特許第6440930号(P6440930)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工サーマルシステムズ株式会社の特許一覧
<>
  • 特許6440930-空気調和機及び空気調和機の制御方法 図000002
  • 特許6440930-空気調和機及び空気調和機の制御方法 図000003
  • 特許6440930-空気調和機及び空気調和機の制御方法 図000004
  • 特許6440930-空気調和機及び空気調和機の制御方法 図000005
  • 特許6440930-空気調和機及び空気調和機の制御方法 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6440930
(24)【登録日】2018年11月30日
(45)【発行日】2018年12月19日
(54)【発明の名称】空気調和機及び空気調和機の制御方法
(51)【国際特許分類】
   F25B 1/00 20060101AFI20181210BHJP
   F24F 11/52 20180101ALI20181210BHJP
   F24F 11/86 20180101ALI20181210BHJP
【FI】
   F25B1/00 341C
   F25B1/00 321J
   F25B1/00 351U
   F24F11/52
   F24F11/86
【請求項の数】3
【全頁数】11
(21)【出願番号】特願2013-129895(P2013-129895)
(22)【出願日】2013年6月20日
(65)【公開番号】特開2015-4473(P2015-4473A)
(43)【公開日】2015年1月8日
【審査請求日】2016年4月28日
【審判番号】不服-9435(P-9435/J1)
【審判請求日】2017年6月28日
(73)【特許権者】
【識別番号】516299338
【氏名又は名称】三菱重工サーマルシステムズ株式会社
(74)【代理人】
【識別番号】100112737
【弁理士】
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100140914
【弁理士】
【氏名又は名称】三苫 貴織
(74)【代理人】
【識別番号】100136168
【弁理士】
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100172524
【弁理士】
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】加藤 隆博
【合議体】
【審判長】 紀本 孝
【審判官】 宮崎 賢司
【審判官】 佐々木 正章
(56)【参考文献】
【文献】 特開2013−19595(JP,A)
【文献】 特開昭55−75149(JP,A)
【文献】 特開2013−83434(JP,A)
【文献】 特開2006−349219(JP,A)
【文献】 特開2005−300100(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 1/00
F24F 11/00
F24F 11/86
F24F 11/52
(57)【特許請求の範囲】
【請求項1】
圧縮機にクランクケースヒータが付設され、前記クランクケースヒータに通電することにより前記圧縮機が加熱可能とされ、前記圧縮機の起動が予め定められたスケジュールに従って行われる空気調和機において、
前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、冷媒の過熱度及び外気温度に基づいて、前記クランクケースヒータの通電時間を算出し、算出した前記クランクケースヒータの通電時間と前記スケジュールとから、前記クランクケースヒータの通電を開始するタイミングを決定する制御手段を備え、
前記制御手段は、前記タイミングに達するまで、前記通電時間の算出を繰り返し行い、新たな前記タイミングの決定を繰り返す空気調和機。
【請求項2】
示灯が制御基板に備えられ、
