特許第6439753号(P6439753)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧
<>
  • 特許6439753-内燃機関 図000002
  • 特許6439753-内燃機関 図000003
  • 特許6439753-内燃機関 図000004
  • 特許6439753-内燃機関 図000005
  • 特許6439753-内燃機関 図000006
  • 特許6439753-内燃機関 図000007
  • 特許6439753-内燃機関 図000008
  • 特許6439753-内燃機関 図000009
  • 特許6439753-内燃機関 図000010
  • 特許6439753-内燃機関 図000011
  • 特許6439753-内燃機関 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6439753
(24)【登録日】2018年11月30日
(45)【発行日】2018年12月19日
(54)【発明の名称】内燃機関
(51)【国際特許分類】
   F02M 61/10 20060101AFI20181210BHJP
   F02M 61/18 20060101ALI20181210BHJP
【FI】
   F02M61/10 C
   F02M61/18 320D
   F02M61/18 350B
【請求項の数】3
【全頁数】13
(21)【出願番号】特願2016-114428(P2016-114428)
(22)【出願日】2016年6月8日
(65)【公開番号】特開2017-218990(P2017-218990A)
(43)【公開日】2017年12月14日
【審査請求日】2017年6月21日
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】100100549
【弁理士】
【氏名又は名称】川口 嘉之
(74)【代理人】
【識別番号】100085006
【弁理士】
【氏名又は名称】世良 和信
(74)【代理人】
【識別番号】100113608
【弁理士】
【氏名又は名称】平川 明
(74)【代理人】
【識別番号】100123319
【弁理士】
【氏名又は名称】関根 武彦
(74)【代理人】
【識別番号】100123098
【弁理士】
【氏名又は名称】今堀 克彦
(74)【代理人】
【識別番号】100143797
【弁理士】
【氏名又は名称】宮下 文徳
(74)【代理人】
【識別番号】100176201
【弁理士】
【氏名又は名称】小久保 篤史
(72)【発明者】
【氏名】伊藤 寿記
(72)【発明者】
【氏名】高田 倫行
(72)【発明者】
【氏名】河合 謹
【審査官】 堀内 亮吾
(56)【参考文献】
【文献】 特開昭59−147864(JP,A)
【文献】 特開2006−274841(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02M 39/00−71/04
(57)【特許請求の範囲】
【請求項1】
圧縮自着火式の内燃機関のピストンに形成されるキャビティの側壁に向かって燃料を噴射する燃料噴射弁を備えた内燃機関において、
前記燃料噴射弁は、
第一噴孔と、
前記第一噴孔と対になる第二噴孔であって、前記燃料噴射弁の中心軸を中心とする周方向の角度が前記第一噴孔と異なる位置で且つ前記燃料噴射弁の中心軸方向の位置が前記第一噴孔と異なる位置に設けられ、前記第一噴孔から噴射された燃料噴霧と前記第二噴孔から噴射された燃料噴霧との一部が、前記第一噴孔から噴射された燃料の燃焼が始まる位置であって、前記キャビティの側壁から所定距離離れた位置で重なるように形成される第二噴孔と、
前記第一噴孔を開閉する第一ニードルと、
前記第二噴孔を開閉する第二ニードルであって、前記第一噴孔を開くために前記第一ニードルが作動を開始した時点から、所定時間が経過した後に、前記第二噴孔を開くために作動を開始する第二ニードルと、
を有する燃料噴射弁を備えた内燃機関。
【請求項2】
前記第一噴孔及び前記第二噴孔は、燃料噴霧が前記キャビティの側壁に当たった後に、前記ピストンの頂部側に向かう燃料量と、前記ピストンの底部側に向かう燃料量と、の比が所定比になるように形成される請求項1に記載の内燃機関。
【請求項3】
