【実施例】
【0024】
(実施例)
上記電線保護部材の実施例について、
図1を用いて説明する。電線保護部材1は、電線が挿通される金属パイプ2と、金属パイプ2の外表面を覆う樹脂塗膜3とを有している。樹脂塗膜3は、ガラス転移点が40℃以上、及び、水蒸気透過係数が260g・mm/m
2・24hr以下のうち少なくとも一方を満たしており、厚さが30μm以上である。
【0025】
図には示さないが、本例の電線保護部材1は、内部に電線を挿通することにより、ワイヤーハーネスとして構成することができる。ワイヤーハーネスは、例えば電気自動車やハイブリッド自動車における、電力変換装置とバッテリーとの間、あるいは電力変換装置とモータとの間等を接続する用途に好適に用いることができる。
【0026】
本例の金属パイプ2は、アルミニウム合金からなる円筒状の直管である。なお、金属パイプ2は、ワイヤーハーネスの配索形態に応じて適宜屈曲されていてもよい。
【0027】
図1に示すように、金属パイプ2の外表面は、樹脂塗膜3により覆われている。また、樹脂塗膜3は、オレンジ色を呈している。これにより、電線保護部材1が車両に取り付けられた状態において、その内部に高圧電線が挿通されていることを視認することができる。本例の樹脂塗膜3は、例えば、紫外線硬化型の樹脂塗料を金属パイプの外表面に塗布した後、紫外線を照射して硬化させることにより形成することができる。なお、樹脂塗料としては、アクリル樹脂塗料、メタクリル樹脂塗料またはエポキシアクリル樹脂塗料などを用いることができる。
【0028】
本例の電線保護部材1は、ガラス転移点が40℃以上、及び、水蒸気透過係数が260g・mm/m
2・24hr以下のうち少なくとも一方を満たしており、厚さが30μm以上である樹脂塗膜3を有している。それ故、水分との接触による樹脂塗膜3と金属パイプ2との接着性の低下を抑制することができる。その結果、長期間に亘って樹脂塗膜3の割れや膨れ、金属パイプ2からの剥離の発生を抑制することができる。
【0029】
(実験例)
本例は、種々の樹脂塗料から構成された樹脂塗膜3と金属パイプ2との接着性を評価した例である。本例において用いた樹脂塗料は、以下の通りである。なお、いずれの樹脂塗料も、紫外線硬化型のアクリル樹脂塗料である。
【0030】
<樹脂塗料>
・樹脂塗料A:株式会社スリーボンド製 品番「TB3006D」
・樹脂塗料B:株式会社スリーボンド製 品番「TB3013Q」
・樹脂塗料C:株式会社スリーボンド製 品番「TB3017F」
【0031】
<樹脂塗膜の物性評価>
[ガラス転移点]
各樹脂塗料を平板に塗布した後、紫外線を照射して硬化させ、樹脂塗膜3を形成した。平板から剥離した樹脂塗膜3を測定片として、動的粘弾性測定を行った。そして、動的粘弾性測定により得られたtanδ−温度T曲線のピーク温度をガラス転移点とした。各樹脂塗膜3のガラス転移点は、表1〜表3に示したとおりであった。
【0032】
なお、動的粘弾性測定の詳細な測定条件は、以下の通りであった。
・測定周波数 1Hz
・測定温度 −40〜150℃
・昇温速度 3℃/分
・測定ひずみ 1%
【0033】
[水蒸気透過係数]
上記と同様の方法により形成した樹脂塗膜3を平板から剥離し、試料とした。この試料を用い、JIS Z0208に規定されるカップ法により、水蒸気透過度の測定を行った。そして、得られた水蒸気透過度に試料の厚みを乗じて水蒸気透過係数を算出した。各樹脂塗膜3の水蒸気透過係数は、表1〜表3に示したとおりであった。なお、測定温度は80℃とした。
【0034】
<金属パイプ2との接着性評価>
アルミニウム合金製の金属パイプ2の表面が表1〜表3に示す樹脂塗膜3により覆われた電線保護部材1(試験体1〜9)を作製した。この試験体を100℃の温水中に30時間浸漬し、樹脂塗膜3に水分を浸透させた。30時間後、温水から取り出した試験体を用いて碁盤目試験を行った。
【0035】
碁盤目試験は、具体的には以下の手順により行った。まず、カッターナイフを用いて試験体の樹脂塗膜3に格子状の切込みを入れ、正方形状を呈する樹脂塗膜3の小片を100個作製した。次に、格子状の切込みを入れた部分に粘着テープ(ニチバン株式会社製包装用セロハン粘着テープ No.405)を貼り付けた。そして、粘着テープを試験体から剥離したときに粘着テープに付着した小片の個数を数えた。その結果を表1〜表3に示した。なお、各小片の1辺の長さは1mmとした。
【0036】
【表1】
【0037】
【表2】
【0038】
【表3】
【0039】
表1〜表3に示すように、試験体1及び試験体4は、ガラス転移点が40℃以上、及び、水蒸気透過係数が260g・mm/m
2・24hr以下のうち少なくとも一方を満たしており、厚さが30μm以上である樹脂塗膜3を有していた。そのため、接着性評価において金属パイプ2から樹脂塗膜3の小片が剥離せず、優れた接着性を示した。
【0040】
一方、試験体2〜3及び5〜6は、樹脂塗膜3の厚さが30μm未満であったため、接着性評価において金属パイプ2から樹脂塗膜3の小片が剥離した。試験体1〜6の比較から、樹脂塗膜3の厚さが薄くなるほど接着性評価において金属パイプ2から剥離する小片の数が多くなり、水分の浸透によって接着性が低下したことが理解できる。
【0041】
試験体7〜9は、ガラス転移点が40℃以上、及び、水蒸気透過係数が260g・mm/m
2・24hr以下のいずれも満たしていない樹脂塗膜3を有していたため、いずれの膜厚においても接着性評価において金属パイプ2から樹脂塗膜3の小片が剥離した。
【0042】
以上の結果から、ガラス転移点及び水蒸気透過係数のうち少なくとも一方を上記特定の範囲とした上で、その厚さを上記特定の範囲とすることにより、樹脂塗膜3の内部への水分の浸透を抑制し、長期間に亘って樹脂塗膜3の割れや膨れ、金属パイプ2からの剥離の発生を抑制できることが十分に理解できる。
【0043】
なお、本発明は、上述した実施例及び実験例の態様に限定されることは無く、その趣旨を損なわない範囲で適宜構成を変更することができる。