銅又は銅合金からなる接合材が残存している。
金属層とヒートシンクとの接合界面においては、金属層及びヒートシンク側の領域では、Al原子の存在比率が高いため、
図1の状態図に示すように、アルミニウムの含有量が多いθ相(CuAl
2)等の金属間化合物相が形成される。一方、銅又は銅合金からなる接合材の近傍領域では、Cu原子の存在比率が高く、銅の含有量が多いγ
2相(Cu
9Al
2)、δ相(Cu
3Al
2)、ζ
2相(Cu
55Al
45)、η
2相(CuAl)等の金属間化合物相が形成される。なお、上述のθ相は比較的脆弱な相であり、η
2相(CuAl)やζ
2相(Cu
55Al
45)は硬度が高い相である。
【0011】
上述の金属間化合物相は、AlとCuの存在比率に応じて形成されることから、金属層及びヒートシンク側の領域に形成されたθ相(CuAl
2)に隣接するように、η
2相(CuAl)やζ
2相(Cu
55Al
45)が形成されることになる。脆弱なθ相に隣接するように硬度の高いη
2相(CuAl)やζ
2相(Cu
55Al
45)が厚く形成された場合には、ヒートサイクルが負荷された際に、脆弱なθ相にクラックが入りやすくなる。
このため、特許文献3に示すヒートシンク付パワーモジュール用基板においては、厳しいヒートサイクルを負荷した際に、金属間化合物相にクラックが生じて接合率が低下してしまい、熱抵抗が上昇するおそれがあった。
【0012】
この発明は、前述した事情に鑑みてなされたものであって、厳しいヒートサイクルが負荷された場合であっても接合界面においてクラック等が生じることを抑制できるヒートシンク付パワーモジュール用基板、このヒートシンク付パワーモジュール用基板を備えたパワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0013】
このような課題を解決して、前記目的を達成するために、本発明のヒートシンク付パワーモジュール用基板は、絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板であって、前記金属層のうち前記ヒートシンクとの接合面、及び、前記ヒートシンクのうち前記金属層との接合面は、アルミニウム又はアルミニウム合金で構成され、前記金属層と前記ヒートシンクとは、銅又は銅合金からなる接合材を介して固相拡散接合によって接合されており、前記金属層と前記ヒートシンクとの接合界面には、AlとCuとの金属間化合物を有する拡散接合層が形成されており、この拡散接合層においては、Cu濃度が50mol%以上となる高濃度Cu層の厚さが30μm以下とされて
おり、前記拡散接合層の厚さが3μm以上110μm以下の範囲内とされていることを特徴としている。
【0014】
この構成のヒートシンク付パワーモジュール用基板においては、前記金属層と前記ヒートシンクとが、銅又は銅合金からなる接合材を介して固相拡散接合によって接合されており、前記金属層と前記ヒートシンクとの間には、AlとCuとの金属間化合物を有する拡散接合層が形成されており、この拡散接合層においては、Cu濃度が50mol%以上となる高濃度Cu層の厚さが30μm以下とされているので、金属層とヒートシンクとの接合界面において、Cu原子の存在比率が高い領域が薄く、前記金属層と前記ヒートシンク側に形成された比較的脆いθ相に隣接するように硬い金属間化合物相が厚く形成されておらず、厳しいヒートサイクルが負荷された場合であっても、金属間化合物相にクラックが形成されることを抑制できる。これにより、ヒートサイクルに対する接合信頼性を向上させることが可能となる。
【0015】
また、前記金属層と前記ヒートシンクとの間に形成されたAlとCuとの金属間化合物を有する拡散接合層の厚さが3μm以上110μm以下の範囲内とされているので、金属層とヒートシンクとが確実に接合されており、その接合強度を確保することができる。また、拡散接合層の厚さが必要以上に厚く形成されていないので、厳しいヒートサイクルが負荷された場合であっても、この拡散接合層にクラックが発生することを抑制できる。
【0016】
本発明のパワーモジュールは、上記のヒートシンク付パワーモジュール用基板と、前記回路層のうち前記絶縁層とは反対側の面に接合された半導体素子と、を備えることを特徴としている。