前記表示灯は、リモコンへの操作がない状態が所定時間以上継続した場合、または、室外機の能力が所定時間以上変化しない場合、または、前記圧縮機の起動及び停止の変更が所定時間以上ない場合に、前記表示灯を消灯する請求項1記載の空気調和機。
【請求項3】
圧縮機にクランクケースヒータが付設され、前記クランクケースヒータに通電することにより前記圧縮機が加熱可能とされ、前記圧縮機の起動が予め定められたスケジュールに従って行われる空気調和機の制御方法であって、
前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、冷媒の過熱度及び外気温度に基づいて、前記クランクケースヒータの通電時間を算出し、
算出した前記クランクケースヒータの通電時間と前記スケジュールとから、前記クランクケースヒータの通電を開始するタイミングを決定し、
前記タイミングに達するまで、前記通電時間の算出を繰り返し行い、新たな前記タイミングの決定を繰り返す空気調和機の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空気調和機及び空気調和機の制御方法に関するものである。
【背景技術】
【0002】
空気調和機を長時間停止しておくと、冷媒が液状態となって圧縮機内に溜り込み、その状態で圧縮機を起動すると、液圧縮により圧縮機を損傷する虞がある。このため、特に寒冷地向けの空気調和機では、圧縮機にクランクケースヒータを付設し、空気調和機を運転する前にクランクケースヒータに通電して圧縮機を加熱することにより、液冷媒の溜り込みによる液圧縮を防止している。
【0003】
しかしながら、圧縮機の運転停止中にクランクケースヒータに継続的な通電がされると、クランクケースヒータの消費電力が増し、空気調和機の待機電力が増加する。
【0004】
この課題を解決するために、特許文献1には、圧縮機が停止状態にあるときにはクランクケースヒータを作動させた後、冷凍機油温度が所定温度以上となった時点でクランクケースヒータの作動を停止させて、圧縮機の再起動に備える空気調和機が記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第3799940号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に記載の空気調和機は、圧縮機の停止状態において、冷凍機油温度が所定温度未満になる毎にクランクケースヒータを繰り返し通電させる必要があり、待機電力の低減が限定的であった。
【0007】
本発明は、このような事情に鑑みてなされたものであって、圧縮機が停止されている期間において、クランクケースヒータに通電することにより生じる待機電力をより低減できる、空気調和機及び空気調和機の制御方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明の空気調和機及び空気調和機の制御方法は以下の手段を採用する。
【0009】
本発明の第一態様は、圧縮機にクランクケースヒータが付設され、前記クランクケースヒータに通電することにより前記圧縮機が加熱可能とされ、前記圧縮機の起動が予め定められたスケジュールに従って行われる空気調和機において、前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、冷媒の過熱度及び外気温度に基づいて、前記クランクケースヒータの通電時間を算出し、算出した前記クランクケースヒータの通電時間と前記スケジュールとから、前記クランクケースヒータの通電を開始するタイミングを決定する制御手段を備え、前記制御手段は、前記タイミングに達するまで、前記通電時間の算出を繰り返し行い、新たな前記タイミングの決定を繰り返す空気調和機を提供する。
【0010】
本構成によれば、空気調和機は、圧縮機にクランクケースヒータが付設され、クランクケースヒータに通電することにより圧縮機が加熱可能とされている。空気調和機は、停止されている圧縮機を起動する前に、クランクケースヒータに通電して圧縮機を加熱する。これにより、液冷媒は、加熱されて気化するので、液冷媒の溜り込みによる液圧縮が防止される。
【0011】