前記燃料噴射弁からの燃料噴射を前記第一噴孔からの燃料噴射及び前記第二噴孔からの燃料噴射に分けて実施し、前記第一噴孔を開くために前記第一ニードルが作動を開始した時点から、前記所定時間が経過した後に、前記第二噴孔を開くために前記第二ニードルの作動を開始させる制御装置を備えた請求項1または2に記載の内燃機関。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関に関する。
【背景技術】
【0002】
噴孔を上下に複数配置した燃料噴射弁において、上側の噴孔の中心軸と下側の噴孔の中心軸とを燃料噴射弁から比較的近い位置で交差させることにより、燃料の微粒化を促進させる技術が知られている(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−064928号公報
【特許文献2】特開2013−204455号公報
【特許文献3】特開平08−254123号公報
【特許文献4】特開2014−194158号公報
【特許文献5】特開2004−068726号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
燃料噴射弁から比較的近い位置で燃料噴霧が交差すると、夫々の噴孔から噴射された燃料が結合して燃料の粒径が大きくなる虞がある。また、燃焼室の中心軸付近から燃料を噴射して、燃焼室の中心軸付近で燃料噴霧が交差してしまうため、燃焼室の中心軸付近の燃料濃度が高くなってしまい、局所的に酸素が不足することで煤が発生する虞もある。
【0005】
本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、燃料と空気との混合を促進させることにより煤の発生を抑制することにある。
【課題を解決するための手段】
【0006】
上記課題を解決するために本発明は、圧縮自着火式の内燃機関のピストンに形成されるキャビティの側壁に向かって燃料を噴射する燃料噴射弁を備えた内燃機関において、前記燃料噴射弁は、第一噴孔と、前記第一噴孔と対になる第二噴孔であって、前記燃料噴射弁の中心軸を中心とする周方向の角度が前記第一噴孔と異なる位置で且つ前記燃料噴射弁の中心軸方向の位置が前記第一噴孔と異なる位置に設けられ、前記第一噴孔から噴射された燃料噴霧と前記第二噴孔から噴射された燃料噴霧との一部が前記キャビティの側壁から所定距離離れた位置で重なるように形成される第二噴孔と、前記第一噴孔を開閉する第一ニードルと、前記第二噴孔を開閉する第二ニードルであって、前記第一噴孔を開くために前記第一ニードルが作動を開始した時点から、所定時間が経過した後に、前記第二噴孔を開くために作動を開始する第二ニードルと、を有する。
【0007】
第一噴孔から燃料を噴射した後に第二噴孔から燃料を噴射すると、先ずは第一噴孔からの燃料噴霧の先端側の温度が着火可能な温度まで上昇する。そして、第一噴孔からの燃料噴霧の燃焼が拡大する前に、第一噴孔からの燃料噴霧の先端側よりも後端側であってまだ燃焼が始まっていない箇所に、後から来る第二噴孔からの燃料噴霧が重なると、第一噴孔からの燃料噴霧の温度の上昇が、第二噴孔から噴射された燃料の気化潜熱により緩和される。したがって、第一噴孔から噴射された燃料の燃焼が拡大する時期を遅らせることができる。そうすると、燃料と空気との混合が促進された状態で燃焼が拡大するようになるので、局所的に酸素濃度が低い状態で燃焼が拡大することを抑制できるため、煤の発生を抑制できる。ここでいう所定距離は、キャビティの側壁に比較的近い距離であり、キャビテ
ィの側壁から、第一噴孔から噴射された燃料の燃焼が始まる位置までの距離とすることができる。この所定距離は0または略0とすることもできる。また、第一ニードルが作動を開始した時点から第二ニードルが作動を開始する時点までの時間である所定時間は、第一噴孔からの燃料噴霧と第二噴孔からの燃料噴霧との一部がキャビティの側壁から所定距離で重なるように設定される時間であり、第二噴孔から噴射される燃料により、第一噴孔から噴射された燃料の燃焼の拡大を抑制し得る時間である。なお、第一噴孔の中心軸と第二噴孔の中心軸とがキャビティの側壁から所定距離離れた位置で交差するように第一噴孔及び第二噴孔を形成することで、第一噴孔から噴射された燃料噴霧と第二噴孔から噴射された燃料噴霧との一部が前記キャビティの側壁から所定距離離れた位置で重なるようにしてもよい。
