(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0008】
次に、図面を参照して、本発明の実施の形態を詳細に説明する。
【0009】
(第1実施形態)
図1を参照して、第1実施形態に係わるシーン理解装置を含む運転支援装置1aの全体構成を説明する。運転支援装置1aは、自車の走行予定経路上の特定地点において他車或いは人と交錯する危険度(シーン)に基づいて自車の行動(運転支援方法)を決定し、運転支援を実行する装置である。シーン理解装置は、危険度を算出する、すなわちシーンを理解する装置である。特定地点とは、道路上において車両同士又は車両と人が交錯する地点であって、例えば、3つ以上の道路が集まる交差点、高速道路の合流地点、横断歩道が含まれる。よって、シーン理解装置は、自車が特定地点を走行する際に、特定地点の周囲に有る他車或いは人を検出して、他車或いは人と交錯する危険度を算出する。そして、運転支援装置1aは、自車が特定地点を安全に走行するために、危険度に基づいて自車の行動(運転支援方法)を決定し、運転支援を実行する。
【0010】
運転支援装置1aは、GPS11と、地図データベース12と、車載カメラ13及びレーザセンサ14と、操作部15と、危険度データベース16と、演算回路17aと、を備える。GPS11は、自車の現在位置を検出する自車位置検出部の一例である。地図データベース12は、地図データを記憶する地図記憶部の一例である。車載カメラ13及びレーザセンサ14は、車両周囲に存在する障害物の位置を検出する障害物検出部の例である。操作部15には、自車の乗員の指示を受け付ける部材であって、マイク、インストルメントパネルに配置されたタッチパネル、ステアリングスイッチなどが含まれる。危険度データベース16は、障害物が有る障害物検出枠の組合せと危険度との関係を記憶する。危険度データベース16及び障害物検出枠については後述する。
【0011】
演算回路17aは、障害物情報及び地図情報を用いて、危険度を算出して運転支援を実行する一連の演算処理を実行する回路であって、例えば、CPU、RAM、ROM、メモリ、入出力制御回路から成る汎用のマイクロコンピュータである。マイクロコンピュータには、一連の演算処理が記述されたコンピュータプログラムが予めインストールされ、マイクロコンピュータがコンピュータプログラムを実行することにより、マイクロコンピュータは、上記した一連の演算処理を実行するための複数の演算処理部を構成する。演算回路17aにより構成される複数の演算処理部については、
図2を参照して後述する。
【0012】
GPS11は、全地球測位システムにおけるNAVSTAR衛星からの電波を受信して、自車の位置をリアルタイムに測定する。地図データベース12に記憶されている地図データにおいて、障害物を検出するための1又は2以上の、道路構造に応じた形状の障害物検出枠が特定地点の各々に予め設定されている。車載カメラ13は、自車に搭載され、自車周囲を撮像して周囲画像を取得する。演算回路17aは周囲画像を解析して障害物の有無及びその位置を判断する。レーザセンサ14は、パルス状のレーザを射出して障害物からの反射光を検出することにより、自車から障害物までの距離及び方位を検出する。
【0013】
図2を参照して、演算回路17aにより構成される複数の演算処理部を説明する。演算回路17aは、複数の演算処理部として、危険度を算出して運転支援方法を決定するシーン理解部21と、決定した運転支援を実行する運転支援部22とを構成する。シーン理解部21は、地図取得部23と、経路演算部24と、検出枠選択部25と、障害物判断部26と、危険度算出部27と、死角重畳判断部28と、符号化処理部29と、危険度データ取得部30とを備える。
【0014】
運転支援部22は、シーン理解部21により決定された自車の行動(運転支援方法)に従って、運転支援を実行する。具体的には、運転支援装置1aが、各種アクチュエータを駆動することにより、ステアリング操作及びペダル操作を含む全ての運転操作を自ら主体的に行う自動運転制御であってもよい。或いは、運転者の聴覚、視覚、触覚等の五感を通じて、運転者が行うべき運転操作を指示、示唆、或いは暗示してもよい。
【0015】