しかしながら、クランクケースヒータの通電を適切なタイミングで開始しないと、クランクケースヒータの通電を必要以上に行うこととなり、待機電力が増加する。
そこで、圧縮機が停止されている期間であって圧縮機が起動される前に、冷媒の過熱度及び外気温度に基づいて、クランクケースヒータの通電を開始するタイミングを決定する。すなわち、圧縮機が起動を開始する時間に上記パラメータが予め定められた目標値に達するように、クランクケースヒータの通電を開始するタイミングが決定される。
具体的には、冷媒の温度が、圧縮機の運転開始時に溜まり込みを解消できる温度に達するように、冷媒の過熱度が低いほど、クランクケースヒータの通電を開始するタイミングが早くされる。一方、冷媒の過熱度が高いほど、クランクケースヒータの通電を開始するタイミングが遅くされる。これにより、クランクケースヒータの通電時間が必要以上に長くなることが抑制される。
【0012】
液冷媒の溜まり込みは、過熱度が十分に高い場合には少ない。また、圧縮機の下部温度が十分に高いと液冷媒の溜まり込みは少ない。しかし、圧縮機の下部温度では、外気温度の影響も受けやすく、必ずしも冷媒の状態を正しく計測しているとは限らない。一方、冷媒の過熱度は、冷媒の温度のみならず、冷媒の圧力とも相関のあるパラメータである。このため、冷媒の過熱度の計測は、圧縮機の下部温度の計測に比べて、冷媒の状態をより正しく計測していることとなる。従って、過熱度を用いることで、クランクケースヒータの通電を開始するタイミングをより正確に決定できる。
また、クランクケースヒータを通電しても、外気温度の違いによって、圧縮機の温度、すなわち冷媒の温度の上昇の度合いは異なってくる。そこで、本構成は、過熱度だけでなく外気温度も用いて、クランクケースヒータの通電時間を算出し、通電を開始するタイミングを決定する。すなわち、上記パラメータの値が同じでも、外気温度が低いほど、クランクケースヒータの通電を開始するタイミングが早くされ、外気温度が高いほど、クランクケースヒータの通電を開始するタイミングが遅くされる。これにより、クランクケースヒータに通電するタイミングをより正確に決定できる。従って、本構成によれば、圧縮機が停止されている期間において、クランクケースヒータに通電することにより生じる待機電力をより低減できる。
【0019】
上記第一態様では、表示灯が制御基板に備えられ、前記表示灯が、リモコンへの操作がない状態が所定時間以上継続した場合、または、室外機の能力が所定時間以上変化しない場合、または、前記圧縮機の起動及び停止の変更が所定時間以上ない場合に消灯することが好ましい。
【0020】
本構成は、空気調和機の消費電力をより低減できる。
【0021】
本発明の第二態様は、圧縮機にクランクケースヒータが付設され、前記クランクケースヒータに通電することにより前記圧縮機が加熱可能とされ、前記圧縮機の起動が予め定められたスケジュールに従って行われる空気調和機の制御方法であって、前記圧縮機が停止されている期間であって前記圧縮機が起動される前に、冷媒の温度と相関関係のあるパラメータに基づいて、前記クランクケースヒータの通電時間を算出し、算出した前記クランクケースヒータの通電時間と前記スケジュールとから、前記クランクケースヒータの通電を開始するタイミングを決定し、前記タイミングに達するまで、前記通電時間の算出を繰り返し行い、新たな前記タイミングの決定を繰り返す空気調和機の制御方法を提供する
【発明の効果】
【0022】
本発明によれば、圧縮機が停止されている期間において、クランクケースヒータに通電することにより生じる待機電力をより低減できる、という優れた効果を有する。
【図面の簡単な説明】
【0023】
図1】本発明の第1実施形態に係るマルチ空気調和機の概略構成図である。
図2】本発明の第1実施形態に係るマルチ空気調和機のクランクケースヒータを備えた圧縮機周りの構成図である。
図3】本発明の第1実施形態に係る過熱度とヒータON時間との関係を示すグラフである。
図4】本発明の第1実施形態に係るCH通電処理の流れを示すフローチャートである。
図5】本発明の第2実施形態に係る過熱度とヒータON時間との関係を示すグラフである。
【発明を実施するための形態】
【0024】
