(58)【調査した分野】(Int.Cl.,DB名)
被検体に超音波を送信し、被検体からの超音波を受信して受信信号を出力する複数の超音波素子を含む超音波探触子と、前記超音波探触子の出力する前記受信信号を処理する受信信号処理部とを有し、
前記受信信号処理部は、所定の撮像点についての複数の前記受信信号、または、前記受信信号を処理後の複数の信号を束ねる加算部と、前記加算部で加算する前記複数の信号間のコヒーレンス値を求め、前記コヒーレンス値に応じた重みによって前記加算部で加算される前の前記複数の信号、または、前記加算部で加算後の信号を重み付けする重み付け部を備え、
前記重み付け部は、前記コヒーレンス値を、前記被検体における所定の方向について非線形に重み付けし、前記非線形に重み付けされたコヒーレンス値を用いて、前記加算部で加算される前の前記複数の信号、または、前記加算部で加算後の信号を重み付けすることを特徴とする超音波撮像装置。
請求項1に記載の超音波撮像装置であって、前記加算部は、開口合成部であり、複数回の送信および受信によって、同一の前記撮像点について得られた、複数の整相加算後信号を加算することを特徴とする超音波撮像装置。
請求項1に記載の超音波撮像装置であって、前記加算部は、遅延加算部であり、複数の前記超音波素子の出力する前記受信信号を、前記所定の撮像点について焦点を結ぶように遅延させた後、加算することを特徴とする超音波撮像装置。
請求項3に記載の超音波撮像装置であって、前記非線形な重み付けは、前記複数回の送信において送信される超音波の重なり度の分布に基づいて定められていることを特徴とする超音波撮像装置。
請求項1に記載の超音波撮像装置であって、前記重み付け部は、前記非線形に重み付けされたコヒーレンス値を用いて、適応重みを求め、前記適応重みによって、前記加算部で加算される前の前記複数の信号、または、前記加算部で加算後の信号を重み付けすることを特徴とする超音波撮像装置。
請求項5に記載の超音波撮像装置であって、前記重み付け部は、前記コヒーレンス値を、深さ方向に非線形なパラメータによってべき乗した値を、前記非線形に重み付けされたコヒーレンス値として用いることを特徴とする超音波撮像装置。
請求項1に記載の超音波撮像装置であって、前記重み付け部は、前記加算部で加算する前記複数の信号を平滑化する平滑化処理部を備え、前記平滑化処理部が平滑化した後の前記複数の信号と、前記非線形に重み付けされた前記コヒーレンス値とを用いて、前記加算部で加算される前の前記複数の信号、または、前記加算部で加算後の信号を重み付けする前記重みを求めることを特徴とする超音波撮像装置。
請求項2に記載の超音波撮像装置であって、前記重み付け部は、送信する超音波ビームの形状と、送信開口合成時の前記超音波ビーム同士の重なりに基づいて、前記整相加算後信号の前記加算部における加算数を算出し、前記加算数の分布を求める分布演算部と、前記加算数の分布を前記所定の方向に非線形に重み付けすることにより、パラメータ分布に変換するパラメータ変換部とを有し、前記パラメータ分布に基づき、前記加算部で加算される前の前記複数の信号、または、前記加算部で加算後の信号を重み付けする前記重みを算出することを特徴とする超音波撮像装置。
請求項9に記載の超音波撮像装置であって、前記重み付け部は、送信する超音波ビームの形状から前記超音波ビーム形状の外側の信号を排除するマスクを生成するマスク演算部をさらに有し、
前記受信信号処理部は、前記マスクによって選択された前記超音波ビーム形状の内側の信号を前記加算部によって加算することを特徴とする超音波撮像装置。
請求項9に記載の超音波撮像装置であって、前記重み付け部は、前記超音波ビーム形状の内側領域を複数の段階に重み付けし、前記超音波ビームの内側の前記重み付けを加味して、前記整相加算後信号の前記加算部における加算数を算出することを特徴とする超音波撮像装置。
請求項11に記載の超音波撮像装置であって、前記受信信号処理部は、前記超音波ビームの形状の内側領域の前記複数段階に重み付けされた重みを用いて、前記加算部が加算する信号を重み付けした後、前記非線形に重み付けされた前記コヒーレンス値を用いてさらに重み付けすることを特徴とする超音波撮像装置。