【0008】
また、キャビティ内にスワールが発生することもある。キャビティ内にスワールが発生している場合、第一噴孔から噴射された燃料がスワールの回転方向の下流側に流される。そして、第一噴孔からの燃料噴射に遅れて第二噴孔から噴射された燃料は、第一噴孔から噴射された燃料の後を追うようにして進むことが分かっている。すなわち、第一噴孔から噴射された燃料がスワールに流されたとしても、第二噴孔から噴射された燃料が第一噴孔から噴射された燃料を追うために、両噴孔からの燃料噴霧を重ねることができる。さらに、第一噴孔から噴射された燃料がスワールの流れに乗ることで、空気との混合が促進される。これによっても、煤の発生を抑制できる。
【0009】
前記第一噴孔及び前記第二噴孔は、燃料噴霧が前記キャビティの側壁に当たった後に、前記ピストンの頂部側に向かう燃料量と、前記ピストンの底部側に向かう燃料量と、の比が所定比になるように形成されていてもよい。
【0010】
キャビティにおけるピストンの頂部側には、スキッシュエリアから空気が供給される。すなわち、燃料噴霧の一部がピストンの頂部側に向かうことで、スキッシュエリアからの空気と燃料とを混合させることができるので、燃料の燃焼が拡大するまでに、燃料と空気との混合をより促進することができる。このため、煤の発生を抑制することができる。所定比は、煤の発生を抑制し得る比としてもよい。また、スキッシュエリアから供給される空気量に応じた量の燃料がピストン頂部側に向かうように第一噴孔及び第二噴孔を形成することにより、スキッシュエリアからの空気をより有効に活用して空気と燃料との混合を促進させるようにしてもよい。
【0011】
前記燃料噴射弁からの燃料噴射を前記第一噴孔からの燃料噴射及び前記第二噴孔からの燃料噴射に分けて実施し、前記第一噴孔を開くために前記第一ニードルが作動を開始した時点から、前記所定時間が経過した後に、前記第二噴孔を開くために前記第二ニードルの作動を開始させる制御装置を備えることができる。
【0012】
すなわち、制御装置が、第一ニードル及び第二ニードルを制御することにより、第一噴孔から噴射された燃料の燃焼が拡大するのを抑制し得る時期に、第二噴孔から燃料を噴射させることができる。これにより、煤が発生することを抑制できる。パイロット噴射とメイン噴射が実施される場合には、メイン噴射を2回に分けて実施してもよい。また、メイン噴射とアフタ噴射が実施される場合には、メイン噴射及びアフタ噴射の少なくとも一方を2回に分けて実施してもよい。
【発明の効果】
【0013】
本発明によれば、燃料と空気との混合を促進させることにより煤の発生を抑制することができる。
【図面の簡単な説明】
【0014】
図1】実施例に係る内燃機関1の断面図である。
図2】燃料噴射弁をピストン側から見た図である。
図3図2の一部を拡大した図である。
図4】機関回転速度とアクセル開度との関係を示した図である。
図5】実施例1に係るアウタニードル及びインナニードルのリフト量と、クランク角度との関係を示した図である。
図6】発生する煤の量と時間差T1との関係を示した図である。
図7】機関回転速度と時間差T1との関係を示した図である。
図8】アクセル開度と時間差T1との関係を示した図である。
図9】燃料のセタン価と時間差T1との関係を示した図である。
図10】実施例1に係る燃料噴射の制御フローを示したフローチャートである。
図11】所定比で分かれる燃料噴霧を示した図である。
【発明を実施するための形態】
【0015】
以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0016】
(実施例1)
図1は、本実施例に係る内燃機関1の断面図である。内燃機関1の気筒2には、ピストン3が備わる。なお、本実施例においては、内燃機関1を簡潔に表示するため、一部の構成要素の表示を省略している。内燃機関1は、ディーゼル機関である。内燃機関1は例えば車両に搭載される。ピストン3には、ピストン3の頂部からピストン3の内部に向かって凹むキャビティ31が形成されている。ピストン3が上死点近傍に位置するときに、ピストン3の頂部とシリンダヘッド11との間には、スキッシュエリア100が形成される。
【0017】
