(58)【調査した分野】(Int.Cl.,DB名)
前記当接面を形成する位置における前記翼根部の、該当接面を含めた、前記ロータ軸の軸線方向での長さは前記プラットホーム部の長さの1.2倍以下であることを特徴とする請求項1に記載のタービン用ロータアセンブリ。
前記当接面を形成する位置における前記翼根部の、該当接面を含めた、前記ロータ軸の軸線方向での長さは前記プラットホーム部の長さ以下であることを特徴とする請求項2に記載のタービン用ロータアセンブリ。
【発明の概要】
【発明が解決しようとする課題】
【0005】
近年、タービンには、大型化を招くことなく段落数、すなわち静翼列及び動翼列の数を増やすことが求められている。あるいは、同じ段落数のまま、小型化を図ることが求められている。かかる要求を満たすための手段として、ロータ軸の軸線方向での各段落の長さを短縮することが考えられる。
しかしながら、特許文献1が開示するタービン動翼及びロータ円板を用いた場合、ロータ軸の軸線方向での段落の長さを短縮することは困難である。なぜならば、翼根部の首部に段差を設けた関係上(特許文献1の
図1、
図7参照)、翼溝の横断面形状がT形のままであれば、ロータ軸のベアリング面と翼根部の当接面との間の接触面積を十分に確保するために、翼根部の当接面を特許文献1の
図1の(W1-W)分ほどロータ軸の軸線方向に延長しなければならないからである。
【0006】
上述の事情に鑑みて、本発明の少なくとも一実施形態は、動翼列の間隔を縮小可能なタービン用ロータアセンブリ、タービン及び動翼を提供することを目的とする。
【課題を解決するための手段】
【0007】
(1)本発明の少なくとも一実施形態に係るタービン用ロータアセンブリは、
周方向に沿って延びる翼溝が形成されたロータ軸と、
前記ロータ軸の径方向にて前記ロータ軸の外側に配置される翼プロフィル部及び前記翼プロフィル部と一体に設けられて前記翼溝に嵌合された翼根部をそれぞれ有する複数の動翼と、を備え、
前記ロータ軸は、
それぞれ前記ロータ軸の外周面から前記ロータ軸の径方向にて外方に向かって突出するとともに前記ロータ軸の軸線方向にて相互に離間し、前記翼溝の壁面の一部及び前記翼溝の開口を構成する2つの突起部と、
それぞれ前記ロータ軸の外周面よりも前記ロータ軸の径方向にて内側に設けられるとともに前記ロータ軸の径方向にて内方を向き、前記ロータ軸の軸線方向に相互に離間して前記翼溝の壁面の一部を構成する2つのベアリング面と、
それぞれ前記ロータ軸の径方向にて前記ベアリング面と前記突起部の外周面との間に位置し、前記ロータ軸の軸線方向にて相互に対向して前記翼溝の壁面の一部を構成する2つの第1対向面と、
それぞれ前記ロータ軸の径方向にて前記ベアリング面と前記突起部の外周面との間に位置するとともに前記2つの第1対向面よりも外側に位置し、前記第1対向面同士の間隔よりも大きな間隔を存して前記ロータ軸の軸線方向にて相互に対向して前記翼溝の壁面の一部を構成する2つの第2対向面とを有し、
前記動翼の翼根部は、
前記ロータ軸の軸線方向にて相互に離間するとともに前記ロータ軸の径方向にて前記2つのベアリング面とそれぞれ当接可能な2つの当接面と、
前記2つの第1対向面とそれぞれ対向する2つの第1側面と、
前記第1対向面と前記第1側面との間隔よりも小さい間隔を存して前記2つの第2対向面とそれぞれ対向する2つの第2側面と、
前記動翼の翼根部が前記ロータ軸に形成された前記翼溝に組み付けられたときに、前記ロータ軸の径方向にて前記2つの突起部それぞれの外周面の隣に位置し、前記翼プロフィル部に連なるプラットホーム部の一部となる2つの鍔部とを有する。
【0008】