請求項9に記載の超音波撮像装置であって、前記パラメータ変換部は、前記加算数の分布を前記所定の方向に非線形に重み付けするために、加算数の大小に応じて非線形に変化する重み関数を用い、前記重み関数を前記加算数の分布を示す関数に掛けあわせる演算を行うことを特徴とする超音波撮像装置。
【発明を実施するための形態】
【0018】
本発明の一実施形態の超音波撮像装置について説明する。
【0019】
実施形態の超音波撮像装置について、
図1および
図2を用いて説明する。
図1は、超音波撮像装置の全体構成を示すブロック図であり、
図2は、信号のコヒーレンス値に応じて重み付けをする概念を示す説明図である。
【0020】
図1に示すように、本実施形態の超音波撮像装置は、超音波探触子106と、受信信号処理部108と、送信ビームフォーマ104とを備えている。超音波探触子106は、複数の超音波素子が配列された超音波素子アレイ101を含む。超音波素子は、送信ビームフォーマ104から信号を受け取って被検体100に超音波を送信し、被検体100からの超音波を受信して受信信号を出力する。受信信号処理部108は、超音波探触子106の出力する受信信号を処理する。
【0021】
受信信号処理部108は、所定の撮像点についての複数の受信信号を束ねる加算部204bを内部に有する遅延加算部204、または、受信信号を処理後の複数の信号を束ねる加算部205cを内部に有するRF信号処理部205と、重み付け部10とを備えている。重み付け部10は、
図2のように、加算部(204bまたは205c)で加算する複数の信号間のコヒーレンス値を求め、求めたコヒーレンス値に応じた重み(w1〜wk、または、Ψ)によって加算部(204または205)で加算される前の複数の信号、または、加算部(204または205)で加算後の信号を重み付けする。コヒーレンス値に応じて信号を重み付けすることにより、位相がそろった複数の信号の重みを大きく、位相がそろっていない複数の信号の重みを小さくすることができるため、ノイズ等の位相がそろっていない信号を抑制し、本来の被検体の撮像点からの受信信号で加算後の信号を生成することができ、クラッタ低減効果が得られる。
【0022】
このとき、重み付け部10は、コヒーレンス値を、被検体における所定の方向(例えば深さ方向)について非線形に重み付けする。そして、非線形に重み付けされたコヒーレンス値を用いて、重み(w1〜wk、または、Ψ)を求める。これにより、加算部(204または205)で加算される信号の数が、撮像点の位置によって非線形に異なる場合であっても、その影響を考慮して重み付けを行うことができる。よって、信号の束ね数が、超音波撮像画像中で大きく分布を持つような撮像条件においても、クラッタ低減効果を画像全体に均質に得ることができる。
【0023】
また、
図1の超音波撮像装置は、上記構成の他に、送信信号と受信信号とを分離する送受信分離回路(T/R)107と、受信信号をアナログ信号からデジタル信号に変換するADコンバータ112と、受信信号処理部108の出力する信号を用いて画像データを生成する画像処理部109と、操作者から撮像条件の入力等を受け付けるコンソール110と、全体の動作を制御する制御部111と、画像表示部103とをさらに備えて構成される。
【0024】
受信信号処理部108は、遅延加算部204とRF信号処理部205とを含む。遅延加算部204は、
図3のように遅延部204aと加算部204bとを有する。遅延加算部204の遅延部204aは、制御部111が送信ごとに設定した、複数の受信走査線の複数の受信焦点(撮像点)について、超音波探触子101の複数の超音波素子の受信信号それぞれについて遅延させる。加算部204bは、遅延後の受信信号を加算する。これにより、遅延加算部204は、受信走査線に沿った整相加算後信号(低解像度画像(LRI))、すなわち素子(チャンネル)束ね後の低解像度RF信号を生成する。また、遅延加算部204は、RF信号メモリ206を内蔵しており、受信したチャンネルRF信号および生成した生成した低解像度RF信号を送信ごとに内蔵することができる。
