【実施例】
【0026】
以下、実施例により本発明について更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、本発明では、作動溶液中の非極性溶媒である芳香族炭化水素としてプソイドクメン(PSC)を、極性溶媒である高級アルコールとしてジイソブチルカルビノール(DIBC)を用いた。ジイソブチルカルビノール由来のケトン体はジイソブチルケトン(DIBK)であり、各有機溶媒成分をガスクロマトグラフィー(GC)を用いて測定した。各有機溶媒成分の内、その他成分として水素化処理では再生不可能な有機溶媒の変質物であるジメチル安息香酸、アルキルフタル酸無水物、脂肪族カルボン酸類、トリメチルフェノールおよび2,6−ジメチル−4−ヘプタンジオールなどが確認された。
【0027】
<溶剤の酸価測定>
溶剤の酸価測定は、JIS−K0070に準拠して行った。具体的には、以下の通りである。まず、フラスコに、溶剤の試料40mLとN/10 炭酸ナトリウム水溶液20mLをそれぞれ加え秤量し、50℃にて15分間抽出した。抽出した内容物を分液ロートに静置し、生成した炭酸ナトリウム溶液層(下層)をプソイドクメン20mlで洗った後、炭酸ナトリウム溶液層5mLに純水を加えて40mlの試料とし、N/20塩酸にて滴定した。そして以下の式に基づき、溶剤サンプルの酸価Aを求めた。
A=(B/R−C/S)×N×F×U/V×1000
(式中、A:酸価(酸成分測定値(mmol/L))、B:ブランク滴定量(mL)、C:試料滴定量(mL)、R:ブランク体積(5mL)、S:滴定試料体積(5mL)、N:滴定液濃度(0.05mol/L)、F:滴定液ファクター、U:抽出時の抽出液の体積(mL)、およびV:抽出時のサンプルの体積(mL)である。)
【0028】
<作動溶液の水分量測定>
調製した作動溶液の水分量測定には、京都電子産業(株)製カールフィッシャーMKS−520を使用した。具体的には、以下の通りである。まず、調製した作動溶液を2mlのホールピペットに採取し、京都電子産業(株)製カールフィッシャーMKS−520の滴定容器内に注入した。滴定剤としてアクアミクロン滴定剤 SS 3mgを用いて滴定し、容量滴定法にて水分量を測定した。
【0029】
<作動溶液の活性試験>
上記処理により得られた作動溶液の性能確認試験を、撹拌翼を取り付けたバッチ式の評価装置を用いて以下のように行った。上記バッチ式の反応槽に触媒1重量部と作動溶液20重量部を投入した。反応槽を気密にした後、反応系内を水素置換した。撹拌翼を1000rpmで30分間、撹拌して、単位触媒当たりの水素吸収量を測定した。反応温度は30℃、反応圧力は常圧に制御した。ここで用いた触媒は、特開平9−271670号公開に開示されたシリカ担持パラジウム触媒であった。
【0030】
参考例1
<処理原料である有機溶媒成分の回収>
本発明における第1の蒸留工程で使用する作動溶液として、実際の過酸化水素製造装置で経年使用されたものを用いた。過酸化水素製造装置より作動溶液2000mlを抜き出した。作動溶液内の反応媒体はアミルアントラキノン、アミルテトラヒドロアントラキノンである。第1段階の有機溶媒成分の回収においては、蒸留装置を備えた1000mlフラスコ内に400mlの作動溶液をあらかじめ仕込み、13kPaに真空度をコントロールして室温から温度を上げていった。釜の温度が130℃になった時点で留出が始まり、フラスコ内の液量が減少していくので残りの作動溶液を逐次追加していき総仕込み量が2000mlとなった時点で追加を停止した。作動溶液の追加を停止した後、蒸留釜の温度が200℃になるまで蒸留を継続し、その間2時間を要し、有機溶媒成分を回収した。このとき、蒸留釜のフラスコ内に残ったアントラキノン類を、「分離した反応媒体」と呼ぶ。この分離した反応媒体中の有機溶媒成分をGCにて分析した結果、合計で1質量%以下であった。
一方、回収された有機溶媒成分は1400mlであった。これを蒸留回収溶剤と呼ぶ。この蒸留回収溶剤中の有機溶媒成分をGCにて分析した結果、プソイドクメン/ジイソブチルカルビノール/ジイソブチルケトン=62.4質量%/11.8質量%/25.4質量%であった。また、この蒸留回収溶剤の酸価は84mg−KOH/gであった(表1)。
【0031】
<作動溶液の調製>
上記の「分離した反応媒体」(蒸留回収した際の釜の残渣)と蒸留回収溶剤を、固形分(アミルアントラキノンとアミルテトラヒドロアントラキノン)濃度が250g/Lになるよう混合し、さらに純水5g添加し撹拌後、室温(20℃〜25℃)で約2時間静置し作動溶液を得た。得られた作動溶液の水分量は2.4g/Lであった(表1)。