この構成によれば、動翼の翼根部が第1側面及び第2側面を有しているのに対応して、ロータ軸が、翼溝の壁面の一部を構成する第1対向面及び第2対向面を有している。第1対向面同士の間隔は、第2対向面同士の間隔よりも小さく、これら間隔の差に対応して、翼根部の当接面とロータ軸のベアリング面との接触面積を拡大することができる。このため、ロータ軸の軸線方向での翼根部の長さを短くすることができ、動翼列の間隔を狭くすることができる。
この結果として、このタービン用ロータアセンブリを用いたタービンでは、大型化を抑えながら段落数を増やすことができ、或いは、同じ段落数のままであれば小型化を図ることができる。
また、第2対向面が、翼根部の第2側面に対向し、ロータ軸の外周面からロータ軸の径方向にて外方に延びた翼根部の一部を覆い、露出部分を減らして、隣り合う翼根部間の隙間からの作動流体の漏れを低減することができる。
さらにまた、翼根部に、それを翼溝に組み付けたときに、ロータ軸の径方向にて2つの突起部それぞれの外周面の隣に位置することとなる2つの鍔部を設け、その鍔部を含めてプラットホーム部としたことにより、翼プロフィル部を支持するプラットホーム部を大きく形成することができる。
突起部の外周部空間をプラットホーム部の一部に利用したことにより、突起部の幅(ロータ軸の軸線方向の長さ)の分だけタービン段落の長さを大きくしたり、あるいは、タービン段落の長さはそのままで、プラットホーム部を(延いては翼プロフィル部を)小さく形成する必要はない。
【0009】
(2)幾つかの実施形態では、上記構成(1)において、
前記当接面を形成する位置における前記翼根部の、該当接面を含めた、前記ロータ軸の軸線方向での長さは前記プラットホーム部の長さの1.2倍以下である。
この構成によれば、当接面を形成する位置における翼根部の、該当接面を含めた、ロータ軸の軸線方向での長さをプラットホーム部の長さの1.2倍以下にすることで、動翼列の間隔を確実に狭くすることができる。
【0010】
(3)幾つかの実施形態では、上記構成(2)において、
前記当接面を形成する位置における前記翼根部の、該当接面を含めた、前記ロータ軸の軸線方向での長さは前記プラットホーム部の長さ以下である。
この構成によれば、当接面を形成する位置における翼根部の、該当接面を含めた、ロータ軸の軸線方向での長さをプラットホーム部の長さ以下にすることで、動翼列の間隔をより確実に狭くすることができる。
【0011】
(4)幾つかの実施形態では、上記構成(1)乃至(3)の何れか1つにおいて、
前記2つの突起部は、作動流体の流れ方向にて上流側に位置する第1の突起部と、下流側に位置する第2の突起部とからなり、
前記ロータ軸の径方向において、少なくとも前記第1鍔部の長さは、前記ロータ軸の外周面から前記第1の突起部の外周面までの長さよりも短い。
【0012】
複数の動翼がロータ軸の周方向に沿って配列されている場合、周方向にて鍔部同士の間に隙間があると、作動流体が隙間を流れてしまい、タービンの効率が低下してしまう。この点、2つの鍔部のうち、作動流体の流れ方向上流側の鍔部のロータ軸の径方向での長さが該鍔部の内周側の隣に位置する突起部よりも短ければ、該鍔部同士の間の隙間を小さくすることができ、作動流体の漏れ流れを低減することができる。
この結果として、このタービン用ロータアセンブリを用いたタービンでは、効率を高めることができる。
【0013】
(5)幾つかの実施形態では、上記構成(1)乃至(4)の何れか1つにおいて、
前記ロータ軸はドラム形である。
一般的に、ロータ軸がドラム形である場合、動翼は反動翼である。動翼が反動翼の場合、衝動翼の場合に比べて段落数が多くなる傾向がある。この点、上記構成によれば、ロータ軸の軸線方向での動翼列の間隔を狭くすることができるので、段落数が多くても、タービンの大型化を抑制することができる。
【0014】
(6)本発明の少なくとも一実施形態によれば、
上記構成(1)乃至(5)の何れか1つのタービン用ロータアセンブリと、