以下に、本発明に係る空気調和機及び空気調和機の制御方法の一実施形態について、図面を参照して説明する。
【0025】
〔第1実施形態〕
以下、本発明の第1実施形態について説明する。
図1には、本発明の第1実施形態に係るマルチ空気調和機の概略構成図が示され、図2には、そのクランクケースヒータを備えた圧縮機周りの構成図が示されている。
マルチタイプの空気調和機1は、1台の室外機2に対して、複数台の室内機3A,3Bが室外機2から導出されるガス側配管4及び液側配管5の間に分岐器6を介して互いに並列に接続される。
【0026】
室外機2は、冷媒を圧縮するインバータ駆動の圧縮機10と、冷媒ガス中から潤滑油を分離する油分離器11と、冷媒の循環方向を切換える四方切換弁12と、冷媒と外気とを熱交換させる室外熱交換器13と、室外熱交換器13と一体的に構成されている過冷却コイル14と、室外側膨張弁(EEVH)15と、液冷媒を貯留するレシーバ16と、液冷媒に過冷却を与える過冷却熱交換器17と、過冷却熱交換器17に分流される冷媒量を制御する過冷却用膨張弁(EEVSC)18と、圧縮機10に吸入される冷媒ガスから液分を分離し、ガス分のみを圧縮機10側に吸入させるアキュームレータ19と、ガス側操作弁20と、液側操作弁21とを備える。
【0027】
室外機2側の上記各機器は、冷媒配管22を介して公知の如く接続され、室外側冷媒回路23を構成している。また、室外機2には、室外熱交換器13に対して外気を通風する室外ファン24が設けられているとともに、油分離器11と圧縮機10の吸入配管との間に、油分離器11内で吐出冷媒ガスから分離された潤滑油を所定量ずつ圧縮機10側に戻すための油戻し回路25が設けられる。
【0028】
ガス側配管4及び液側配管5は、室外機2のガス側操作弁20及び液側操作弁21に接続される冷媒配管であり、現場での据え付け施工時に、室外機2とそれに接続される複数台の室内機3A,3Bとの間の距離に応じて、その配管長が設定される。ガス側配管4及び液側配管5の途中には、適宜数の分岐器6が設けられ、該分岐器6を介して適宜台数の室内機3A,3Bが接続される。これによって、密閉された1系統の冷凍サイクル(冷媒回路)7が構成される。
【0029】
室内機3A,3Bは、室内空気を冷媒と熱交換させて室内の空調に供する室内熱交換器30と、室内側膨張弁(EEVC)31と、室内空気を室内熱交換器30に循環させる室内ファン32とを備えており、室内側の分岐ガス側配管4A,4B及び分岐液側配管5A,5Bを介して分岐器6に接続される。
【0030】
また、圧縮機10から吐出される冷媒の圧力は、圧力センサ33によって測定される。
【0031】
上記の空気調和機1において、冷房運転は以下のように行われる。
圧縮機10で圧縮され、吐出された高温高圧の冷媒ガスは、油分離器11で冷媒中に含まれている潤滑油が分離される。その後、冷媒ガスは、四方切換弁12により室外熱交換器13側に循環され、室外熱交換器13で室外ファン24により送風される外気と熱交換して凝縮液化される。この液冷媒は、過冷却コイル14で更に冷却された後、室外側膨張弁15を通過し、レシーバ16内にいったん貯留される。
【0032】
レシーバ16で循環量が調整された液冷媒は、過冷却熱交換器17を経て液冷媒配管側を流通される過程で、液冷媒配管から分流され、過冷却用膨張弁(EEVSC)18で断熱膨張された一部の冷媒と熱交換されて過冷却度が付与される。この液冷媒は、液側操作弁21を経て室外機2から液側配管5へと導出される。更に液側配管5に導出された液冷媒は、分岐器6を介して各室内機3A,3Bの分岐液側配管5A,5Bへと分流される。
【0033】
分岐液側配管5A,5Bに分流された液冷媒は、各室内機3A,3Bに流入し、室内側膨張弁(EEVC)31で断熱膨張され、気液二相流となって室内熱交換器30に流入される。室内熱交換器30では、室内ファン32により循環される室内空気と冷媒とが熱交換され、室内空気は冷却されて室内の冷房に供される。一方、冷媒はガス化され、分岐ガス側配管4A,4Bを経て分岐器6に至り、他の室内機からの冷媒ガスとガス側配管4で合流される。
【0034】