経路演算部24は、GPS11によって測定された自車の現在位置から操作部15が受け付けた目的地までの走行予定経路を演算する。なお、実施形態では、運転支援装置1a或いはシーン理解装置が、自ら、走行予定経路を演算する機能を有する場合を説明する。しかし、運転支援装置1a或いはシーン理解装置は、他の装置によって演算された走行予定経路を外部から取得しても構わない。
【0016】
地図取得部23は、地図データベース12から、走行予定経路に係わる地図データを取得する。地図取得部23は、走行予定経路上に有る特定地点を読み込み、更に、特定地点の各々に設定されている障害物検出枠を読み込む。地図データとして、デジタル地図を用いることができる。デジタル地図は、
図4(a)に示す縁石41の位置を示す縁石情報もしくは道路ネットワーク情報を備える。縁石情報は自車の走行可能領域を算出する際に利用される。道路ネットワーク情報は、自車が次の時刻で走行できる領域を求めるために利用される。更に、デジタル地図は、道路構造に応じた形状の障害物検出枠の情報も備える。
【0017】
なお、実施形態では、地図データベース12が車両に搭載される場合を示すが、これに限らず、車両外のサーバー上に記憶されていてもよい。この場合、地図取得部23は、ネットワークを介して車両外から地図データを取得すればよい。また、危険度データベース16についても同様である。また、障害物検出枠は、最初から地図データベース12上に設定されるようにしてもよい。
【0018】
図4(b)に示すように、1つの特定地点(例えば、三叉路)には、道路構造に応じた形状の複数の障害物検出枠42が設定されている。交差点の入口及び出口、交差点の内部、横断歩道及びそれに隣接する歩道部分等に、障害物検出枠42が設定されている。交差点の内部には、交差点を直進或いは右左折する進路毎に、障害物検出枠42が設定されている。
【0019】
車両同士が交錯する特定地点の他の例として、
図5(a)及び
図5(b)に示すように、合流車線43(支線を含む)から本線44への合流地点がある。また、車両と人とが交錯する特定地点として、
図5(c)及び
図5(d)に示すように、横断歩道45がある。これらの特定地点にも、交錯する前(シーン入口)、交錯する部分(シーン内部)、及び交錯した後(シーン出口)の各々に、複数の障害物検出枠42が予め設定されている。
【0020】
障害物判断部26は、走行予定経路上にある特定地点において、障害物検出枠に障害物が有るか否かを判断する。障害物判断部26は、車載カメラ13及びレーザセンサ14によって検出された障害物の位置が、障害物検出枠の内部であるか否かを判断する。
【0021】
危険度算出部27は、障害物の有無の判断結果に基づいて、特定地点の危険度を算出する。危険度の具体的な算出方法の例は後述するが、これらに限定されず、既知の方法(例えば、特許文献1記載の方法)を適宜用いてもかまわない。
【0022】
シーン理解部21は、自車がこれから走る走行領域を縁石情報もしくは道路ネットワーク情報より求める。走行領域の中に特定地点が含まれる場合、特定地点に設定されている障害物検出枠を読み込む。自車に搭載された外界センシング装置(車載カメラ13及びレーザセンサ14)を用いて障害物を検出する。検出された障害物が障害物検出枠に含まれるかどうかを判断する。特定地点の所定の障害物検出枠に障害物がいる場合、特定地点が危険であると判断する。危険度は障害物検出枠ごとに設定してよいし、危険度は障害物検出枠ごとに変えてもよい。つまり、危険度を算出する際に、障害物検出枠毎に異なる重み付けを付してもよい。
【0023】
このように、シーン理解部21は、地図データに予め設定された障害物検出枠42における障害物の有無に基づいて、特定地点の危険度を算出する。よって、危険度の算出に無関係な位置で検出される障害物を処理対象から排除できるので、演算負荷が過度に増大することが抑制される。
【0024】
地図データベース12に記憶されている地図データにおいて、障害物検出枠のみならず、障害物によって生じる死角と重畳するか否かを注視すべき注視枠が、特定地点の各々に予め設定されていてもよい。この場合、地図取得部23は、注視枠が特定地点に予め設定されている地図データを取得する。
図2に示すように、シーン理解部21は、障害物によって生じる死角が注視枠と重畳しているか否かを判断する死角重畳判断部28を更に備える。危険度算出部27は、重畳しているか否かの判断結果に基づいて、特定地点の危険度を算出する。よって、死角に障害物が存在することを想定して特定地点の危険度を算出することができる。