【0025】
生成された低解像度RF信号はRF信号処理部205に転送される。RF信号処理部205内にもフレームメモリ207が具備され、生成された低解像度RF信号はフレームメモリ207に内蔵してもよい。すなわち生成された低解像度RF信号が一時的に格納されるメモリの場所は遅延加算部204内のRF信号メモリ206でも、RF信号処理部205内のフレームメモリ207のどちらであってもよいが、その後のメモリからの低解像度RF信号の読み出し処理と演算処理の便宜を考えると、より好ましいのは、低解像度RF信号が生成された直後にRF信号処理部205内のメモリ207に転送され格納される形態である。
【0026】
RF信号処理部205は、
図3のように、マスキング部205aと、開口合成重み付け部205bと、加算部205cとを含む。マスキング部205aは、低解像度RFデータのどの部分を加算(束ね処理)に寄与させるかを決定するため、RF信号メモリ206もしくはフレームメモリ207に送信ごとに複数の走査線について格納された低解像度RF信号を読み出し、送信ごとに設定したマスクによってマスキング処理する。開口合成重み付け部205bは、送信ごとの低解像度RF信号を所定の重みで重み付けする。これにより、RFデータをどれくらいの重みで加算に寄与させるかを決定する。マスキング、重み付けされた低解像度RFデータはフレームメモリ207に一時的に保存される。順次異なる送信の低解像度RFデータがメモリから読みだされ、それぞれマスキング、重み付け処理が行われる。加算部205cは、重み付け後の低解像度RF信号を異なる送信のそれぞれ同一の受信焦点のデータ同士を加算することにより、開口合成を行い、高解像度RFデータを生成する。
【0027】
なお、加算部205cにおける開口合成処理は、複数の送信それぞれの低解像度RFデータにおいてマスキング、重み付けが行われた直後に行われてもよいし、加算に寄与するマスキング・重み付け後の低解像度RFデータをすべてメモリに蓄えたのちに、一度に加算処理を行う形であってもよい。前者であれば、メモリの量を最低限に抑えることができるという利点があり、後者であれば、複数フレームにわたる開口合成処理が可能になるなど処理の自由度が高くなるという利点があり、目的に応じていずれかの方式を選択することができる。
【0028】
重み付け部10は、遅延加算部204が加算する前の複数の受信信号を
図2のように重み(w1〜wk)で重み付けした後、遅延加算部204で加算させてもよいし、遅延加算部204が加算後の低解像度RF信号を重み(Ψ)で重み付けしてもよい。また、重み付け部10は、RF信号処理部205が加算する前の複数の低解像度RF信号を
図2のように重み(w1〜wk)で重み付けした後、RF信号処理部205で加算させてもよいし、RF信号処理部205が加算後の高解像度RF信号を重み(Ψ)で重み付けしてもよい。また、これらの重みづけ処理はいかなる複数の組み合わせで行われてもよい。
【0029】
以下、重み付け部10の構成について詳しく説明する。
(第1の実施形態)
第1の実施形態では、重み付け部10が、RF信号処理部205が開口合成した後のRF信号を、適応重み(Ψ)によって重み付けする構成について説明する。本実施形態では、重み付け部10が、受信焦点ごとに開口合成される信号の数が、受信焦点の位置の違いによってダイナミックに異なる空間的な分布を形成することを考慮して適応重み(Ψ)を生成する。
【0030】
まず、重み付け部10の構成を
図1、
図3を用いて説明する。重み付け部10は、適応重みを求める適応処理エンジン11と、マスク/重み演算部12と、統計指標パラメータ変換部13と、積算重み空間分布演算部14とを備えている。適応処理エンジン11は、RF信号処理部205が束ねる低解像度RF信号間のコヒーレンス(位相一致度・信号類似度・相関度合)を用いて適応的に重みを算出する。積算重み空間分布演算部14は、受信焦点ごとに束ねられる低解像度RF信号の数を演算し、受信焦点の超音波画像における位置による束ねられる低解像度RF信号の数の空間分布を求める。統計指標パラメータ変換部13は、積算重み空間分布演算部14が求めた、束ねられる低解像度RF信号の数の空間分布に基づいて、適応処理エンジン11での演算に用いられる統計指標のパラメータ(コヒーレンス値)を非線形もしくは線形に変換する。