内燃機関1のシリンダヘッド11には、気筒2内に燃料を直接噴射する燃料噴射弁4が設けられている。ここで、図2は、燃料噴射弁4をピストン3側から見た図である。また、図3は、図2の一部を拡大した図である。燃料噴射弁4の本体41の先端側には、燃料噴射弁4の中心軸4Aを中心として等角度に第一噴孔41A及び第二噴孔41Bが複数設けられている。第二噴孔41Bは第一噴孔41Aよりも燃料噴射弁4の先端側で且つ燃料噴射弁4の中心軸4A側に形成されている。したがって、第二噴孔41Bは、燃料噴射弁4の中心軸4A方向の位置が第一噴孔41Aと異なる位置に設けられている。第一噴孔41A及び第二噴孔41Bは、同数設けられており、第一噴孔41Aの一つと、該第一噴孔41Aに最も近い第二噴孔41Bの一つと、が一対の噴孔として配置されている。この一対の噴孔を形成する第一噴孔41Aと第二噴孔41Bとは、図2に示したように、中心軸4Aを中心とする周方向の角度をずらして配置されている。したがって、第二噴孔41Bは、燃料噴射弁4の中心軸4Aを中心とする周方向の角度が第一噴孔41Aと異なる位置に設けられている。このように、第一噴孔41Aと第二噴孔41Bとは所謂千鳥配置となるように形成されている。なお、図1の切断面は、燃料噴射弁4の中心軸4Aと、第一噴孔41Aの中心軸41AAと、第二噴孔41Bの中心軸41BBと、を通るように設定している。
【0018】
燃料噴射弁4には、第一噴孔41Aを開閉するアウタニードル42及び第二噴孔41Bを開閉するインナニードル43が設けられている。アウタニードル42は、アウタニードル動弁機構42Aにより進退され、インナニードル43は、インナニードル動弁機構43Aにより進退される。アウタニードル動弁機構42A及びインナニードル動弁機構43Aは、例えばピエゾ素子を備えており、このピエゾ素子に別々に通電することにより、アウ
タニードル42及びインナニードル43が別々にリフトする。なお、本実施例においてはアウタニードル42が本発明における第一ニードルに相当し、インナニードル43が本発明における第二ニードルに相当する。
【0019】
また、ピストン3が上死点近傍にあるときに、第一噴孔41Aから噴射された燃料の噴霧と、この第一噴孔41Aと対になる第二噴孔41Bから噴射された燃料の噴霧と、の一部がキャビティ31の側壁31Aから所定距離L1の位置で重なるように、第一噴孔41A及び第二噴孔41Bを形成している。このときに、第一噴孔41Aはスワールの下流側に向かって燃料を噴射するように形成され、さらに、第二噴孔41Bはスワールの上流側に向かって燃料を噴射するように形成される。ここで、本実施例に係るスワールは、図2の矢印で示したように、燃料噴射弁4をピストン3側から見た場合に右方向に回転する。
【0020】
所定距離L1は側壁31Aの近傍といえる範囲である。このような位置で燃料噴霧の一部を重ねるために、第一噴孔41Aの中心軸41AAと、第二噴孔41Bの中心軸41BBと、がキャビティ31の側壁31Aから所定距離L1の点P1(以下、交差点P1という。)で交差するように、第一噴孔41A及び第二噴孔41Bを形成している。
【0021】
なお、本実施例では、第一噴孔41Aから噴射された燃料の噴霧と、第二噴孔41Bから噴射された燃料の噴霧と、の一部がキャビティ31の側壁31Aの近傍で重なればよいため、交差点P1は、側壁31A上にあってもよい。すなわち、所定距離L1を0としてもよい。また、本実施例では、交差点P1において第一噴孔41Aの中心軸41AAと、第二噴孔41Bの中心軸41BBと、が交差しているが、第一噴孔41Aから噴射された燃料の噴霧と、第二噴孔41Bから噴射された燃料の噴霧と、の一部がキャビティ31の側壁31Aから所定距離L1の位置で重なればよいため、第一噴孔41Aの中心軸41AAと、第二噴孔41Bの中心軸41BBと、は必ずしも交差する必要はない。
【0022】
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。ECU10には、運転者がアクセルペダルを踏み込んだ量に応じた電気信号を出力し機関負荷を検知するアクセル開度センサ17、および機関回転速度を検知するクランクポジションセンサ18が電気配線を介して接続され、これら各種センサの出力信号がECU10に入力される。
【0023】