【0025】
注視枠48は、他車、建築物或いは壁の存在によって死角になり易い位置に設けられる。注視枠48は、更に、死角になったときに他車や人の飛び出しがあると危険な位置に設けられる。注視枠48を設ける位置は、自車46の経路や特定地点への進入方向に応じて異なる。特定地点が同じ、且つ、自車の経路が同じであっても、注視枠の位置と数は異なる場合がある。例えば、特定地点における信号機の有無に応じて、必要な注視枠の数は変化する。
【0026】
図6(a)は、信号機がある三叉路に設定される注視枠48の例を示す。対向車線の入口に他車がいると、他車の脇にあるバイクレーンが死角になり易い。交差点内に先行車がいると横断歩道や自車線の出口付近が死角になり易い。よって、死角になり易いこれらの位置に注視枠48を設ける。
【0027】
図6(b)は、信号機がない三叉路に設定される注視枠48の例を示す。自車46が走行する道路に交わる他の道路から他車が流入するシーンを、危険度の演算において考慮する必要がある。他の道路の対向車線入口が先行車によって死角になり易い。よって、他の道路の対向車線入口に注視枠48を設ける。
【0028】
危険度算出部27は、自車46にとりつけたセンサより求まる死角50が注視枠48に重畳している状態量から危険度を算出する。例えば、危険度算出部27は、注視枠48の面積に対して、死角と注視枠が重畳する面積が占める割合から危険度を算出する。或いは、危険度算出部27は、注視枠48の外周に対して、死角と重畳する注視枠の長さ48aが占める割合から危険度を算出してもよい。危険度算出部27は、これらの状態量が基準値よりも大きい場合に、見通しが悪いので高い危険度を算出することができる。
【0029】
図7(a)に示すように、合流地点において、合流車線43と本線44の間に壁がある場合、その裏側は死角になり易い。また、合流車線43から本線44に車線変更している先行車がいる場合、合流後の本線44付近が死角になり易い。よって、死角に成りやすいこれらの位置に、注視枠48を設ける。なお、自車46が合流車線43から本線44に進入するときは複数の注視枠48を設ける。しかし、自車46が合流車線43よりも優先される本線44を直進するだけの場合は注視枠を設けない。
【0030】
図7(b)に示すように、横断歩道において、先行車がいる場合、横断歩道の脇が死角になり易い。また、横断歩道を人が横断している場合、横断歩道の奥側が死角になり易い。よって、死角に成りやすいこれらの位置に、注視枠48を設ける。
【0031】
第1実施形態において、危険度算出部27は、障害物が有る障害物検出枠42の組合せに基づいて、特定地点の危険度を算出する。障害物検出枠42の各々について危険度を算出する必要がないので、演算負荷の過度な増大を抑制することができる。更に、危険度算出部27は、障害物により生じる死角と重畳する注視枠48を、上記した障害物検出枠42の組合せに追加して、特定地点の危険度を算出しても構わない。
【0032】
上記したように、1つの特定地点には複数の障害物検出枠42や注視枠48が設定されている。危険度算出部27は、障害物が検出された複数の障害物検出枠42及び死角と重畳する注視枠48の組合せから、予め定めた交通状況を読み解くことができるか否かを判断する。予め定めた交通状況を読み解くことができる場合に限り、危険度算出部27は、交通状況に基づく危険度を算出する。自車が走行中に予め定めた交通状況を読み解けた場合、自車が遭遇した環境を危険なシーンとして理解する。
【0033】
ここでは、障害物がある障害物検出枠42及び死角と重畳する注視枠48の組合せを用いて危険度を判断するが、障害物検出枠42及び注視枠48の各々について個別に危険度を算出し、これらを集計して、特定地点の危険度を算出しても構わない。
【0034】
図8(a)は、11個の障害物検出枠(R01〜R11)、2個の注視枠(T01、T02)が設定されている三叉路を示す。自車46は、走行予定経路51として、三叉路を右折する。
図8(b)〜
図8(e)は、
図8(a)の三叉路において、障害物がある障害物検出枠42及び死角と重畳する注視枠48の組合せの例を示す。障害物がある障害物検出枠42及び死角と重畳する注視枠48にハッチングを付している。
図8(b)の例では、対向車線の交差点入口及び出口付近の障害物検出枠(R04、R06)で障害物が検出されている。危険度算出部27は、障害物検出枠(R04、R06)の組合せから、対向車線が渋滞している、という交通状況を読み取ることができる。