本発明のヒートシンク付パワーモジュールによれば、上述したヒートシンク付パワーモジュール用基板を備えているので、厳しいヒートサイクルが負荷された場合であっても、パワーモジュール用基板とヒートシンクとの接合率が低下することを抑制でき、熱抵抗の上昇が抑制される。このため、半導体素子から発生する熱をヒートシンク側へと効率的に放散することが可能となる。
【0017】
本発明のヒートシンク付パワーモジュール用基板の製造方法は、絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板の製造方法であって、前記金属層のうち前記ヒートシンクとの接合面、及び、前記ヒートシンクのうち前記金属層との接合面は、アルミニウム又はアルミニウム合金で構成されており、前記金属層と前記ヒートシンクとを接合するヒートシンク接合工程を有し、このヒートシンク接合工程においては、前記金属層と前記ヒートシンクとの間に銅又は銅合金からなる接合材を介して固相拡散接合する構成とされており、前記接合材の厚さが1μm以上50μm未満の範囲内とされて
おり、前記ヒートシンク接合工程では、前記金属層と前記ヒートシンクとを前記接合材を介して積層し、積層方向に0.29MPa以上3.5MPa以下の荷重を負荷した状態で、400℃以上548℃未満の保持温度で0.1時間以上4時間以下保持することにより、前記金属層と前記ヒートシンクとを固相拡散接合することを特徴としている。
【0018】
この構成のヒートシンク付パワーモジュール用基板の製造方法によれば、前記金属層と前記ヒートシンクとを接合するヒートシンク接合工程において、前記金属層と前記ヒートシンクとの間に、銅又は銅合金からなる接合材を介して固相拡散接合する構成とされており、この接合材の厚さが50μm未満とされているので、固相拡散接合した際に接合材中のCu原子が金属層の接合面及びヒートシンクの接合面側に十分に拡散されることにより、前記金属層と前記ヒートシンクとの接合界面にCu原子の存在比率が高い領域が薄くなり、η
2相(CuAl)やζ
2相(Cu
55Al
45)等のCu濃度が50mol%以上となる高濃度Cu層が厚く形成されることを抑制できる。
一方、銅又は銅合金からなる接合材の厚さが1μm以上とされているので、金属層の接合面のAl原子及びヒートシンクの接合面のAl原子と固相拡散するCu原子を確保することができ、前記金属層と前記ヒートシンクとを確実に固相拡散接合することができる。
【0019】
また、積層方向に0.29MPa以上3.5MPa以下の荷重を負荷した状態で、400℃以上548℃未満の保持温度で0.1時間以上4時間以下保持するとした固相拡散接合条件を採用しているので、前記金属層と前記ヒートシンクとを確実に接合することができるとともに、接合材のCu原子を十分に拡散させることにより、η
2相(CuAl)やζ
2相(Cu
55Al
45)等のCu濃度が50mol%以上となる高濃度Cu層が厚く形成されることを確実に抑制できる。
【発明の効果】
【0020】
本発明によれば、厳しいヒートサイクルが負荷された場合であっても金属間化合物相や拡散接合層にクラック等が生じることを抑制できるヒートシンク付パワーモジュール用基板、このヒートシンク付パワーモジュール用基板を備えたパワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法を提供することが可能となる。
【発明を実施するための形態】
【0022】
以下に、本発明の実施形態について、添付した図面を参照して説明する。
図2に、本発明の一実施形態であるヒートシンク付パワーモジュール用基板30及びパワーモジュール1を示す。
【0023】
このパワーモジュール1は、ヒートシンク付パワーモジュール用基板30と、このヒートシンク付パワーモジュール用基板30の一方の面(
図2において上面)にはんだ層2を介して接合された半導体素子3と、を備えている。
ここで、はんだ層2は、例えばSn−Ag系、Sn−In系、若しくはSn−Ag−Cu系のはんだ材とされている。
【0024】