一方、ECU10には、アウタニードル動弁機構42A及びインナニードル動弁機構43Aが電気配線を介して接続されており、該ECU10によりこれらの機器が制御される。ECU10からアウタニードル動弁機構42Aへ指令信号が供給されると、アウタニードル42が上昇することにより、該アウタニードル42が第一噴孔41Aを開く方向へ移動する。一方、ECU10からアウタニードル動弁機構42Aへの指令信号の供給が停止されると、アウタニードル42が下降することにより、該アウタニードル42が第一噴孔41Aを閉じる方向に移動する。同様に、ECU10からインナニードル動弁機構43Aへ指令信号が供給されると、インナニードル43が上昇することにより、該インナニードル43が第二噴孔41Bを開く方向へ移動する。一方、ECU10からインナニードル動弁機構43Aへの指令信号の供給が停止されると、インナニードル43が下降することにより、該インナニードル43が第二噴孔41Bを閉じる方向に移動する。
【0024】
ECU10は、内燃機関1の運転状態(例えば機関回転速度及びアクセル開度)に基づいて、燃料噴射弁4からの燃料噴射量及び燃料噴射時期を決定する。なお、内燃機関1の運転状態と、第一噴孔41A及び第二噴孔41Bからの燃料噴射の量及び燃料噴射の時期と、の関係は、予め実験等により求めてマップ化され、ECU10に記憶されている。燃料噴射量のマップは、気筒内の空燃比が目標空燃比となるように設定されており、この目
標空燃比が、内燃機関1の運転状態に応じて設定される。
【0025】
また、ECU10は、内燃機関1の運転状態に応じて、例えば、メイン噴射、パイロット噴射、アフタ噴射を実施する。パイロット噴射はメイン噴射より前に行われる燃料噴射であり、アフタ噴射はメイン噴射よりも後に行われる燃料噴射である。図4は、機関回転速度とアクセル開度との関係を示した図である。領域1は機関回転速度またはアクセル開度が比較的小さい運転領域であり、例えばパイロット噴射及びメイン噴射を実施する。領域2は機関回転速度またはアクセル開度が中程度の運転領域であり、例えばパイロット噴射、メイン噴射及びアフタ噴射を実施する。領域3は機関回転速度またはアクセル開度が比較的大きい運転領域であり、例えばパイロット噴射及びメイン噴射を実施する。
【0026】
図5は、本実施例に係るアウタニードル42及びインナニードル43のリフト量と、クランク角度との関係を示した図である。図5は、領域2においてパイロット噴射、メイン噴射、アフタ噴射を実施する場合を示している。「フルリフト」は、アウタニードル42及びインナニードル43のリフト量が夫々最も大きくなった場合のリフト量である。インナニードル43は、パイロット噴射、メイン噴射、アフタ噴射に対応し、アウタニードル42は、メイン噴射のみに対応している。すなわち、メイン噴射は、第一噴孔41A及び第二噴孔41Bの両方から実施されるが、パイロット噴射及びアフタ噴射は第二噴孔41Bのみから実施される。そして本実施例では、メイン噴射において、インナニードル43のリフト量が増加を開始する時点よりも前に、アウタニードル42のリフト量が増加を開始している。このメイン噴射におけるインナニードル43及びアウタニードル42のリフト量が増加を開始する時点の時間差を図5ではT1で示している。この時間差T1は、クランク角度の差ではなく、時間の差として示される。なお、実施例における時間差T1が、本発明における所定時間に相当する。以下では、第一噴孔41Aからのメイン噴射を第一メイン噴射といい、第二噴孔41Bからのメイン噴射を第二メイン噴射という。
【0027】
ここで、領域2では気筒2内の温度が高いためにメイン噴射を実施すると、メイン噴射に係る燃料の燃焼が比較的早い時期に始まるため、メイン噴射に係る燃料の燃焼が比較的早い時期に拡大し得る。この場合、燃料と空気との混合がまだ十分でないときに燃焼が拡大してしまうため、燃料濃度の高い箇所において酸素が不足した状態で燃料が燃焼してしまう。そうすると、局所的な酸素不足により煤が発生する虞がある。一方、本実施例では、メイン噴射に係る燃料の燃焼が比較的早い時期に拡大することを抑制するために、ピストン3が上死点近傍にあるときに、第一噴孔41Aから噴射された燃料の噴霧と、この第一噴孔41Aと対になる第二噴孔41Bから噴射された燃料の噴霧と、の一部がキャビティ31の側壁31Aから所定距離L1の位置で重なるように、第一噴孔41A及び第二噴孔41Bを形成し、且つ、メイン噴射時に図5に係る時間差T1を設けて第一噴孔41A及び第二噴孔41Bから燃料噴射を実施している。