図8(c)の例では、交差点内部及び自車の交差点出口付近の障害物検出枠(R02、R05、R07)で障害物が検出されている。危険度算出部27は、障害物検出枠(R02、R05、R07)の組合せから、右折先に他車がいるために、交差点内に他車が滞留しており、右折待ち渋滞が起こっている、という交通状況を読み取ることができる。
【0035】
図8(d)の例では、横断歩道手前の交差点内部にある障害物検出枠(R05)で障害物が検出されている。そして、自車の交差点出口の横断歩道付近にある注視枠(T02)が死角と重複している。危険度算出部27は、障害物検出枠(R05)と注視枠(T02)の組合せから、横断歩道に歩行者53がいるので横断歩道手前で他車が停止している、或いは、横断歩道手前に障害物がいるために横断歩道が見えない、という交通状況を読み取ることができる。
【0036】
図8(e)の例では、対向車線の交差点内部にある障害物検出枠(R05)で障害物が検出されている。そして、対向車線の交差点入口にある注視枠(T01)が死角と重複している。危険度算出部27は、障害物検出枠(R05)と注視枠(T01)の組合せから、対向車線の交差点内に他車がいるために、対向車線入口の側道が見えない、という交通状況を読み取ることができる。これにより、対向車線入口の側道にバイク52がいるかもしれない、という危険性を判断することができる。
【0037】
図1に示したように、第1実施形態に係わるシーン理解装置は、危険度データベース16を備える。危険度データベース16は、障害物が有る障害物検出枠42の組合せが符号化され、符号化された組合せと危険度との関係を記憶している。シーン理解部21は、障害物が有る障害物検出枠の組合せを符号化する符号化処理部29を備える。危険度算出部27は、危険度データベース16を用いて、符号化処理部29により符号化された組合せから、特定地点の危険度を算出する。符号化により更に演算負荷の増大を抑制することができる。なお、符号化する組合せに、死角に重畳する注視枠48を追加してももちろん構わない。
【0038】
符号化とは、コンピュータのビット列による高速情報処理を参考にした、危険度における情報表現の一手段である。符号化には、これまでに述べた複数の障害物検出枠と注視枠によるシーン理解の結果を用いる。組合せと危険度との関連付け方には、過去の事故事例や過去のインシデント事例(重大な災害や事故には至らないものの、直結してもおかしくない一歩手前の事例)を参考にする。本符号化技術を用いて過去事例を数値化したものを危険度データベース16に蓄える。
【0039】
例えば、障害物が有る障害物検出枠42と死角に重畳する注視枠48の組合せを、1組の連続した数値として表現する。
図8(b)〜
図8(e)に示す組合せは符号化され、且つ危険度と関連付けされて、危険度データベース16に記憶されている。
図8(b)の組合せを符号化した結果は「0001010000000」であり、
図8(c)の組合せを符号化した結果は「010010001000」であり、
図8(d)の組合せを符号化した結果は「0000100100001」であり、
図8(e)の組合せは「0000100100010」である。
【0040】
危険度算出部27は、符号化処理部29により符号化された障害物検出枠及び注視枠の組合せと、危険度データベース16に記憶された符号化された組合せとを照合し、障害物検出枠及び注視枠の組合せに対応する危険度を算出する。
【0041】
更に、符号化にて表現できる値を広げるために、障害物と死角の有無だけでなく、障害物そのものの属性情報も数値として表現してもよい。障害物判断部26は、走行予定経路51上にある特定地点において、障害物検出枠42に有る障害物の属性を検出してもよい。符号化処理部29は、障害物が有る障害物検出枠42及び障害物の属性の組合せを符号化する。障害物の属性情報を考慮することにより、危険度の算出精度が向上する。もちろん、この組合せに、死角と重畳する注視枠48を追加しても構わない。
【0042】
障害物の属性を数値として表現する方法として、0と1の2ビット表現で符号化し、組合せを表現するビット列を増やせばよい。属性情報には、物理的な情報と性質的な情報が含まれる。物理的な情報としては、車両の重量及び大きさを含む車両仕様、及び、障害物の種類(歩行者、二輪車、四輪車)が挙げられる。性質的な情報としては、止まっているか又は動いているかの情報、更に、どの様な動きをしようとしているか、などの動き方の情報が挙げられる。