前記タービン用ロータアセンブリを囲むハウジングと、
前記ハウジングに取り付けられた複数の静翼と
を備えるタービンが提供される。
【0015】
上記構成(1)乃至(5)の何れか1つのタービン用ロータアセンブリでは、ロータ軸の軸線方向での翼根部の長さを短くすることができ、動翼列の間隔を狭くすることができる。従って、このタービン用ロータアセンブリを用いたタービンでは、大型化を抑えながら段落数を増やすことができ、或いは、同じ段落数のままであれば小型化を図ることができる。
【0016】
(7)本発明の少なくとも一実施形態によれば、上記構成(1)乃至(5)の何れか1つに記載のタービン用ロータアセンブリに用いられる動翼が提供される。
(8)本発明の少なくとも一実施形態に係る動翼は、
ロータ軸の外周面から内部へ穿孔される周方向断面T字状の翼溝に周方向へ嵌合される翼根部がT字形状を有する動翼であって、
前記動翼は、
前記翼溝を規定する前記ロータ軸の径方向に延びる2つのロータ軸径方向穿孔面とそれぞれ対向する2つの第1側面と、
前記翼溝を規定する前記ロータ軸の軸方向に延び、ベアリング面となるロータ軸外周面側穿孔面(=ベアリング面)と当接可能な当接面と、
前記ロータ軸の外周面から前記ロータ軸の径方向に突出する突起部の、ロータ軸の軸線方向にて相互に離間し前記翼溝のロータ軸径方向の壁面の一部を構成する、2つのロータ軸径方向環状面(=第2対向面)とそれぞれ対向し、それら間隔が、前記2つの第1側面間の間隔より大きい2つの第2側面と、
前記突起部の、ロータ軸の径方向にて外側に位置するロータ軸径方向頂部外周面の隣に位置し、前記動翼のプラットホーム部を形成する顎部とを有する。
【発明の効果】
【0017】
本発明の少なくとも一実施形態によれば、動翼列の間隔を縮小可能なタービン用ロータアセンブリ、タービン及び動翼が提供される。
【発明を実施するための形態】
【0019】
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0020】
図1は、本発明の一実施形態に係る発電システムの構成を概略的に示すブロック図である。発電システムは、例えば火力発電システムであり、ボイラ1、高圧タービン3、中圧タービン5と、低圧タービン7、及び、発電機9,11を備える。発電システムは、例えばクロスコンパウンド形式であり、高圧タービン3及び中圧タービン5が発電機9に連結される一方、2台の低圧タービン7が発電機11に連結されている。
幾つかの実施形態では、発電システムは、高圧タービン3、中圧タービン5及び低圧タービン7を1つの軸に配置し、一つの発電機9に接続されたタンデムコンパウンド形式である。
【0021】
幾つかの実施形態では、高圧タービン3、中圧タービン5及び低圧タービン7のうち、幾つかが、あるいは全てが単流排気式のタービンである。
幾つかの実施形態では、タービンの高圧部と中圧部とを1個の車室に納めた高中圧一体型とされ、それに低圧タービンを組み合わせて構成されている。幾つかの実施形態では、高圧タービン3、中圧タービン5、低圧タービン7に、さらに超高圧タービンを組み合わせて構成されている。
また幾つかの実施形態では、発電システムは、ガスタービンを含む複合発電システムである。更に、幾つかの実施形態では、発電システムは自家用であり、幾つかの実施形態では、発電システムは事業用である。
【0022】
ボイラ1は、燃料としての例えば石炭を燃焼させ、燃焼により発生した熱を利用して、蒸気を発生させる。