また、本実施形態であるヒートシンク付パワーモジュール用基板30は、パワーモジュール用基板10と、パワーモジュール用基板10に接合されたヒートシンク31と、を備えている。
ヒートシンク31は、パワーモジュール用基板10側の熱を放散するためのものであり、
図2に示すように、アルミニウム又はアルミニウム合金で構成された放熱板とされている。本実施形態では、ヒートシンク31は、A6063の圧延板で構成されており、その厚さが1mm以上6mm以下の範囲内に設定されている。
【0025】
パワーモジュール用基板10は、セラミックス基板11と、このセラミックス基板11の一方の面(
図2において上面)に配設された回路層12と、セラミックス基板11の他方の面(
図2において下面)に配設された金属層13とを備えている。
セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、本実施形態では、絶縁性の高いAlN(窒化アルミ)で構成されている。ここで、セラミックス基板11の厚さは、0.2mm以上1.5mm以下の範囲内に設定されており、本実施形態では、0.635mmに設定されている。
【0026】
回路層12は、
図5に示すように、セラミックス基板11の一方の面にアルミニウム又はアルミニウム合金からなるアルミニウム板22が接合されることにより形成されている。本実施形態においては、回路層12を構成するアルミニウム板22として、純度99mass%以上の2Nアルミニウムの圧延板が用いられている。この回路層12には、回路パターンが形成されており、その一方の面(
図2において上面)が、半導体素子3が搭載される搭載面とされている。ここで、回路層12(アルミニウム板22)の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では0.6mmに設定されている。
【0027】
金属層13は、
図5に示すように、セラミックス基板11の他方の面にアルミニウム又はアルミニウム合金からなるアルミニウム板23が接合されることにより形成されている。本実施形態においては、金属層13を構成するアルミニウム板23として、純度99.99mass%以上の4Nアルミニウムの圧延板が用いられている。ここで、金属層13(アルミニウム板23)の厚さは0.1mm以上6.0mm以下の範囲内に設定されており、本実施形態では2.0mmに設定されている。
【0028】
そして、本実施形態であるヒートシンク付パワーモジュール用基板30においては、ヒートシンク31と金属層13とが、銅又は銅合金からなる接合材50(
図5参照)を介して固相拡散接合によって接合されている。
ここで、
図2及び
図3に示すように、ヒートシンク31と金属層13との接合界面には、接合材50のCu原子とヒートシンク31及び金属層13のAl原子とが固相拡散することにより、AlとCuの金属間化合物を有する拡散接合層40が形成されている。本実施形態においては、この拡散接合層40の厚さt
0が3μm以上110μm以下の範囲内とされている。
【0029】
この拡散接合層40においては、
図3に示すように、Al原子とCu原子との存在比率に応じて複数の組成の金属間化合物が積層するように構成されている。本実施形態では、金属層13側及びヒートシンク31側には、θ相等のAl原子の存在比率が高い相が形成され、拡散接合層40の厚さ中央部にCu原子の存在比率が高い相が形成されている。
そして、本実施形態においては、Cu濃度が50mol%以上となる高濃度Cu層42の厚さt
1が30μm以下とされている。
【0030】
次に、上述した本実施形態であるヒートシンク付パワーモジュール用基板30の製造方法について、
図4及び
図5を参照して説明する。
【0031】
(アルミニウム板接合工程S01)
まず。
図5に示すように、回路層12となるアルミニウム板22及び金属層13となるアルミニウム板23と、セラミックス基板11とを接合する。本実施形態では、2Nアルミニウムの圧延板からなるアルミニウム板22及び4Nアルミニウムの圧延板からなるアルミニウム板23とAlNからなるセラミックス基板11とを、Al−Si系ろう材24によって接合する。
【0032】