ガス側配管4で合流された冷媒ガスは、再び室外機2に戻り、ガス側操作弁20、四方切換弁12を経て、過冷却熱交換器17からの冷媒ガスと合流された後、アキュームレータ19に導入される。アキュームレータ19では、冷媒ガス中に含まれている液分が分離され、ガス分のみが圧縮機10に吸入される。この冷媒は、圧縮機10において再び圧縮され、以上のサイクルを繰り返すことによって冷房運転が行われる。
【0035】
一方、暖房運転は、以下のように行われる。
圧縮機10により圧縮され、吐出された高温高圧の冷媒ガスは、油分離器11で冷媒中に含まれている潤滑油が分離された後、四方切換弁12を介してガス側操作弁20側に循環される。ガス側操作弁20側に循環された冷媒は、ガス側配管4を経て室外機2から導出され、分岐器6、室内側の分岐ガス側配管4A,4Bを経て複数台の室内機3A,3Bに導入される。
【0036】
室内機3A,3Bに導入された高温高圧の冷媒ガスは、室内熱交換器30で室内ファン32を介して循環される室内空気と熱交換され、室内空気は加熱されて室内の暖房に供される。室内熱交換器30で凝縮された液冷媒は、室内側膨張弁(EEVC)31、分岐液側配管5A,5Bを経て分岐器6に至り、他の室内機からの冷媒と合流された後、液側配管5を経て室外機2側に戻される。なお、暖房時、室内機3A,3Bでは、凝縮器として機能する室内熱交換器30の冷媒出口温度又は冷媒過冷却度が目標値となるように、室内側膨張弁(EEVC)31の開度が制御されるようになっている。
【0037】
室外機2側に戻った冷媒は、液側操作弁21を経て過冷却熱交換器17に至り、冷房時の場合と同様に過冷却が付与された後、レシーバ16に流入され、いったん貯留されることにより循環量が調整される。この液冷媒は、室外側膨張弁(EEVH)15に供給されて断熱膨張された後、過冷却コイル14を経て室外熱交換器13に流入される。
【0038】
室外熱交換器13においては、室外ファン24を介して送風される外気と冷媒とが熱交換され、冷媒は外気から吸熱して蒸発ガス化される。該冷媒は、室外熱交換器13から四方切換弁12を経て、過冷却熱交換器17からの冷媒ガスと合流された後、アキュームレータ19に導入される。アキュームレータ19では、冷媒ガス中に含まれている液分が分離されてガス分のみが圧縮機10に吸入され、圧縮機10において再び圧縮される。以上のサイクルを繰り返すことによって暖房運転が行われる。
【0039】
さらに、上記空気調和機1において、圧縮機10には、図2に示されるように、密閉ハウジング10Aの外周にクランクケースヒータ(以下「CH」という。)40が付設されている。このCH40は、圧縮機10が停止期間中に、圧縮機10内に冷媒が液状態となって溜り込み、その液冷媒を圧縮機10が起動時に吸込んで液圧縮を起こし、圧縮機10が損傷するのを防ぐために設けられるものであり、空気調和機1を運転する前にCH40に通電して圧縮機10を加熱することにより、液冷媒を圧縮機10から追出し、液圧縮を防止する役割を担うものである。
【0040】
CH40は、制御部41を介して通電のON/OFF制御がされる。制御部41は、圧縮機10が停止期間中、CH40に対して予め定められたスペックに基づいて常時通電制御する通常運転モード制御部42と、CH40のONタイミングを算出して該CH40をON/OFF制御する運転低減モード制御部43とを備える。制御部41は、制御モードを通常運転モード又は運転低減モードのいずれかのモードに選択的に切替えできる切替え手段44を備えており、切替え手段44は、例えば、リモコン45側から切替え操作できるように構成される。
【0041】
なお、制御部41は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成される。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
【0042】
また、制御部41は、その制御基板上に空気調和機1の制御状態を示す表示灯50を備える。表示灯50は、空気調和機1のメンテナンス等に要するものである。表示灯50は、例えば7セグメントディスプレイであるが、これに限らず、1つ又は複数のLED灯であってもよい。