【0043】
第1実施形態では、
図4〜
図7に示したように、特定地点に予め設定された全ての障害物検出枠42及び注視枠48を用いて危険度を算出する例を示した。しかし、実施形態は、これに限られない。例えば、特定地点に予め設定された障害物検出枠42の中から一部の障害物検出枠42’を選択し、選択された障害物検出枠42’について、障害物が有るか否かを判断してもよい。
【0044】
図2に示すように、シーン理解部21は、特定地点に予め設定されている障害物検出枠42の中から、走行予定経路51によって定まる障害物検出枠42’を選択する検出枠選択部25を更に備える。障害物判断部26は、検出枠選択部25により選択された障害物検出枠
42’に障害物が有るか否かを判断する。これにより、障害物判断部26の演算負荷の増大を抑制することができる。
【0045】
更に、検出枠選択部25は、特定地点に予め設定されている注視枠48の中から、走行予定経路51によって定まる一部の注視枠48’を選択してもよい。この場合、死角重畳判断部28は、検出枠選択部25により選択された注視枠48’に、障害物によって生じる死角が重畳しているか否かを判断すればよい。れにより、死角重畳判断部28の演算負荷の増大を抑制することができる。
【0046】
図9(a)〜
図9(d)は、検出枠選択部25により選択される障害物検出枠42’の例を示す。
図9(a)は信号機がある三叉路の例であり、
図9(b)は信号機がない三叉路の例であり、
図9(c)は合流地点の例であり、
図9(d)は横断歩道の例である。
図9(e)及び
図9(f)は、検出枠選択部25により選択される注視枠48’の例を示す。
図9(e)は信号機がある四叉路の例であり、
図9(f)は信号機がない四叉路の例である。
【0047】
選択の方法を、三叉路を例に取って説明する。まず、自車46の走行予定経路51上にある障害物検出枠42’を選択する。自車46の走行予定経路51と交差する他車線上にある障害物検出枠42’を選択する。そして、選択された障害物検出枠42’に接する注視枠48’を選択する。これによって、自車46の動きに関係する障害物検出枠42’及び注視枠48’を選択することができる。上記した選択の方法は、合流地点や横断歩道などの他の特定地点にも適用できる。
【0048】
図3を参照して、第1実施形態に係わるシーン理解装置を含む運転支援装置1aを用いたシーン理解方法及び運転支援方法の一例を説明する。
【0049】
ステップS01において、地図取得部23は、障害物を検出するための1又は2以上の障害物検出枠42が特定地点に予め設定されている地図データを取得する。なお、障害物検出枠42を読み込むタイミングは、車両が特定地点に近づいたときに、その都度、近づいた特定地点における障害物検出枠42を読み込むようにしてもよい。ステップS03に進み、経路演算部24は、自車46の位置及び目的地の情報に基づいて、自車46の走行予定経路51を演算する。ステップS05において、障害物判断部26は、車載カメラ13及びレーザセンサ14によって検出された、車両周囲にある障害物の情報を取得する。ステップS07において、障害物判断部26は、車載カメラ13及びレーザセンサ14によって検出された、障害物の属性の情報を取得する。
【0050】
ステップS11に進み、死角重畳判断部28は、車載カメラ13及びレーザセンサ14により検出された障害物によって生じる死角の範囲を演算する。ステップS13に進み、シーン理解部21は、走行予定経路51上にある最寄りの特定地点が、3以上の道路が集まる交差点であるか否かを判断する。特定地点が交差点である場合の手順を説明する。その他の特定地点であっても、同様な手順を適用可能である。
【0051】
ステップS15に進み、検出枠選択部25は、交差点に予め設定されている障害物検出枠42及び注視枠48の中から、走行予定経路51によって定まる一部の障害物検出枠42’及び一部の注視枠48’を選択する。ステップS17に進み、死角重畳判断部28は、障害物によって生じる死角が注視枠48’と重畳しているか否かを判断する。ステップS19に進み、符号化処理部29は、障害物が有る障害物検出枠42の組合せを符号化する。そして、危険度算出部27は、危険度データベース16から、符号化された組合せと危険度との関係を示すデータを読み出す。