このアルミニウム板接合工程S01においては、まず、セラミックス基板11の一方の面及び他方の面に、それぞれAl−Si系ろう材24を介してアルミニウム板22、アルミニウム板23を積層する(アルミニウム板積層工程S11)。
次に、積層したセラミックス基板11、アルミニウム板22、アルミニウム板23を積層方向に0.1MPa以上3.5MPa以下の荷重を負荷した状態で、真空またはアルゴン雰囲気の加熱炉内に装入して、600℃以上650℃以下、0.5時間以上3時間以下保持することにより、セラミックス基板11とアルミニウム板22,アルミニウム板23との間に溶融金属領域を形成する(加熱工程S12)。
その後、冷却することによって溶融金属領域を凝固させる(凝固工程S13)。このようにして、アルミニウム板22とセラミックス基板11とアルミニウム板23とを接合し、回路層12及び金属層13を形成する。これにより、本実施形態におけるパワーモジュール用基板10が製造される。
【0033】
(ヒートシンク接合工程S02)
次に、パワーモジュール用基板10の金属層13の他方の面(セラミックス基板11との接合面とは反対側の面)にヒートシンク31を接合する。
このヒートシンク接合工程S02においては、まず、
図5に示すように、パワーモジュール用基板10の他方の面側に、銅又は銅合金からなる接合材50と、ヒートシンク31とを、順に積層する(ヒートシンク積層工程S21)。
ここで、接合材50の厚さが、1μm以上50μm未満に設定されている。本実施形態では、接合材50として、無酸素銅からなる銅箔(厚さ10μm)を用いている。
【0034】
そして、このパワーモジュール用基板10と接合材50とヒートシンク31の積層体を、積層方向に0.29MPa以上3.5MPa以下の荷重を負荷した状態で、真空加熱炉の中に装入する。そして、400℃以上548℃未満の温度で、0.1時間以上4時間以下保持して固相拡散接合を行う(固相拡散接合工程S22)。なお、固相拡散接合時の望ましい温度範囲は、AlとCuとの共晶温度である548℃(共晶温度含まず)から共晶温度−5℃の範囲である。
なお、本実施形態においては、金属層13と接合材50、ヒートシンク31と接合材50との接合されるそれぞれの面は、予め当該面の傷が除去されて平滑にされた後に、固相拡散接合されている。
このようにして、本実施形態であるヒートシンク付パワーモジュール用基板30が製造される。
【0035】
(半導体素子接合工程S03)
次に、パワーモジュール用基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する。
以上の工程により、
図2に示すパワーモジュール1が製出される。
【0036】
以上のような構成とされた本実施形態に係るヒートシンク付パワーモジュール用基板30によれば、アルミニウム又はアルミニウム合金(本実施形態では2Nアルミニウム及び4Nアルミニウム)で構成された金属層13とヒートシンク31とが、銅又は銅合金(本実施形態では無酸素銅)で構成された接合材50を介して固相拡散接合によって接合されており、金属層13とヒートシンク31との接合界面に、AlとCuとの金属間化合物を有する拡散接合層40が形成されており、この拡散接合層40においては、Cu濃度が50mol%以上となる高濃度Cu層42の厚さt
1が30μm以下とされているので、金属層13とヒートシンク31との接合界面において、Cu原子の存在比率が高い領域が薄く、比較的脆い相であるθ相に隣接するように、硬度の高い相であるη
2相(CuAl)やζ
2相(Cu
55Al
45)等の金属間化合物相が厚く形成されず、厳しいヒートサイクルが負荷された場合であっても、金属間化合物相にクラックが形成されることを抑制できる。
なお、ヒートサイクルを負荷した際に、金属層13とヒートシンク31との接合界面にクラックが形成されることを確実に抑制するためには、拡散接合層40におけるCu濃度が50mol%以上となる高濃度Cu層42の厚さt
1を15μm以下とすることが好ましく、5μm以下とすることがさらに好ましい。
【0037】
さらに、本実施形態においては、金属層13とヒートシンク31との間に形成されたAlとCuとの金属間化合物を有する拡散接合層40の厚さt