なお、作動溶液中には適量の水分が含まれていることが好ましい点を踏まえて、予め、飽和水分量を超える純水5gを上記混合液に添加した後、実際に混合液に含まれた水分量(飽和水分量)についても測定した。以下の各実施例および参考例においても同様であり、これらの実施例等の水分量の評価結果については後述する。
【0032】
<作動溶液の活性試験>
上記で調製した作動溶液の活性試験を行った。ここで得られた水素吸収量を基準とし、相対水素吸収率100%とした(表1)。
【0033】
実施例1
<蒸留回収溶剤の水素化>
オートクレーブに上記の蒸留回収溶剤900gと触媒として日揮触媒化成(株)製N203SD(Cu−Cr系触媒)9g(蒸留回収溶剤に対して1質量%)を添加し、7時間水素化反応させた。反応温度は200℃で、反応圧力は2.0MPaに制御した。水素化反応終了後、室温になるまで静置し、その後、触媒はアドバンテック製フィルターNo.1で濾別した。蒸留回収溶剤に水素化反応を施したものを水素化溶剤と言う。この水素化溶剤成分をGCにて分析した結果、プソイドクメン/ジイソブチルカルビノール/ジイソブチルケトン=62.4質量%/30.8質量%/6.4質量%であった。水素化反応の時間経過に伴う水素化溶剤成分のGC分析結果を表1に示す。また、この水素化溶剤の酸価は81mg−KOH/gであった(表1)。
【0034】
<作動溶液の調製>
上記の「分離した反応媒体」(蒸留回収した際の釜の残渣)と水素化溶剤を固形分(アミルアントラキノンとアミルテトラヒドロアントラキノン)濃度が250g/Lになるよう混合し、さらに純水5g添加し撹拌後、室温(20℃〜25℃)で約2時間静置し作動溶液を得た。
得られた作動溶液の水分量は3.6g/Lであった(表1)。
【0035】
<作動溶液の活性試験>
得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は153%であった(表1)。
【0036】
実施例2
<蒸留回収溶剤の水素化>
触媒量は蒸留回収溶剤に対して0.4質量%、反応温度は160℃、反応圧力は1.6MPaと制御した以外は、実施例1と同様の条件で蒸留回収溶剤の水素化処理を合計で80時間行った。水素化溶剤成分はプソイドクメン/ジイソブチルカルビノール/ジイソブチルケトン=62.2質量%/30.3質量%/6.9質量%であった。水素化反応の時間経過に伴う水素化溶剤成分のGC分析結果を表1に示す。また、この水素化溶剤の酸価は82mg−KOH/gであった(表1)。
【0037】
<作動溶液の調製>
実施例1と同様の方法で作動溶液を調製した。この作動溶液の水分量は3.5g/Lであった(表1)。
【0038】
<作動溶液の活性試験>
実施例1と同様の方法で、得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は151%であった(表1)。
【0039】
実施例3
<蒸留回収溶剤の水素化>
反応温度を160℃、反応圧力を2.0MPaと制御した以外は、実施例1と同様の条件で蒸留回収溶剤の水素化処理を9時間行った。水素化溶剤成分はプソイドクメン/ジイソブチルカルビノール/ジイソブチルケトン=62.3質量%/31.1質量%/6.1質量%であった。水素化反応の時間経過に伴う水素化溶剤成分のGC分析結果を表1に示す。また、この水素化溶剤の酸価は82mg−KOH/gであった(表1)。
【0040】
<作動溶液の調製>
実施例1と同様の方法で作動溶液を調製した。この作動溶液の水分量は3.6g/Lであった(表1)。
【0041】
<作動溶液の活性試験>
実施例1と同様の方法で、得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は152%であった(表1)。
【0042】
実施例4
<蒸留回収溶剤の水素化>
蒸留回収溶剤量を実施例1の2倍量、すなわち1800gと触媒14.4gを仕込み、反応温度を160℃で開始し、反応開始から2時間経過後に反応温度を200℃に昇温制御した以外は実施例1と同様の方法で、蒸留回収溶剤の水素化処理を合計で8.5時間行った。水素化溶剤成分はプソイドクメン/ジイソブチルカルビノール/ジイソブチルケトン=62.3質量%/30.6質量%/6.6質量%であった。水素化反応の時間経過に伴う水素化溶剤成分のGC分析結果を表1に示す。また、この水素化溶剤の酸価は81mg−KOH/gであった(表1)。
【0043】
<作動溶液の調製>
実施例1と同様の方法で作動溶液を調製した。この作動溶液の水分量は3.5g/Lであった(表1)。
【0044】
<作動溶液の活性試験>