さらに、制御部41には、圧縮機10下部の温度(以下「ドーム下温度」という。)を測定するドーム下温度センサ52による測定値、外気温を測定する外気温センサ46による測定値、及び圧力センサ33による測定値が入力される。
【0043】
通常運転モード制御部42は、予め定められているスペック記載のCH40のON条件を満たす場合、圧縮機10が停止期間中はCH40に対して常に通電し、CH40をONとして圧縮機10を加熱する。この場合、CH40は、圧縮機10が起動されると、起動中はOFFとされ、圧縮機10が停止されると、停止期間中は常にONされるようになる。
【0044】
このように、空気調和機1は、停止されている圧縮機10を起動する前に、CH40に通電して圧縮機10を加熱する。これにより、液冷媒は、加熱されて気化するので、液冷媒の溜り込みによる液圧縮が防止される。
しかしながら、CH40の通電を適切なタイミングで開始しないと、CH40の通電を必要以上に行うこととなり、待機電力が増加する。
【0045】
そこで、本第1実施形態に係る運転低減モード制御部43は、圧縮機10が停止されている期間であって圧縮機10が起動される前に、冷媒の温度と相関関係のあるパラメータに基づいて、CH40の通電を開始するタイミングを決定する。すなわち、圧縮機10が起動を開始する時間に上記パラメータが予め定められた目標値に達するように、CH40の通電を開始するタイミングが決定される。
【0046】
なお、本第1実施形態に係る上記パラメータは、冷媒の過熱度である。液冷媒の溜まり込みは、過熱度が十分に高い場合には少ないためである。過熱度は、ドーム下温度センサ52によって測定されたドーム下温度から圧力センサ33の測定値に基づいて算出される飽和温度を減算することで算出される。
【0047】
そして、運転低減モード制御部43は、図3のグラフに示されるような過熱度とCH40のON時間(以下「ヒータON時間」という。)との関係から、CH40を通電する時間を算出する。
具体的には、冷媒は、圧縮機10の運転開始時に溜まり込みを解消できる過熱度に達するように、過熱度が低いほど、CH40の通電を開始するタイミングが早くされる。一方、過熱度が高いほど、CH40の通電を開始するタイミングが遅くされる。さらに、過熱度が十分に高い場合は、圧縮機10の停止中にCH40の通電は行われない。
これにより、CH40の通電時間が必要以上に長くなることが抑制される。
【0048】
過熱度とヒータON時間との関係は、(1)式のように関数fで表わされるが、その関係は図3に示されるような線形でなくてもよい。
ヒータON時間=f(過熱度) ・・・(1)
関数fは、圧縮機10の熱容量、CH40の出力、及び圧縮機10からの放熱量等に基づいて予め決定される。なお、圧縮機10を起動可能とする過熱度の目標値は、例えば10〜15℃である。
【0049】
また、本第1実施形態に係る制御部41は、空気調和機1の起動及び停止、すなわち圧縮機10等の各種構成機器の起動及び停止等を、予め定められたスケジュールに従って行う、所謂スケジュールタイマの機能を備える。制御部41は、スケジュールタイマが設定されている場合、スケジュールタイマに従って、空気調和機1の停止期間中は、各構成機器に対する不要な電力をカットし、空気調和機1をスリープ状態とする。
【0050】
そして、運転低減モード制御部43は、算出したヒータON時間及びスケジュールに従って、CH40を通電する時刻(以下「CH通電開始時刻」という。)を算出する。例えば、スケジュールタイマによって空気調和機1の起動が午前8時となっている場合、ヒータON時間が3時間と算出されると、CH通電開始時刻は午前5時とされる。
【0051】
なお、ドーム下温度が十分に高いと液冷媒の溜まり込みは少ない。このため、(2)式に示されるように、運転低減モード制御部43は、ヒータON時間=f(ドーム下温度)の関数を用いて、ヒータON時間を算出してもよい。
しかし、ドーム下温度では、外気温度の影響も受けやすく、必ずしも冷媒の状態を正しく計測しているとは限らない。一方、冷媒の過熱度は、冷媒の温度のみならず、冷媒の圧力とも相関のあるパラメータである。このため、冷媒の過熱度の計測は、圧縮機の下部温度の計測に比べて、冷媒の状態をより正しく計測していることとなる。