例えば、ボイラ1は、エコノマイザ13、蒸発器15、過熱器17、及び、再熱器19を有する。水は、エコノマイザ13、蒸発器15及び過熱器17により加熱され、これにより過熱蒸気が得られる。過熱蒸気は、高圧タービン3に供給される。高圧タービン3に供給された蒸気は、高圧タービン3で仕事をした後、ボイラ1に一度戻されて再熱器19に供給される。再熱器19は、蒸気を加熱し、加熱された蒸気が中圧タービン5に供給される。そして、中圧タービン5で仕事をした蒸気は、低圧タービン7に供給される。低圧タービン7で仕事をした蒸気は、復水器21で凝縮させられて水になり、得られた水は、復水ポンプ23によって、ボイラ1に再び供給される。
【0023】
図2は、中圧タービン5の概略的な構成を示す縦断面図である。
図2の中圧タービン5は、ハウジング(車室)25と、ロータ軸27とを備えている。ハウジング25はロータ軸27の中間部を囲んでおり、ロータ軸27の両端部が、ラジアル軸受29によって回転可能に支持されている。
なお、発電システムは、高圧タービン3、中圧タービン5及び低圧タービン7が、相互に別体のハウジングを有する複車室形であるが、高圧タービン3、中圧タービン5及び低圧タービン7が共通のハウジングを有する単車室形であってもよい。
【0024】
ロータ軸27には、ロータ軸27の軸線方向に相互に離間して複数の動翼列31が固定されている。一方、ハウジング25には、翼環32,33を介して、ロータ軸27の軸線方向に相互に離間した複数の静翼列35が固定されている。
【0025】
翼環32,33とロータ軸27との間には筒状の内部流路37が形成され、内部流路37に静翼列35及び動翼列31が配置される。各静翼列35は、ロータ軸27の周方向に配列された複数の静翼39からなり、各静翼39が翼環32,33に対して固定されている。各動翼列31は、ロータ軸27の周方向に配列された複数の動翼(タービン動翼)41からなり、各動翼41は、ロータ軸27に対して固定されている。各静翼列35では、蒸気の流れが加速され、各動翼列31では、蒸気のエネルギがロータ軸27の回転エネルギに変換される。
【0026】
なお、ハウジング25は、ロータ軸27の軸線方向にて中央に蒸気入口25aを有するとともに、蒸気入口25aの両側に2つの蒸気出口25bを有しており、中圧タービン5は複流排気式のタービンである。このため、ハウジング25の内部には、ロータ軸27の軸線方向にて中央から互いに反対側に向かう2つの内部流路37が形成されている。
【0027】
図3は、
図2の一部を拡大して概略的に示している。具体的には、
図3は、異なる静翼列35に属する2つの静翼39,39の間に配置された1つの動翼41を概略的に示している。
図3に示したように、翼環32はロータ軸27の周方向に延びる翼溝43を有する。一方、静翼39は、相互に一体に形成された翼根部45、翼プロフィル部47及びシュラウド部49を有する。翼根部45が翼溝43に嵌合されることにより、静翼39は翼環32に固定される。なお、静翼39のシュラウド部49には、シール部材51が取り付けられ、シール部材51は、シュラウド部49とロータ軸27との間の隙間を閉塞している。
【0028】
また
図3に示したように、ロータ軸27には、ロータ軸27の周方向に沿って延びる翼溝53が形成されている。一方、動翼41は、相互に一体に形成された翼根部55、翼プロフィル部57及びシュラウド部59を有する。翼根部55が翼溝53に嵌合されることにより、動翼41はロータ軸27に固定される。なお、動翼41のシュラウド部59と対向する翼環32の部分には、シール部材61が取り付けられ、シール部材61は、シュラウド部59と翼環32との間の隙間を閉塞している。
なお、本明細書では、ロータ軸27と、ロータ軸27に固定された複数の動翼41をまとめてタービン用ロータアセンブリとも称する。
【0029】
図4は、
図3中のロータ軸27の一部と動翼41を拡大して示している。以下、
図4を参照して、タービン用ロータアセンブリにおける、ロータ軸27に対する動翼41の取り付け構造を説明する。