【0052】
ステップS21に進み、危険度算出部27は、符号化処理部29により符号化された組合せと、符号化された組合せと危険度との関係を示すデータとを照合することにより、特定地点の危険度を算出する。危険度算出部27は、ステップS23において、算出された危険度に応じて運転支援方法を決定し、運転支援部22へ出力する。ステップS25に進み、運転支援部22は、決定された支援方法に従って、運転支援を実行する。
【0053】
以上説明したように、本発明の第1実施形態によれば、以下の作用効果が得られる。
【0054】
シーン理解装置は、地図データに予め設定された、道路構造に応じた形状の障害物検出枠42における障害物の有無に基づいて、特定地点の危険度を算出する。よって、危険度の算出に無関係な位置で検出される障害物を処理対象から排除できるので、演算負荷が過度に増大することが抑制される。
【0055】
図6に示したように、危険度算出部27は、障害物49によって生じる死角50に、自車46が注視すべき注視枠48が重畳しているか否かに基づいて、特定地点の危険度を算出する。よって、死角50に障害物が存在することを想定して特定地点の危険度を算出することができる。
【0056】
危険度算出部27は、障害物が有る障害物検出枠の組合せに基づいて、特定地点の危険度を算出する。これにより、障害物の各々について危険度を算出する必要がないので、演算負荷の過度な増大を抑制することができる。
【0057】
危険度算出部27は、危険度データベース16を用いて、符号化された障害物検出枠の組合せから、特定地点の危険度を算出する。符号化により更に演算負荷の増大を抑制することができる。
【0058】
障害物判断部26は、走行予定経路51上にある特定地点において、障害物検出枠42に有る障害物の属性を検出し、符号化処理部29は、障害物が有る障害物検出枠及び障害物の属性の組合せを符号化する。障害物の属性(物理的な情報、性質的な情報)を考慮することにより、危険度の算出精度が向上する。
【0059】
図9に示したように、検出枠選択部25は、特定地点に予め設定されている障害物検出枠42の中から、走行予定経路51によって定まる一部の障害物検出枠42’を選択する。障害物判断部26は、検出枠選択部25により選択された障害物検出枠42’に障害物が有るか否かを判断する。障害物判断部26は、検出枠選択部25により選択された障害物検出枠42’だけを判断対象とすればよいので、更に演算負荷の増大を抑制することができる。
【0060】
特定地点が3以上の道路が集まる交差点である場合、障害物検出枠42は、交差点の入口、出口、交差点の内部、及び横断歩道に設定される。これにより、3以上の道路が集まる交差点の危険度算出において、演算負荷が過度に増大することが抑制される。
【0061】
(第2実施形態)
図10及び
図11を参照して、
第2実施形態に係わるシーン理解装置を含む運転支援装置1bの構成を説明する。
図1との相違は、運転支援装置1bが、危険度データベース16の代わりに知識データベース17を備えている点である。知識データベース17には、特定地点における自車の位置によって定まる障害物検出枠42、及び注意すべき障害物検出枠42の順番を示すデータ(知識ツリー)が記憶されている。特定地点における自車の位置には、例えば、特定地点の入口、内部及び出口が含まれる。特定地点の入口、内部及び出口の各々に対して、障害物検出枠42、及び注意すべき障害物検出枠42の順番が定めされている。もちろん、知識ツリーには、自車の位置に対応して、注視枠48及び注意すべき注視枠48の順番が定めされていてもよい。
【0062】
図11を参照して、演算回路17bにより構成される複数の演算処理部を説明する。演算回路17bは、
図2の演算回路17aと比べて、符号化処理部29及び危険度データ取得部30の代わりに、知識ツリー取得部31を備える点で相違する。その他の構成は同じである。知識ツリー取得部31は、知識データベース17から、GPS11により検出された自車の位置に対応する、障害物検出枠42、及び注意すべき障害物検出枠42の順番を示すデータ(知識ツリー)を取得する。障害物判断部26は、知識データベース17から取得した障害物検出枠42、及び注意すべき障害物検出枠42の順番に基づいて、障害物検出枠42に障害物が有るか否かを順番に判断する。これにより、特定地点における自車の位置に応じて、適切な危険度及び運転支援方法を算出することができる。