従って、冷媒の温度と相関関係のあるパラメータとして過熱度を用いることによって、CH40に通電するタイミングをより正確に決定できる。
【0052】
図4は、圧縮機10が停止されている期間であって圧縮機10が起動される前に、運転低減モード制御部43で実行されるCH40への通電処理(以下「CH通電処理」という。)の流れを示すフローチャートである。なお、CH通電処理は、圧縮機10が停止されている期間に実行される。
【0053】
まず、ステップ100では、過熱度を算出する。
【0054】
次のステップ102では、算出した過熱度に基づいて、ヒータON時間を算出する。
【0055】
次のステップ104では、算出したヒータON時間に基づいて、CH通電開始時刻を算出する。
【0056】
次のステップ106では、現在時刻がCH通電開始時刻に達したか否かを判定し、肯定判定の場合はステップ108へ移行し、否定判定の場合はステップ100へ戻る。
【0057】
ステップ108では、CH40の通電を開始する。
【0058】
なお、ステップ106からステップ100へ戻った場合は、新たに算出した過熱度、ヒータON時刻に基づいて、新たなCH通電開始時刻を算出する。
【0059】
また、本実施形態に係る制御部41は、制御が所定時間以上安定している場合に表示灯50を消灯する。制御が安定している場合とは、例えば、リモコン45への操作が無い場合、室外機2の能力に変化がない場合、圧縮機10の起動及び停止の変更が無い場合である。また、表示灯50は、スケジュールタイマに応じて消灯する。
これにより、空気調和機1の消費電力がより低減される。
【0060】
以上説明したように、本第1実施形態に係る空気調和機1は、圧縮機10にCH40が付設され、CH40に通電することにより圧縮機が加熱可能とされている。そして、制御部41が、圧縮機10が停止されている期間であって圧縮機10が起動される前に、冷媒の温度と相関関係のあるパラメータである過熱度に基づいて、CH40を開始するタイミングを決定する。
従って、本第1実施形態に係る空気調和機1は、圧縮機10が停止されている期間において、CH40に通電することにより生じる待機電力をより低減できる。
【0061】
〔第2実施形態〕
以下、本発明の第2実施形態について説明する。
なお、本第2実施形態に係る空気調和機1の構成は、図1,2に示す第1実施形態に係る空気調和機1の構成と同様であるので説明を省略する。
【0062】
圧縮機10が停止されている期間であって圧縮機10が起動される前に、CH40を通電しても、外気温度の違いによって、圧縮機10の温度、すなわち冷媒の温度の上昇の度合いは異なってくる。
【0063】
そこで、本第2実施形態に係る運転低減モード制御部43は、圧縮機10が停止されている期間であって圧縮機10が起動される前に、過熱度及び外気温度に基づいて、CH40の通電を開始するタイミングを決定する。
すなわち、ヒータON時間は、(2)式のように表わされる。
ヒータON時間=f(過熱度、外気温度) ・・・(2)
【0064】
図5は、本第2実施形態に係る過熱度とヒータON時間との関係を示したグラフである。実線は、破線に比べて外気温度が低い場合を示している。このように、過熱度の値が同じでも、外気温度が低いほど、CH40の通電を開始するタイミングが早くされる。また、外気温度が高いほど、CH40の通電を開始するタイミングが遅くされる。
【0065】
従って、本第2実施形態に係る空気調和機1は、クランクケースヒータに通電するタイミングをより正確に決定できる。
【0066】
以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
【0067】
また、上記実施形態で説明したCH通電処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
【符号の説明】
【0068】
1 空気調和機
10 圧縮機
40 クランクケースヒータ
41 制御部
50 表示灯
図1
図2
図3
図4
図5