実施例1と同様の方法で、得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は151%であった(表1)。
【0045】
実施例5
<蒸留回収溶剤の水素化>
反応温度を220℃、反応圧力を1.0MPaと制御した以外は実施例1と同様の方法で水素化を12.5時間行った。水素化溶剤成分は、プソイドクメン/ジイソブチルカルビノール/ジイソブチルケトン=62.4質量%/30.8質量%/6.4質量%であった。水素化反応の時間経過に伴う水素化溶剤成分のGC分析結果を表1に示す。また、この水素化溶剤の酸価は82mg−KOH/gであった(表1)。
【0046】
<作動溶液の調製>
実施例1と同様の方法で作動溶液を調製した。この作動溶液の水分量は3.6g/Lであった(表1)。
【0047】
<作動溶液の活性試験>
実施例1と同様の方法で、得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は152%であった(表1)。
【0048】
参考例2
<作動溶液の調製>
まず、未使用のプソイドクメン60容量%とジイソブチルカルビノール40容量%からなる混合溶液を調製した。この混合溶剤の成分はプソイドクメン/ジイソブチルカルビノール/ジイソブチルケトン=60.8質量%/38.1質量%/1.0質量%であった。また、この混合溶剤の酸価は0mg−KOH/gであった(表1)。
この混合溶剤にアミルアントラキノンの濃度が0.6 mol/Lになるように新品のアミルアントラキノン83gに溶解して、さらに純水5g添加し撹拌後、室温(20℃〜25℃)で約2時間静置し作動溶液を得た。得られた作動溶液の水分量は4.1g/Lであった(表1)。
【0049】
<作動溶液の活性試験>
実施例1と同様の方法で、得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は168%であった(表1)。
【0050】
参考例3
<蒸留回収溶剤の水素化>
反応温度を120℃とした以外は、実施例1と同様の方法を用いた。しかし、反応は進行しなかった。
【0051】
参考例4 <蒸留回収溶剤の水素化>
触媒種を日揮触媒化成(株)製SN−750(Ni系触媒)、反応温度を120℃とした以外は、実施例1と同様の方法を用いた。しかし、反応は進行しなかった。
【0052】
参考例5
<蒸留回収溶剤の水素化>
触媒種を日揮触媒化成(株)製SN−750(Ni系触媒)、反応開始温度を100℃とした以外は実施例1と同じ方法を用いた。しかし、反応は進行しなかったため、反応開始から2時間経過した後、反応温度を160℃とした。反応温度上昇に伴い水素吸収が観測されたため、170℃でも2時間反応させたが、同時に低沸分も増加が起き、ジイソブチルケトン残存率は14.3質量%だった(表1)。
【0053】
実施例6
<水素化溶剤のアルカリ共沸処理>
実施例1と同様の条件で蒸留回収溶剤を処理して得た水素化溶剤を特開2008−87992号公報で開示された方法でアルカリ共沸処理した。すなわち、メラパックを充填した精留塔と撹拌機を備えた蒸留装置に1.0%水酸化ナトリウム水溶液100mlを仕込み、実施例1と同様の条件で蒸留回収溶剤を処理で得た水素化溶剤を連続的に添加し、加熱して水素化溶剤と水の混合物を留出させた。この混合物を分離層で分液し、留出水は還流水として蒸留釜に戻し、留出した精製された水素化溶剤のみを回収した。水素化溶剤は連続的に供給し、総量が1000mlとなった時点で供給を停止した。この精製された水素化溶剤の酸価は0mgKOH/gであった(表1)。
【0054】
<作動溶液の調製>
上記の方法により得られた精製された水素化溶剤を用いて、実施例1と同様の方法で作動溶液を調製した。この作動溶液の水分量は3.6g/Lであった(表1)。
【0055】
<作動溶液の活性試験>
実施例1と同様の方法で、得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は159%であった(表1)。
【0056】
実施例7
<水素化溶剤のアルカリ洗浄>
実施例1と同様の条件で蒸留回収溶剤を処理して得た水素化溶剤をアルカリ水溶液で洗浄した。アルカリ水溶液として、0.5%水酸化ナトリウム水溶液を用いた。水素化溶剤250mlと上記の0.5%水酸化ナトリウム水溶液100mlを分液ロートに仕込んだ。水素化溶剤およびアルカリ水溶液はあらかじめ30℃になるように温度調整を行った。この分液ロートを振とう器(ヤマト科学製ShakerSA31)に据え付け、振とう強度は280回/分の強度で5分間振とうした。その後60分間静置し、水素化溶剤と水酸化ナトリウム水溶液を上層と下層に分離させた。分液ロートより分離した上層の水素化溶剤を回収した。