【0031】
重み付け部10の各部の動作を、
図4のフローを用いて説明する。
【0032】
まず,装置の操作者(術者・検者)がコンソール110に撮像条件を入力すると、その撮像条件に従って,制御部111がプローブ条件・超音波照射条件・開口合成条件、の情報を示す制御信号を出力する(S401)。
【0033】
マスク/重み演算部12は、上記制御信号に基づいて、送信される超音波ビームの形状を算出し、超音波ビームの形状に基づいてマスクを
図5(a)のように設定する。
図5(a)は、集束送信の超音波ビームを示しており、送信焦点付近で超音波ビームの幅が狭く、超音波探触子に近い浅い領域および深い領域では、超音波ビームの幅が広くなっている。
図5(a)において、白の領域は、重みゼロすなわちRF信号処理部205で信号を開口合成しない領域を示し、黒の領域は、重み1でRF信号処理部205がRF信号を開口合成する領域を示す。また、グレーの領域は、重み0〜1(0よりも大きく、1よりも小さい値)が設定され、RF信号に設定された重みを掛けて、開口合成する領域を示す。マスク/重み演算部12は、例えば、算出した超音波ビームの外形の外側に重みゼロ(白)を設定し、超音波ビームの輪郭から内側に向かって離れるにつれ徐々に重みが1に近づくように、予め定めた形状で重み0〜1のグレーの領域を予め定めた複数段階で設定し、その内側に重み1の黒の領域を設定する(S402)。
【0034】
マスク/重み演算部12は、ステップS402で生成した
図5(a)の重みゼロ(白)の領域をマスクとして、RF信号処理部205のマスキング部205aに設定するとともに、重みゼロ以外の領域(グレートと黒)とその重み値を、RF信号処理部205の開口合成重み付け部205bに設定する(S403)。
【0035】
また、マスク/重み演算部12は、ステップ402で生成した
図5(a)のマスクと重みを、積算重み空間分布演算部14に受け渡す。積算重み空間分布演算部14は、受け取った
図5(a)のマスクと重みと、制御部111の出力する開口合成条件(
図6(a)、(b))とを受け取る。そして、積算重み空間分布演算部14は、開口合成条件に基づいて、超音波ビーム(受信信号)51を開口合成した場合の、超音波ビーム(受信信号)51の加算数(n)の分布を示すマップ(以下、加算マップと呼ぶ)を
図5(b)のように生成する(S404)。加算の際に、
図5(a)の黒の領域は、重み1で信号を加算し、グレーの領域は、それぞれの領域の重み値(0〜1)を掛けて信号を加算したものとする。生成された
図5(b)の加算マップにおいて、白は、加算される信号数(n)がゼロであることを示し、黒に近づくほど加算される信号数(n)が大きいことを示す。
図5(b)の加算マップから明らかなように、送信焦点近傍では、超音波ビーム(受信信号)51の重なりがほとんどないか小さいため、加算数(n)の値が小さく(白に近く)、深さ(d)が最も浅い領域と最も深い領域の加算数(n)の値が大きく(黒)、その間の領域は、送信焦点からの距離が大きくなるほど加算数(n)が徐々に大きくなっていることがわかる。積算重み空間分布演算部14は、生成した加算マップ(
図5(b))を統計指標パラメータ変換部13に受け渡す。
【0036】
統計指標パラメータ変換部13は、加算マップ(
図5(b))の加算数(n)の分布に、深さ(d)方向について非線形な変換関数を掛けて、加算数が深さ方向に非線形に分布した適応処理パラメータ分布(
図5(c))を生成する(S405)。これを
図7(a)〜(c)を用いて具体的に説明する。
図7(a)は、
図5(b)の加算マップを深さ方向に1ライン抜き出したグラフである。このグラフは、横軸が深さ(d)、縦軸が加算数(n)を表すので、関数n(d)で表される。統計指標パラメータ変換部13は、この深さ方向の加算数の変化の関数n(d)に、