0が3μm以上とされているので、金属層13とヒートシンク31とが確実に接合されており、これらの接合強度を確保することができる。
一方、拡散接合層40の厚さt
0が110μm以下とされているので、厳しいヒートサイクルが負荷された場合であっても、この拡散接合層40にクラックが発生することを抑制できる。
【0038】
以上のことから、本実施形態であるヒートシンク付パワーモジュール用基板30によれば、厳しいヒートサイクルが負荷された場合であっても、金属層13とヒートシンク31との接合界面において、金属間化合物相や拡散接合層にクラック等が生じることを抑制でき、優れた接合信頼性を得ることが可能となる。
【0039】
また、本実施形態であるパワーモジュール1においては、上記のヒートシンク付パワーモジュール用基板30を備えているので、厳しいヒートサイクルが負荷された場合であっても、パワーモジュール用基板10とヒートシンク31との間の接合率が低下することを抑制でき、熱抵抗の上昇が抑制される。このため、半導体素子3から発生する熱をヒートシンク31側へと効率的に放散することが可能となる。
【0040】
さらに、本実施形態であるヒートシンク付パワーモジュール用基板の製造方法によれば、金属層13とヒートシンク31とを接合するヒートシンク接合工程S02において、金属層13とヒートシンク31との間に、銅又は銅合金(本実施形態では無酸素銅)からなる接合材50を介して固相拡散接合する構成とされており、この接合材50の厚さが50μm未満とされているので、固相拡散接合した際に接合材50中のCu原子を金属層13側及びヒートシンク31側に十分に拡散させることにより、金属層13とヒートシンク31との接合界面にCu原子の存在比率が高い領域が厚く形成されず、η
2相(CuAl)やζ
2相(Cu
55Al
45)等のCu濃度が50mol%以上となる高濃度Cu層42が厚く形成されることを抑制できる。
一方、銅又は銅合金(本実施形態では無酸素銅)からなる接合材50の厚さが1μm以上とされているので、金属層13のAl原子及びヒートシンク31のAl原子と固相拡散するCu原子を確保することができ、金属層13とヒートシンク31とを固相拡散接合によって確実に接合することができる。
【0041】
なお、Cu濃度が50mol%以上となる高濃度Cu層42の厚さをさらに薄くするためには、接合材50の厚さの上限を30μm以下とすることが好ましく、15μm以下とすることがさらに好ましい。
また、金属層13とヒートシンク31とを固相拡散接合によって確実に接合して、これらの接合強度をさらに向上させるためには、接合材50の厚さの下限を5μm以上とすることが好ましく、10μm以上とすることがさらに好ましい。
【0042】
また、本実施形態では、ヒートシンク接合工程S02において、金属層13とヒートシンク31とを接合材50を介して積層し、積層方向に0.29MPa以上3.5MPa以下の荷重を負荷した状態で、400℃以上548℃未満の保持温度で0.1時間以上4時間以下保持することにより、金属層13とヒートシンク31とを固相拡散接合する構成とされているので、金属層13とヒートシンク31とを確実に接合することができるとともに、接合材50のCu原子を十分に拡散させることができ、金属層13とヒートシンク31との接合界面に、η
2相(CuAl)やζ
2相(Cu
55Al
45)等のCu濃度が50mol%以上となる高濃度Cu層42が厚く形成されることを確実に抑制できる。
【0043】
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、回路層及び金属層を構成するアルミニウム板を、純度が99mass%以上の2Nアルミニウム及び純度が99.99mass%以上の4Nアルミニウムで構成されたものとして説明したが、これに限定されることはなく、他の純アルミニウム又はアルミニウム合金で構成されたものであってもよい。
また、本実施形態では、ヒートシンクをA6063で構成されたものとして説明したが、これに限定されることはなく、他の純アルミニウム又はアルミニウム合金で構成されたものであってもよい。
【0044】
また、本実施形態では、金属層全体がアルミニウム又はアルミニウム合金で構成されたものとして説明したが、これに限定されることはなく、例えば