本実施例では、第一メイン噴射による燃料の燃焼が燃料噴霧の先端部から拡大する前に、第二メイン噴射による燃料噴霧と第一メイン噴射による燃料噴霧との一部が重なるように一対の噴孔を形成し、且つ、時間差T1を設けて燃料を噴射しているため、燃料噴霧が重なる箇所においては、第二メイン噴射による燃料の気化潜熱により、第一メイン噴射による燃料噴霧の温度が低下する。このため、燃焼が比較的早い時期に拡大することを抑制できる。また、第二メイン噴射による燃料噴霧は、燃焼が始まった箇所とは別の箇所において気化している途中の第一メイン噴射による燃料噴霧に重なるため、この第一メイン噴射による燃料噴霧の気化潜熱により、第二メイン噴射による燃料の燃焼が抑制される。さらに、第一メイン噴射による燃料噴霧が燃焼を始める位置までは、第一メイン噴射による燃料噴霧と第二メイン噴射による燃料噴霧とが重ならないため、両燃料噴霧が夫々より多くの空気と混合することができるので、燃料と空気との混合が促進される。また、キャビティ31の側壁31Aから所定距離L1の位置までは、両燃料噴霧が重なることが抑制されるため、燃料の粒径が大きくなることを抑制できる。このようにして、燃焼が拡大するまでの時間を延ばすことができ、その間に、第一メイン噴射及び第二メイン噴射による燃料と空気との混合を促進させることができる。したがって、燃料と空気との混合が進んでいる状態で燃焼が拡大するため、煤の発生を抑制できる。
【0028】
また、キャビティ31内にスワールが発生している場合には、第一噴孔41Aから噴射された燃料がスワールの回転方向の下流側に流される。そして、第一噴孔41Aからの燃料噴射に遅れて第二噴孔41Bから噴射された燃料は、第一噴孔41Aから噴射された燃料の後を追うようにして進む。すなわち、第一噴孔41Aからの燃料噴霧がスワールに流されたとしても、第二噴孔41Bからの燃料噴霧が第一噴孔41Aからの燃料噴霧を追うために、両噴孔からの燃料噴霧を重ねることができる。キャビティ31の径方向の燃料噴霧の速度は維持されるため、燃料噴霧がスワールによって流されたとしても、第一噴孔41Aから噴射された燃料の噴霧と、この第一噴孔41Aと対になる第二噴孔41Bから噴射された燃料の噴霧と、の一部がキャビティ31の側壁31Aから所定距離L1の位置で重なる。したがって、燃料噴霧がスワールに流されたとしても、燃料の燃焼が拡大するまでの時間を長くすることができるので、燃料と空気との混合を促進させることができる。また、燃料噴霧がスワールの流れに乗ることによっても、空気との混合が促進される。これによっても、煤の発生を抑制できる。
【0029】
図6は、発生する煤の量と時間差T1との関係を示した図である。例えば、130μs以下で煤の低減効果が認められる。したがって、時間差T1を例えば130μS以下に設定することにより、煤の排出量を低減することができる。ただし、図6に示されるように時間差T1が短すぎると逆に煤の量が多くなり得る。このため、時間差T1の最適値は実験またはシミュレーション等により求める。ここで、燃料の燃焼のし易さは、内燃機関1の運転状態及び燃料のセタン価に応じて変化する。したがって、時間差T1の最適値は、内燃機関1の運転状態及び燃料のセタン価によって変化し得る。そこで本実施例では、時間差T1を内燃機関1の運転状態(アクセル開度)及び燃料のセタン価と関連付けて求めた。
【0030】
図7は、機関回転速度と時間差T1との関係を示した図である。機関回転速度が変化したとしても、燃料の燃焼のし易さ(自己着火のし易さ)は殆ど変化しないため、機関回転数によっては時間差T1を変化させない。また、図8は、アクセル開度と時間差T1との関係を示した図である。アクセル開度が大きくなるほど、気筒2内の温度が高くなるため、メイン噴射から燃焼開始までの時間が短くなり得る。したがって、アクセル開度が大きいほど、時間差T1を小さくしている。また、図9は、燃料のセタン価と時間差T1との関係を示した図である。セタン価が大きいほど、燃料に着火し易くなるため、メイン噴射から燃焼開始までの時間が短くなり得る。したがって、セタン価が大きいほど、時間差T1を小さくしている。なお、アクセル開度及びセタン価と、時間差T1との関係は予め実験またはシミュレーション等により求めてECU10に記憶させておく。なお、セタン価は地域によって値が決まると考えられるため、地域によって給油されると想定される燃料のセタン価を予め設定しておいてもよい。