図7(c)のように、加算数(n)の値に応じて非線形に値が変化する変換関数p(n)を適用することにより、深さ(d)方向について値が非線形に変化する適応処理パラメータp(d)(
図7(b))を生成する。変換関数p(n)としては、例えば、所定の加算数(n)まではパラメータ(p)がゼロ、それ以上の加算数(n)で、パラメータ(p)が1などの定数になるステップ関数(
図7(c)の破線)や、加算数(n)の大きい範囲と小さい範囲でパラメータ(p)の値が徐々に一定値に漸近するsigmoid関数(
図7(c)の実線)や、raised cosine関数を変換関数p(n)として用いることができる。変換関数p(n)を加算マップ(
図5(b))全体について適用することにより、深さ方向に非線形に値が変化する適応処理パラメータマップ(p)(
図5(c))を生成する(S405)。
【0037】
統計指標パラメータ変換部13は、生成した適応処理パラメータマップ(p)(
図5(c))を適応処理エンジン11に出力して設定する(ステップ406)。
【0038】
次に、超音波探触子106において超音波の送受が行われる(S407)。一回の送信で複数の超音波素子105によってそれぞれ受信信号が取得され、受信信号は、ADコンバータ112でデジタル信号に変換される(S408)。変換されたデジタル信号は、RF信号メモリ206にチャンネルRFデータとして格納される。遅延加算部204の遅延部204aは、RF信号メモリ206からチャンネルRFデータを逐次読み出し、制御部111が設定した複数の受信走査線上の受信焦点ごとに焦点を結ぶように、超音波素子105ごとの受信信号を遅延させ、加算部204bは、遅延後の複数の受信信号を加算し、低解像度RF信号を生成する(S409)。遅延加算後の低解像度RF信号は、RF信号メモリ206に格納される。制御部111は、送信開口合成すべき送信回数分のRF信号がRF信号メモリ206に格納されたならば、送信ごとに得た低解像度RF信号メモリ206内のRF信号をRF信号処理部205に転送する(S410)。もしくは遅延加算後の低解像度RF信号は即座にRF信号処理部に転送され、フレームメモリ207に格納される(S410)。これが複数の送信について繰り返される。前述のように、RF信号処理部で逐次メモリから低解像度RFデータを読み出して演算処理をするという便宜上、低解像度RF信号はフレームメモリ207に格納される形態がより好ましいが、装置構成の制約上RF信号メモリ206に格納される形態であってもよい。
【0039】
RF信号処理部205のマスキング部205aは、遅延加算部204から転送された送信ごとの低解像度RF信号に、ステップS403で設定されたマスク(
図5(a)の白領域)を掛け、さらに、開口合成重み付け部205bは、ステップS403で設定された重み値(
図5(a)のグレーおよび黒領域の値)をRF信号に掛け、重み付けする(S411)。
【0040】
ステップS411によりマスキングおよび重み付け後のRF信号は、加算部205cに受け渡される(S412)。加算部205cは、異なる送信で得られた、重み付け後のRF信号であって、同一の受信焦点についての信号を加算する(S413)。これにより、複数送信間の開口合成が行われ、高解像度RF信号が生成される。生成された高解像度RF信号は、フレームメモリ207に一時的に格納される。
【0041】
一方、ステップS411によりマスキングおよび重み付け後のRF信号は、適応処理エンジン11にも受け渡される(S414)。
【0042】
適応処理エンジン11は、送信ごとのマスキングおよび重み付け後のRF信号(s)を用いて、RF信号の送信間のコヒーレンス値を受信焦点ごとに求め、このコヒーレンス値を、受信焦点の深さに応じて非線形に重み付けする。具体的には、求めたコヒーレンス値をステップ406で設定された適応処理パラメータマップ(p)内の対応する受信焦点のパラメータ値によって重み付けしたものを、受信焦点ごとの最適な適応重みΨとする(S415)。具体的には、ある受信焦点についての適応重みΨは、下式(1)により算出される。