ロータ軸27は、1つの翼溝53に対応して2つの突起部63A,63Bを有する。突起部63A,63Bは、それぞれロータ軸27の外周面65からロータ軸27の径方向にて外方に向かって突出しており、ロータ軸27の軸中心線から突起部63Aの外周面71Aまでのロータ軸27の径方向の長さと、ロータ軸27の軸中心線から突起部63Bの外周面71Bまでのロータ軸の径方向の長さとは等しい。突起部63A,63Bは、ロータ軸27の軸線方向にて相互に離間しており、そして、突起部63A,63Bは、翼溝53の壁面の一部及び翼溝53の開口を構成している。
【0030】
また、ロータ軸27は、1つの翼溝53に対応して2つのベアリング面67A,67Bを有する。2つのベアリング面67A,67Bは、それぞれロータ軸27の外周面65よりもロータ軸27の径方向にて内側に設けられた円筒状の面であり、ロータ軸27の径方向にて内方を向いている。そして、2つのベアリング面67A,67Bは、ロータ軸27の軸線方向に相互に離間し、翼溝53の壁面の一部を構成している。
【0031】
更に、ロータ軸27は、1つの翼溝53に対応して2つの第1対向面69A,69Bを有する。2つの第1対向面69A,69Bは、それぞれロータ軸27の径方向にてベアリング面67A,67Bと突起部63A,63Bの外周面71A,71Bとの間に位置しており、ベアリング面67A,67Bの内端縁73A,73Bからロータ軸27の径方向に沿って延びている。2つの第1対向面69A,69Bは、ロータ軸27の軸線方向にて相互に対向する環状面であり、翼溝53の壁面の一部を構成している。
【0032】
また更に、ロータ軸27は、1つの翼溝53に対応して2つの第2対向面75A,75Bを有する。2つの第2対向面75A,75Bは、それぞれロータ軸27の径方向にてベアリング面67A,67Bと突起部63A,63Bの外周面71A,71Bとの間に位置するとともに、2つの第1対向面69A,69Bよりも外側に位置している。
【0033】
そして、第2対向面75A,75Bもまた、ロータ軸27の径方向に沿って延びるとともに、ロータ軸27の軸線方向にて相互に対向する環状面であり、第2対向面75A,75B同士の間隔L2は、第1対向面69A,69B同士の間隔L1よりも大きい。このため、第1対向面69A,69Bと第2対向面75A,75Bは、段差面77A,77Bを介して相互に繋がっている。段差面77A,77Bは、ロータ軸27の径方向にて外方を向いた円筒面である。第2対向面75A,75B及び段差面77A,77Bもまた、翼溝53の壁面の一部を構成している。
【0034】
更に、ロータ軸27は、翼溝53の底を形成する底面79を有し、底面79はロータ軸27の径方向にて外方を向いた円筒面である。そして、ロータ軸27の軸線方向にて底面79の両端縁から立ち上がる第3対向面81A,81Bが、ベアリング面67A,67Bの外端縁まで延びている。第3対向面81A,81Bもまた、ロータ軸27の径方向に沿って延びるとともに、ロータ軸27の軸線方向にて相互に対向する環状面である。
【0035】
一方、動翼41の翼根部55は、2つの当接面83A,83B、2つの第1側面85A,85B、及び、2つの第2側面87A,87Bを有する。
翼根部55は、T字の横棒に相当する頭部89と、T字の縦棒に相当する首部91とを有し、2つの当接面83A,83Bは、頭部89の壁面の一部を構成している。2つの当接面83A,83Bは、それぞれロータ軸27の径方向にて外方を向き、首部91を挟んでロータ軸27の軸線方向にて相互に離間している。2つの当接面83A,83Bは、ロータ軸27の径方向にて2つのベアリング面67A,67Bとそれぞれ当接可能であり、ベアリング面67A,67Bによって、ロータ軸27の径方向での動翼41の位置が決定される。
【0036】