【0063】
交差点を例にとり、知識ツリーを用いた危険度(運転支援方法)の算出方法を説明する。知識ツリーでは、交差点内で注意すべき領域(障害物検出枠42及び注視枠48)、及び複数の領域に対する注意すべき順序を設定する。知識ツリーは、例えば、「交差点入口情報」、「交差点出口情報」、「交差点内部の他車情報」、及び「死角情報」からなる。
【0064】
具体的には、「交差点入口情報」は、交差点の入口付近に他車がいるか否かを示す情報である。「交差点出口情報」は、交差点の出口付近に他車がいるか否かを示す情報である。「交差点内部の他車情報」は、交差点内部に他車がいるか否かを示す情報である。「死角情報」は、交差点内部の他車の存在により生じる死角が注視枠48を隠しているか否かを示す情報である。
【0065】
これらの情報を、所定の順番によって取得することにより車両の行動の種類、つまり運転支援方法を決める。行動の種類には、交差点入口における「停止線停止」、「右折待ち領域で停止」、「横断歩道の手前にて停止」、「徐行して見通しのよい位置まで走行してから加速、もしくは、一旦停止」、「制限車速内で交差点通過」がある。知識ツリーを用いることにより、いずれかの速度制御の支援方法を決めることができる。
【0066】
知識ツリーは、交差点における自車の位置に応じて異なる。つまり、交差点入口の手前にいる場合、交差点入口から右折待ち領域までの間にいる場合、右折待ち領域から横断歩道手前までの間にいる場合の各々について、異なる知識ツリーが予め用意され、知識データベース17に格納されている。
【0067】
図12を参照して、第2実施形態に係わるシーン理解装置を含む運転支援装置1bを用いたシーン理解方法及び運転支援方法の一例を説明する。
図3と同じステップには、同じ符号を付して説明を省略する。
【0068】
図12のフローチャートは、
図3に比べて、ステップS19(符号化・危険度データ取得)、ステップS21(危険度算出)の代わりに、ステップS31(知識ツリー取得)、ステップS33(危険度算出)を備える点で相違する。その他のステップは
図3と同じである。
【0069】
ステップS31において、知識ツリー取得部31は、知識データベース17から、GPS11により検出された自車の位置に対応する、障害物検出枠42、注視枠48、及び注意すべき障害物検出枠42及び注視枠48の順番を示すデータ(知識ツリー)を取得する。
【0070】
ステップS33に進み、障害物判断部26は、知識データベース17から取得した知識ツリーに基づいて、障害物検出枠42に障害物が有るか否かを順番に判断する。危険度算出部27は、障害物の有無に応じて、特定地点の危険度を算出する。ステップS23に進み、危険度算出部27は、算出された危険度に応じて運転支援方法を決定し、運転支援部22へ出力する。
【0071】
図13を参照して、ステップS33及びステップS23を詳細に説明する。ステップS41において、障害物判断部26は、GPS11により検出された自車の位置が、交差点入口の手前であるか否かを判断する。交差点入口の手前である場合(S41でYES)、ステップS47に進み、交差点入口に対応する知識ツリー(交差点入口)を実行することにより、危険度を算出し、運転支援方法を決定する。知識ツリー(交差点入口)の詳細は、
図14を参照して後述する。
【0072】
交差点入口の手前でない場合(S41でNO)、ステップS43に進み、自車の位置が、交差点入口から右折待ち領域までの間であるか否かを判断する。肯定的判断の場合(S43でYES)、ステップS49に進み、交差点内部に対応する知識ツリー(交差点内部)を実行することにより、危険度を算出し、運転支援方法を決定する。知識ツリー(交差点内部)の詳細は、
図15を参照して後述する。
【0073】
否定的判断の場合(S43でNO)、ステップS45に進み、自車の位置が、右折待ち領域から横断歩道手前までの間であるか否かを判断する。肯定的判断の場合(S45でYES)、ステップS51に進み、交差点出口に対応する知識ツリー(交差点出口)を実行することにより、危険度を算出し、運転支援方法を決定する。知識ツリー(交差点出口)の詳細は、
図16を参照して後述する。
【0074】
図14を参照して、