【0031】
図10は、本実施例に係る燃料噴射の制御フローを示したフローチャートである。本フローチャートは、領域2においてECU10により各気筒2のサイクル毎に実行される。
【0032】
ステップS101では、内燃機関1の運転状態が取得される。ECU10は、アクセル開度センサ17の出力信号に基づいて得られるアクセル開度と、クランクポジションセンサ18の出力信号に基づいて得られる機関回転速度と、を取得する。これらは、燃料噴射量及び燃料噴射時期を求めるときに利用する。
【0033】
ステップS102では、内燃機関1の運転状態に基づいて、パイロット噴射時の燃料噴
射量であるパイロット噴射量、第一メイン噴射時の燃料噴射量である第一メイン噴射量、第二メイン噴射時の燃料噴射量である第二メイン噴射量、アフタ噴射時の燃料噴射量であるアフタ噴射量が算出され、パイロット噴射を開始する時期であるパイロット噴射時期、第一メイン噴射を開始する時期である第一メイン噴射時期、アフタ噴射を開始する時期であるアフタ噴射時期が算出される。内燃機関1の運転状態に基づいてパイロット噴射量、パイロット噴射時期、第一メイン噴射量、第一メイン噴射時期、アフタ噴射量、アフタ噴射時期を夫々求めるマップまたは計算式を予め実験またはシミュレーション等により求めてECU10に記憶させておく。また、第二メイン噴射を開始する時期である第二メイン噴射時期は、第一メイン噴射時期に前述の時間差T1を加えることにより算出される。なお、第一メイン噴射量と第二メイン噴射量とは同量であってもよく、異なる量であってもよい。また、これらのマップまたは計算式は、内燃機関1の運転領域によって異なるため、本ステップS102では、領域2に対応したマップまたは計算式を用いる。
【0034】
ステップS103では、パイロット噴射時期であるか否か判定される。ステップS103で肯定判定がなされた場合にはステップS104へ進んでパイロット噴射が実施される。パイロット噴射は第二噴孔41Bから実施されるため、ECU10は、パイロット噴射量に応じた時間だけインナニードル動弁機構43Aに指令信号を与える。一方、ステップS103で否定判定がなされた場合にはステップS103が再度実行される。
【0035】
ステップS105では、第一メイン噴射時期であるか否か判定される。ステップS105で肯定判定がなされた場合にはステップS106へ進んで第一メイン噴射が実施される。第一メイン噴射は第一噴孔41Aから実施されるため、ECU10は、第一メイン噴射量に応じた時間だけアウタニードル動弁機構42Aに指令信号を与える。一方、ステップS105で否定判定がなされた場合にはステップS105が再度実行される。
【0036】
ステップS107では、第二メイン噴射時期であるか否か判定される。ステップS107で肯定判定がなされた場合にはステップS108へ進んで第二メイン噴射が実施される。第二メイン噴射は第二噴孔41Bから実施されるため、ECU10は、第二メイン噴射量に応じた時間だけインナニードル動弁機構43Aに指令信号を与える。一方、ステップS107で否定判定がなされた場合にはステップS107が再度実行される。
【0037】
ステップS109では、アフタ噴射時期であるか否か判定される。ステップS109で肯定判定がなされた場合にはステップS110へ進んでアフタ噴射が実施される。アフタ噴射は第二噴孔41Bから実施されるため、ECU10は、アフタ噴射量に応じた時間だけインナニードル動弁機構43Aに指令信号を与える。一方、ステップS109で否定判定がなされた場合にはステップS109が再度実行される。
【0038】
なお、本実施例では、パイロット噴射を第二噴孔41Bから行っているが、これに代えて、第一噴孔41Aから行ってもよい。また、本実施例では、アフタ噴射を第二噴孔41Bから行っているが、これに代えて、第一噴孔41Aから行ってもよい。また、本実施例では、第二メイン噴射の前に第一メイン噴射を行っているが、順番を変えて、第一メイン噴射の前に第二メイン噴射を行ってもよい。ただし、図5に示したように、メイン噴射を最初に行う噴孔と、パイロット噴射を行う噴孔と、を変えることにより、パイロット噴射時に発生する燃料の脈動の影響をメイン噴射時に受けることを抑制できるため、なお良い。また、本実施例では領域2について説明しているが、領域3であっても気筒2内の温度が高いためにメイン噴射を実施するとメイン噴射に係る燃料の燃焼が比較的早い時期に始まる。このため、領域3においても、メイン噴射を第一メイン噴射と第二メイン噴射とに分けて実施し、第二メイン噴射の前に第一メイン噴射を行うことで、煤の発生を抑制することができる。また、メイン噴射の後にアフタ噴射を実施する場合には、メイン噴射に代えて、アフタ噴射を第一噴孔41Aと第二噴孔41Bとに分けて実施することもできる。