2つの第1側面85A,85Bは、首部91の壁面の一部を構成しており、ロータ軸27の軸線方向にて外方を向いている。そして、2つの第1側面85A,85Bは、2つの第1対向面69A,69Bとそれぞれ隙間を存して対向する。
2つの第2側面87A,87Bもまた首部91の壁面の一部を構成し、ロータ軸27の軸線方向にて外方を向いている。2つの第2側面87A,87Bは、第1対向面69A,69Bと第1側面85A,85Bとの間隔よりも小さい間隔を存して、2つの第2対向面75A,75Bとそれぞれ対向する。
第1側面85A,85B及び第2側面87A,87Bは、ロータ軸27の径方向に平行な扇形の面であり、第2側面87A,87Bは、第1側面85A,85Bのロータ軸27の径方向にて外側に位置している。そして、第1側面85A,85Bと第2側面87A,87Bは、ロータ軸27の径方向にて内方を向いた円筒状の段差面93A,93Bを介して相互に繋がっている。
さらに、翼根部55の首部91は、その翼プロフィル部57側に、鍔部95A,95Bを有する。鍔部95A,95Bは、ロータ軸27の径方向にて前記2つの突起部63A,63Bそれぞれの外周面71A,71Bの隣に位置し、翼プロフィル部57を支持するプラットホーム部96の一部を構成している。
【0037】
この構成によれば、動翼41が第1側面85A,85B及び第2側面87A,87Bを有しているのに対応して、ロータ軸27が、翼溝53の壁面の一部を構成する第1対向面69A,69B及び第2対向面75A,75Bを有している。第1対向面69A,69B同士の間隔L1は、第2対向面75A,75B同士の間隔L2よりも小さく、これら間隔L1,L2の差に対応して、翼根部55の当接面83A,83Bとロータ軸27のベアリング面67A,67Bとの接触面積を拡大することができる。このため、ロータ軸27の軸線方向での翼根部55の頭部89の長さを短くすることができ、動翼列31の間隔を狭くすることができる。
この結果として、このタービン用ロータアセンブリを用いた中圧タービン5では、大型化を抑えながら段落数を増やすことができ、或いは、同じ段落数のままであれば小型化を図ることができる。
【0038】
一方、この構成では、突起部63A,63Bがロータ軸27の外周面65から突出していることで動翼41の翼根部55の露出面積が少なく、ロータ軸27の周方向にて隣り合う動翼41の翼根部55間の隙間を減らすことができる。このため、作動流体の漏れ流れを低減し、中圧タービン5の効率を向上させることができる。
また、この構成では、翼根部55の翼プロフィル部57側に2つの鍔部95A,95Bを設け、プラットホーム部96の一部としたことにより、翼プロフィル部57を支持するプラットホーム部96を大きく形成することができる。
突起部63A、63Bの外周部空間をプラットホーム部96の一部に利用したことにより、突起部63A、63Bの幅(ロータ軸27の軸線方向の長さ)の分だけタービン段落の長さを大きくしたり、あるいは、タービン段落の長さはそのままで、プラットホーム部96を(延いては翼プロフィル部57を)小さく形成する必要はない。
【0039】
更に、この構成では、中圧タービン5の運転中、動翼41の振動が大きくなったとき、第2側面87A,87Bが第2対向面75A,75Bに当接することで振動振幅の増大を抑制することができる。
一方で、この構成では、振動振幅が大きくならない限り、翼根部55はベアリング面67A,67Bによってのみ安定して拘束される。このため、中圧タービン5の運転中、動翼41の振動数が安定する。
【0040】
幾つかの実施形態では、ロータ軸27の第2対向面75A、75Bと翼根部55の第2側面87A、87Bとの間隔(各々対向した面間の隙間)を、動翼41をロータ軸27の周方向に形成された翼溝53に植え込むために必要な最小の隙間とし、タービン運転中における、動翼41のロータ軸27の軸線方向への移動や、動翼41の翼溝53内での回転(捩じれ)を拘束し、動翼41を翼溝53に固定するように構成することもできる。