【0057】
<水洗処理>
上記のアルカリ洗浄後、回収した水素化溶剤の水洗処理を以下のように行った。分液ロートに該水素化溶剤と純水100mlを入れ、前述の方法で5分間振とうした。また振とう後は60分間静置し、水素化溶剤と水層を分離した。下層の水層を除去し、また新たに純水を90ml追加し、同様の振とう操作を行った。振とう後は同様に水層を除去した。再度水洗を行い、水洗を合計で3回行った。この時の水温はあらかじめ30℃となるように温度を調整した。精製された水素化溶剤の酸価は31mgKOH/gであった(表1)。
【0058】
<作動溶液の調製>
上記の方法により得られた水素化溶剤を用いて、実施例1と同様の方法で作動溶液を調製した。得られた作動溶液の水分量は3.5g/Lであった(表1)。
【0059】
<作動溶液の活性試験>
実施例1と同様の方法で、得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は158%であった(表1)。
【0060】
実施例8
<水素化溶剤の水洗処理>
実施例1と同様の条件で蒸留回収溶剤を処理して得た水素化溶剤を純水で洗浄した。水洗処理には、向流式5段ミキサーセトラー抽出器を用いて水素化溶剤の体積比5倍の純水を用いた。精製された水素化溶剤の酸価は64mgKOH/gであった(表1)。
【0061】
<作動溶液の調製>
上記の方法により得られた水素化溶剤を用いて、実施例1と同様の方法で作動溶液を調製した。この作動溶液の水分量は3.5g/Lであった(表1)。
【0062】
<作動溶液の活性試験>
実施例1と同様の方法で、得られた作動溶液の活性試験を行った。この作動溶液の相対水素吸収率は155%であった(表1)。
【0063】
【表1】
PSC;プソイドクメン
DIBC;ジイソブチルカルビノール
DIBK;ジイソブチルケトン
【0064】
以上のように、各実施例においては、経年使用されていた作動溶液の有機溶媒成分(蒸留回収溶剤)中のケトン体(DIBK)をアルコールに還元させることにより、水素の吸収効率が高まった。すなわち、有機溶媒成分中に25.4質量%のケトン体が含まれていたままの参考例1においては相対吸収効率が100%であったのに対し、各実施例においては、有機溶媒成分中のケトン体を10質量%以下、具体的には6〜7質量%まで低下させたことにより、相対吸収効率が150%以上に改善された(表1参照)。この値は、未使用の作動溶液を試料として用いた参考例2における168%に近いものといえる。
そしてアントラキノン法において、水素の吸収効率は過酸化水素の生産効率に比例するものであるため、有機溶媒中のケトン体の残存率を10質量%以下とすることにより、作動溶液による過酸化水素の生産効率が改善されることが確認された。
【0065】
そして、過酸化水素の生産効率の改善が可能になったより具体的な理由として、以下のことが考えられる。
有機溶媒成分中にケトン体が多量に含まれていた参考例1においては、有機溶媒成分(蒸留回収溶剤)中に水分が2.4(g/L)しか含まれなかったのに対し、ケトン体の含有量の低い各実施例においては、未使用の作動溶液を用いた参考例2の値(4.1(g/L))に近い3〜4(g/L)まで含まれることが確認された。このように、ケトン体の含有量の低い作動溶液中には適度な量の水分が含まれ得るため、過酸化水素製造に悪影響を及ぼし得る遊離水の発生を抑制できる。このように遊離水の発生を抑制したことにより水素の吸収効率が高められたのであり、このことが、過酸化水素の生産効率の向上を可能にした主な理由であるといえる。
さらに、有機溶媒成分をアルカリ水溶液、または水と接触させた実施例6〜8においては、参考例1および他の実施例に比べて、酸価の値が大幅に低下した(表1参照)。この結果から、有機溶媒成分をアルカリ水溶液、または水と接触させる処理工程により、ケトン体以外の酸性の不純物をも除去できることが確認された。
【0066】
また、本願発明によれば、ケトン体を効率的にアルコールに再生させることが可能である。この理由として、本願発明においては、ケトン体のみを選択的に作動溶液から分離する工程が不要であり、例えば非極性溶媒などを含んだままの有機溶媒成分を作動溶液から分離させ、有機溶媒成分をそのまま触媒に反応させれば良いことが挙げられる。アントラキノン法において一般に用いられる有機溶媒成分は、アントラキノン類とは容易に分離可能であり、このような有機溶媒成分の分離は、ケトン体のみの選択的な分離に比べて非常に容易である。