また、メイン噴射とアフタ噴射の両方共、第一噴孔41Aと第二噴孔41Bとに分けて実施することもできる。
【0039】
以上説明したように本実施例によれば、第一メイン噴射の燃料噴霧と、第二メイン噴射の燃料噴霧と、の一部がキャビティ31の側壁31Aから所定距離L1離れた位置で重なるように第一メイン噴射と第二メイン噴射とをずらして行うことにより、燃焼が早期に拡大することを抑制できるため、燃料と空気との混合が進んだ後に、燃焼を拡大させることができる。これにより、煤の発生を抑制できる。また、燃料噴霧をスワールの流れに乗せることにより、燃料を空気との混合をさらに促進させることができるため、煤の発生を抑制することができる。
【0040】
(実施例2)
本実施例では、第一噴孔41A及び第二噴孔41Bから噴射され、重なった後の燃料量が所定比で、ピストン3の頂部側(すなわち、シリンダヘッド11側)と、ピストン3の底部側(すなわち、キャビティ31の底部側)と、に分かれるように第一噴孔41A及び第二噴孔41Bを形成する。図11は、所定比で分かれる燃料噴霧を示した図である。ピストン3の頂部側に向かう燃料噴霧をS1とし、ピストン3の底部側に向かう燃料噴霧をS2で示している。なお、図11の切断面は、燃料噴射弁4の中心軸4Aと、第一噴孔41Aの中心軸41AAと、第二噴孔41Bの中心軸41BBと、を通るように設定している。
【0041】
ピストン3が上死点近傍に位置するときに、ピストン3の頂部表面とシリンダヘッド11との間には、スキッシュエリア100が形成される。このスキッシュエリア100は、ピストン3の上昇と共に容積が小さくなるため、スキッシュエリア100から中心軸4A側に向かって気流が生じる。第一噴孔41A及び第二噴孔41Bから噴射された燃料が、スキッシュエリア100からの気流によって撹拌されることにより、空気と燃料との混合が促進される。すなわち、交差点P1において燃焼の拡大が抑制され、その後、燃焼が拡大する前に、ピストン3の頂部側に向かう燃料噴霧S1と、ピストン3の底部側に向かう燃料噴霧S2と、に分かれる。そして、ピストン3の頂部側に向かう燃料噴霧S1は、スキッシュエリア100からの気流によって燃料と空気との混合が更に促進された後に燃焼が拡大するため、煤の発生量を低減することができる。
【0042】
一方、ピストン3の頂部側に向かう燃料量が多くなりすぎると、ピストン3の頂部側において燃料濃度が高くなってしまうため、空気が不足する虞がある。したがって、ピストン3の頂部側と底部側とに所定比で燃料が分かれるように第一噴孔41A及び第二噴孔41Bの向きを設定することにより、ピストン3の頂部側の燃料濃度が高くなりすぎることを抑制でき、キャビティ31の底部側に存在する空気も有効に利用することができる。このため、ピストン3の底部側に向かう燃料噴霧S2も、ピストン3の底部側に存在する空気を利用して空気と燃料との混合が促進された後に燃焼が拡大するため、煤の発生量を低減することができる。
【0043】
このようにして、燃料の燃焼が拡大する前に、空気と燃料との混合をより促進させることができるため、煤の発生を抑制できる。なお、所定比は、実験またはシミュレーション等により最適値を求めることができ、例えば一対一である。
【符号の説明】
【0044】
1 内燃機関
2 気筒
3 ピストン
4 燃料噴射弁
4A 中心軸
10 ECU
11 シリンダヘッド
17 アクセル開度センサ
18 クランクポジションセンサ
31 キャビティ
31A 側壁
41 本体
41A 第一噴孔
41AA 中心軸
41B 第二噴孔
41BB 中心軸
42 アウタニードル
42A アウタニードル動弁機構
43 インナニードル
43A インナニードル動弁機構
100 スキッシュエリア
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11