なお、上述した各実施形態のタービン用ロータアセンブリは、中圧タービン5のみならず、高圧タービン3や低圧タービン7にも適用可能である。
【0041】
幾つかの実施形態では、ロータ軸27の軸線方向での翼根部55の頭部89の長さWはプラットホーム部96の長さSの1.2倍以下である。この構成によれば、ロータ軸27の軸線方向において、翼根部55の頭部89の長さWをプラットホーム部96の長さSの1.2倍以下にすることで、動翼列31の間隔を確実に狭くすることができる。
【0042】
幾つかの実施形態では、ロータ軸27の軸線方向での翼根部55の頭部89の長さWはプラットホーム部96の長さS以下である。この構成によれば、ロータ軸27の軸線方向において、翼根部55の頭部89の長さWをプラットホーム部96の長さS以下にすることで、動翼列31の間隔をより確実に狭くすることができる。
【0043】
一方、幾つかの実施形態では、ロータ軸27の軸線方向での翼根部55の頭部89の長さWは、プラットホーム部96の長さSの0.7倍以上である。
【0044】
幾つかの実施形態では、2つの突起部63A,63Bは、ロータ軸27の軸線方向にて翼溝53の開口の一方の側に位置する第1の突起部63Aと、翼溝53の開口の他方の側に位置する第2の突起部63Bとからなる。
動翼41の翼根部55は、ロータ軸27の径方向にて第1の突起部63Aの外周面71Aの隣に配置される第1鍔部95Aと、ロータ軸27の径方向にて第2の突起部63Bの外周面71Bの隣に配置される第2鍔部95Bとを有する。そして、ロータ軸27の径方向において、第1鍔部95Aの長さは第1の突起部63Aの長さ(ロータ軸27の外周面65Aから第1の突起部63Aの外周面71Aまでの長さ)よりも短い。
【0045】
複数の動翼41がロータ軸27の周方向に沿って配列されている場合、周方向にて第1鍔部95A同士の間に隙間があると、作動流体が隙間を流れてしまい、中圧タービン5の効率が低下してしまう。この点、蒸気流れ方向上流側にある第1鍔部95Aのロータ軸27の径方向での長さが第1の突起部63Aよりも短ければ、第1鍔部95A同士の間の隙間を小さくすることができ、作動流体の漏れ流れを低減することができる。
この結果として、このタービン用ロータアセンブリを用いた中圧タービン5では、効率を高めることができる。
【0046】
幾つかの実施形態では、動翼41の翼根部55は、ロータ軸27の径方向にて第1の突起部63Aの外周面71Aの隣に配置される第1鍔部95Aと、ロータ軸27の径方向にて第2の突起部63Bの外周面71Bの隣に配置される第2鍔部95Bとを有する。そして、ロータ軸27の径方向において、第2鍔部95Bの長さは第2の突起部63Bの長さ(ロータ軸27の外周面65Bから第2の突起部63Bの外周面71Bまでの長さ)よりも短い。
【0047】
幾つかの実施形態では、蒸気流れ方向上流側に位置するロータ軸27の外周面65Aでのロータ軸27の外径は、蒸気流れ方向下流側にあるロータ軸27の外周面65Bでのロータ軸27の外径よりも小さく、或いは、等しい。
【0048】
幾つかの実施形態では、第1鍔部95A及び第2鍔部95Bの各々は、ロータ軸27の径方向にて外方を向いた外面97A,97Bを有する。そして、第1鍔部95Aの外面97A及び第2鍔部95Bの外面97Bは、ロータ軸27の軸線方向に対し傾斜したテーパ面の一部を構成している。また、ある実施形態では、傾斜したテーパ面にRを付したり面取りを付している。
【0049】
動翼41が反動翼の場合、ロータ軸27の周りの作動流体の内部流路37が上流から下流に向かって徐々に拡大する。この点、上記構成によれば、第1鍔部95A及び第2鍔部95Bの外面97A,97Bがテーパ面を構成することで、作動流体の内部流路37を簡単な構成にて徐々に拡大することができる。