図6に示すように、金属層のうちヒートシンクとの接合面がアルミニウム又はアルミニウム合金で構成されていればよい。この
図6に示すヒートシンク付パワーモジュール用基板130及びパワーモジュール101においては、金属層113が、銅層113Aとアルミニウム層113Bとが積層された構造とされており、セラミックス基板11と銅層113Aとが接合され、アルミニウム層113Bとヒートシンク131とが接合材を介して接合されており、アルミニウム層113B(金属層113)とヒートシンク131との接合界面に拡散接合層40が形成されている。なお、
図6においては、回路層112も銅層112Aとアルミニウム層112Bとが積層された構造とされており、アルミニウム層112Bに半導体素子3がはんだ層2を介して接合されている。
【0045】
同様に、本実施形態では、ヒートシンク全体がアルミニウム又はアルミニウム合金で構成されたものとして説明したが、これに限定されることはなく、例えば
図7に示すように、ヒートシンクのうち金属層との接合面がアルミニウム又はアルミニウム合金で構成されていればよい。この
図7に示すヒートシンク付パワーモジュール用基板230及びパワーモジュール201においては、ヒートシンク231が、アルミニウム又はアルミニウム合金からなるアルミニウム層231Bと銅又は銅合金からなるヒートシンク本体231Aとが積層された構造とされており、金属層213とアルミニウム層231Bとが接合材を介して接合されており、金属層213とアルミニウム層231B(ヒートシンク231)との接合界面に拡散接合層40が形成されている。
【0046】
また、本実施形態では、回路層をアルミニウム又はアルミニウム合金で構成されたものとして説明したが、本発明においては回路層の構造に限定はなく、適宜設計変更することができる。例えば、銅又は銅合金で構成されていてもよいし、
図6に示すヒートシンク付パワーモジュール用基板130及びパワーモジュール101のように、回路層112が銅層112Aとアルミニウム層112Bとの積層構造とされていてもよい。
【0047】
さらに、本実施形態においては、接合材を無酸素銅で構成されたものとして説明したが、これに限定されることはなく、他の銅又は銅合金で構成されていてもよい。
また、本実施形態においては、接合材として銅箔を用いたもので説明したが、これに限定されることはなく、めっき、蒸着、スパッタ等によって、金属層とヒートシンクとの間に接合材を介在させてもよい。
【0048】
さらに、本実施形態においては、回路層及び金属層となるアルミニウム板とセラミックス基板とを、Al−Si系ろう材を用いて接合するものとして説明したが、これに限定されることはなく、過渡液相接合法(Transient Liquid Phase Bonding)、鋳造法、金属ペースト法等を用いて接合してもよい。
【0049】
また、本実施形態においては、絶縁層をAlNからなるセラミックス基板で構成したものとして説明したが、これに限定されることはなく、Si
3N
4やAl
2O
3等の他のセラミックス基板を用いてもよい。
さらに、絶縁層、回路層、金属層、ヒートシンクの厚さは、本実施形態に限定されることはなく、適宜設計変更してもよい。
【実施例】
【0050】
本発明の有効性を確認するために行った確認実験について説明する。
図5のフロー図に記載した手順に従って、荷重1.2MPa、温度535℃、1.5時間の条件で真空加熱炉(10
−6Pa以上、10
−3Pa以下)において固相拡散接合を行い、ヒートシンク付パワーモジュール用基板を作製した。
なお、セラミックス基板は、AlNで構成され、40mm×40mm、厚さ0.635mmのものを使用した。
【0051】
回路層は、純度99.99mass%以上の4Nアルミニウムの圧延板(37mm×37mm、厚さ0.6mm)をAl−Si系ろう材を用いてセラミックス基板に接合することによって形成した。
金属層は、純度99.99mass%以上の4Nアルミニウムの圧延板(37mm×37mm、厚さ0.6mm)をAl−Si系ろう材を用いてセラミックス基板に接合することによって形成した。
ヒートシンクは、表1記載の材質で構成され、50mm×50mm、厚さ5mmのものを使用した。