図13のステップS47に示す知識ツリー(交差点入口)の詳細な手順を説明する。上記した「交差点入口情報D01」に基づき、交差点の入口付近に他車がいるか否かを判断する。他車がいる場合、自車の行動として、停止線で停車することを決定する(S71)。他車がいない場合、「交差点出口情報D03」に基づき、交差点の出口付近に他車がいるか否かを判断する。他車がいる場合、自車の行動として、停止線で停車することを決定する(S73)。他車がいない場合、「交差点内停止車両情報D05」に基づき、交差点内部に停止している他車がいるか否かを判断する。他車がいない場合、自車の行動として、右折待ち領域まで移動することを決定する(S75)。
【0075】
他車がいる場合、「停止車両位置情報D07」に基づき、他車が右折待ち領域にいるのか、対向車線入口付近にいるのか、を判断する。他車が右折待ち領域にいる場合において、対向車線入口に他車による死角が形成される場合、自車の行動として、右折待ち領域まで移動することを決定する(S81)。他車が右折待ち領域にいる場合において、他車の後方に死角が形成される場合、自車の行動として、徐行して停止することを決定する(S79)。他車が対向車線入口付近にいる場合において、他車の後方に死角が形成される場合、自車の行動として、徐行して停止することを決定する(S79)。他車が対向車線入口付近にいる場合において、対向車線入口の側道に死角が形成される場合、自車の行動として、右折待ち領域まで移動することを決定する(S77)。
【0076】
図15を参照して、
図12のステップS49に示す知識ツリー(交差点内部)の詳細な手順を説明する。上記した「交差点出口情報D03」に基づき、交差点の出口付近に他車がいるか否かを判断する。他車がいる場合、自車の行動として、右折待ち領域で停車することを決定する(S83)。他車がいない場合、「対向車線入口情報D27」に基づき、対向車線の入口付近に他車がいるか否かを判断する。他車がいる場合、「死角情報D13」に基づき、他車の後方に見通せるか否かを判断する。他車の後方に見通せる場合、自車の行動として、衝突を回避するための制御を行うことを決定する(S87)。他車の後方を見通せない場合、自車の行動として、右折待ち領域で停車することを決定する(S85)。
【0077】
対向車線の入口付近に他車がいない場合、「巻き込み情報D15」を参照して、自車後方の内側から、右折する二輪車がいるか否かを判断する。二輪車がいない場合、自車の行動として、横断歩道手前まで移動することを決定する(S89)。二輪車がいる場合、「死角情報D17」に基づき、二輪車の手前が見通せるか否かを判断する。二輪車の手前が見通せる場合、自車の行動として、二輪車を先に通過させてから、横断歩道手前まで移動することを決定する(S93)。二輪車の手前が見通せない場合、自車の行動として、右折待ち領域で停車することを決定する(S91)。
【0078】
図16を参照して、
図12のステップS51に示す知識ツリー(交差点出口)の詳細な手順を説明する。「対向車線左折情報D19」または「交差点巻き込み情報D21」に基づき、対向車線で交差点を左折する他車、或いは、自車後方の内側から交差点を右折する二輪車(他車)がいるか否かを判断する。他車がいる場合、自車の行動として、徐行しながら他車を先行させることを決定する(S95)。他車がいない場合、「横断歩道情報D23」に基づき、横断歩道に人がいるか否かを判断する。人がいる場合、自車の行動として、横断歩道の手前で停車することを決定する(S97)。人がいない場合、「横断歩道出入口情報D25」に基づき、横断歩道の周囲に人がいるか否かを判断する。周囲に人がいる場合、自車の行動として、1秒長く停止した後、人が動いていなければ、横断歩道を通過することを決定する(S101)。周囲に人がいない場合、自車の行動として、横断歩道を通過することを決定する(S99)。
【0079】
以上説明したように、第2実施形態によれば、以下の作用効果が得られる。
【0080】
障害物判断部26は、知識データベース17を参照して、自車の位置に対応する知識ツリー(
図14〜
図16)を用いて、障害物検出枠42に障害物が有るか否かを順番に判断する。これにより、特定地点における自車の位置に応じて、適切な危険度を算出し、適切な車両の行動を決定することができる。
【0081】
上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。