動翼41が反動翼の場合、衝動翼の場合に比べて段落数が多くなる傾向がある。この点、上記構成によれば、ロータ軸27の軸線方向での動翼列31の間隔を狭くすることができるので、段落数が多くても、中圧タービン5の大型化を抑制することができる。
【0050】
幾つかの実施形態では、第1鍔部95Aの外面97A及び/又は第2鍔部95Bの外面97Bは、ロータ軸27の軸線方向に対し平行である。また、ある実施形態では、軸線方向に平行な面にRを付したり面取りを付している。
【0051】
幾つかの実施形態では、第1鍔部95Aの外面97A及び/又は第2鍔部95Bの外面97Bは、その断面の少なくとも一部は、単純円弧形状やコンター形状(複数円弧及びスプライン)で構成されている。
【0052】
鍔部95A,95Bの外面97A,97Bそれぞれの形状を、ロータ軸27の軸線方向に対し平行として、あるいは一方をロータ軸27の軸線に対して平行として他方を傾斜したものとすることで、あるいは、また、単純円弧形状やコンター形状を組み合わせることで、任意の形状の流路を形成することができる。
【0053】
幾つかの実施形態では、ロータ軸27はドラム形である。
一般的に、ロータ軸27がドラム形である場合、動翼41は反動翼である。動翼41が反動翼の場合、衝動翼の場合に比べて段落数が多くなる傾向がある。この点、上記構成によれば、ロータ軸27の軸線方向での動翼列31の間隔を狭くすることができるので、段落数が多くても、中圧タービン5の大型化を抑制することができる。
【0054】
幾つかの実施形態では、翼溝53は、ロータ軸27の外周面65から内部へ向かって切削工具を用いて穿設された穿孔であり、周方向と直交する断面にてT字状の断面形状を有する。そして、動翼41は、周方向若しくは接線方向にて翼溝53へ嵌合される翼根部55を有し、翼根部55はT字形状を有する。
【0055】
より詳しくは、ロータ軸27は、翼溝53をそれぞれ規定する、ロータ軸27の径方向に延びるロータ軸径方向穿孔面と、ロータ軸27の軸方向に延びるロータ軸外周面側穿孔面とを有する。ロータ軸径方向穿孔面は第1対向面69A,69Bであり、ロータ軸外周面側穿孔面はベアリング面67A,67Bである。また、ロータ軸27の外周面65からは、ロータ軸27の径方向にて突起部63A,63Bが突出し、突起部63A,63Bは、ロータ軸27の軸線方向に相互に離間したロータ軸径方向内側環状面と、ロータ軸27の径方向にて外側に位置するロータ軸径方向頂部外周面とを有する。ロータ軸径方向内側環状面は第2対向面75A,75Bであり、ロータ軸径方向頂部外周面は外周面71A,71Bである。
【0056】
動翼41は、ロータ軸径方向穿孔面と対向する第1側面85A,85Bと、ロータ軸外周面側穿孔面と当接可能な当接面83A,83Bと、ロータ軸径方向内側環状面と対向する第2側面87A,87Bと、ロータ軸径方向頂部外周面の隣に位置し、動翼41のプラットホーム部96を形成する顎部とを有する。顎部は、鍔部95A,95Bである。
【0057】
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
例えば、ロータ軸27の軸中心線から突起部63Aの外周面71Aまでのロータ軸の径方向長さと、ロータ軸27の軸中心線から突起部63Bの外周面71Bまでのロータ軸の径方向長さを異なる寸法で形成することもできる。
また、ロータ軸27の径方向にて、ロータ軸27の外周面65Aから第1の突起部63Aの外周面71Aまでの長さとロータ軸27の外周面65Bから第2の突起部63Bの外周面71Bまでの長さは、同一とすることも、あるいはいずれか一方を他方より長く形成することもできる。