ここで、接合材は、表1に示す組成及び厚さのものを使用した。なお、厚さが5μm以上のものは箔材とし、厚さは5μm未満のものはめっきによって成膜した。
【0052】
また、従来例として次のヒートシンク付パワーモジュール用基板を作製した。
回路層となる2Nアルミニウムの圧延板(37mm×37mm、厚さ0.6mm)とAlNで構成されたセラミックス基板(40mm×40mm、厚さ0.635mm)と金属層となる4Nアルミニウムの圧延板(37mm×37mm、厚さ0.6mm)とを、Al−Si系ろう材を介して積層し、積層方向に5kgf/cm
2で加圧した状態で、真空加熱炉内に装入し、650℃で30分加熱することによって接合し、パワーモジュール用基板を作製した。次にパワーモジュール用基板とNiめっきを施したヒートシンク(A6063の圧延板、50mm×50mm、厚さ5mm)とをSn−Ag−Cuはんだを介して接合した。
【0053】
(試験片の断面観察)
得られたヒートシンク付パワーモジュール用基板の断面をクロスセクションポリッシャ(日本電子株式会社製SM−09010)を用いて、イオン加速電圧:5kV、加工時間:14時間、遮蔽板からの突出量:100μmでイオンエッチングした後に観察し、金属層とヒートシンクとの接合界面に形成された拡散接合層の厚さt
0、及び、Cu濃度が50mol%以上となる高濃度Cu層の厚さt
1を測定した。
拡散接合層の厚さt
0は、金属層とヒートシンクとの接合界面を厚さ方向にEPMA(日本電子社製JXA−8530F,加速電圧:15kV,スポット径:1μm以下,倍率:500倍,間隔:0.3μm)にてライン分析を行い、Cu濃度が1at%以上となる箇所を拡散接合層とみなし、厚さを測定した。
また、Cu濃度が50mol%以上となる高濃度Cu層の厚さt
1は、金属層とヒートシンクとの接合界面を厚さ方向にEPMA(日本電子社製JXA−8530F,加速電圧:15kV,スポット径:1μm以下,倍率:500倍,間隔:0.3μm)にてライン分析を行い、Al/Cu(原子比)が1以上になる箇所をCu濃度が50mol%以上となる高濃度Cu層とみなし、厚さを測定した。
【0054】
(ヒートサイクル試験)
ヒートサイクル試験は、冷熱衝撃試験機エスペック社製TSB−51を使用し、試験片(ヒートシンク付パワーモジュール)に対して、液相(フロリナート)で、−40℃×5分←→150℃×5分のヒートサイクルを4000回実施した。
そして、ヒートサイクル試験前の接合率、及び、ヒートサイクル試験後の接合率を評価した。
【0055】
(接合率)
金属層とヒートシンクとの接合率は、超音波探傷装置(日立パワーソリューションズ社製FineSAT200)を用いて以下の式を用いて求めた。ここで、初期接合面積とは、接合前における接合すべき面積(37mm角)とした。超音波探傷像を二値化処理した画像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
(接合率)={(初期接合面積)−(剥離面積)}/(初期接合面積)
【0056】
評価結果を表1に示す。
【0057】
【表1】
【0058】
従来例では、ヒートサイクル試験後に接合率が大きく低下した。ヒートサイクルによってはんだ層にクラックが発生したためと推測される。
また、Cu濃度が50mol%以上となる高濃度Cu層の厚さt
1が30μmを超える比較例においても、ヒートサイクル試験後に接合率が大きく低下した。金属層及びヒートシンク側に形成された脆弱なθ相に隣接するように、η
2相(CuAl)やζ
2相(Cu
55Al
45)等を含む硬い相が厚く形成され、ヒートサイクルによってθ相にクラックが生じたためと推測される。
【0059】
これに対して、Cu濃度が50mol%以上となる高濃度Cu層の厚さt
1が30μm以下とされた本発明例によれば、いずれもヒートサイクル試験後に接合率が大きく低下しておらず、接合信頼性に優れていることが確認された。
以上のことから、本発明によれば、厳しいヒートサイクルが負荷された場合であっても接合界面においてクラック等が生じることを抑制できるヒートシンク付パワーモジュール用基板を提供可能であることが確認された。