【数1】
ただし、式(1)において、s
iは、i番目の送信で得て、マスキングおよび重み付けした後のRF信号を表す。pは、適応処理パラメータマップ(p)内のある受信焦点のパラメータ値である。なお、この演算は、撮像深さdもしくは、深さ方向のサンプル点jもしくは受信時刻tに対してそれぞれ行われるものであり、Ψやs
iは、それぞれ深さdやサンプル点jの関数であり、撮像深度ごとにΨ(d)、Ψ(j)、Ψ(t)のように演算が行われ、その演算に対する入力は同様にその深度ごとに、s
i(d)、s
i(j)、s
i(t)などとなっている。
【0043】
RF信号処理部205は、
図3のように、乗算部205dを含み、ステップS413で算出した、所定の受信焦点についての開口合成後の高解像度RF信号に、ステップS415で求めた同一の受信焦点についての適応重みΨを乗算し、重み付けする(S416)。また、RF信号処理部205は、
図1のようにフレームメモリ207を内蔵しており、適応重みΨで重み付け後の高解像度RF信号はフレームメモリ207に格納される。上記ステップS407〜416を1フレーム分の高解像度RF信号がフレームメモリ207に格納されるまで繰り返す。1フレーム分のRF信号がフレームメモリ207に格納されたならば、画像処理部109にRF信号を転送する(S417)。なお、画像処理部109への転送は、1フレームごとではなく、システムの都合上、適応重みΨで重み付け後に逐次画像処理部に転送されてもよいし、数フレームまとめて転送されてもよい。
【0044】
画像処理部109は、バックエンドの画像処理を行い、超音波画像(例えばB−モード画像)を生成して画像表示部103に出力し、表示させる。また、画像処理部109では、フレームメモリ207から送られてきたフレームデータを用いて,非線形撮像画像,造影コントラスト画像,連続波ドプラ画像,パルスドプラ画像,カラーフロー画像、エラストグラフィなどの弾性波画像など様々な超音波画像の生成やアプリケーションの実行を行うことができる。
【0045】
これにより、開口合成時のRF信号の加算数(n)が、超音波画像中で大きく分布を持つような撮像条件(例えば集束送信ビーム)であっても、適応ビームフォーミングによるクラッタ低減効果を画像全体に均質に得ることができ、ノイズを低減した高解像度の超音波画像を生成することができる。
【0046】
なお、第1の実施形態では、
図4のフローのステップS411において、RF信号処理部205の開口合成重み付け部205bが、マスク/重み演算部12が設定した
図5(b)の固定重みによって重み付けしたRF信号を用いて、ステップS414、415で適応処理エンジン11が適応重みΨを算出している。このように、固定重みで重み付けしたRF信号を用いて、適応処理エンジン11が適応重みを算出することにより、固定重みによりある程度不要成分が除去されたRF信号を用いて適応重みを算出することができる。よって、アーチファクトやクラッタの低減能力が向上するという効果が得られる。
【0047】
なお、第1の実施形態において、ステップS411で固定重みでRF信号を重み付けするステップを省略することも可能である。この場合、適応処理エンジン11は、RF信号そのまま、もしくは、マスキングのみ施されたRF信号を用いて適応重みΨを算出する。なお、結果として、重み付けの関数が線形関数になってもよい。非線形の演算はその特別な例として線形演算を内包するからである。すなわち、本発明の処理の結果として、重み付けの関数が線形関数もしくは定数になっていたとしても、本発明の実施形態に含まれる。
【0048】
なお、
図5(c)の適応処理パラメータマップは、
図7(a)〜(c)のように深さ方向(d)に非線形重み付けすることにより生成したが、必ずしも深さ方向(d)に非線形に重み付けする必要はなく、他の任意の方向に非線形に重み付けして生成することも可能である。
【0049】
(第2の実施形態)
第1の実施形態では、RF信号処理部205が開口合成した後のRF信号を、適応重み(Ψ)によって重み付けする構成であったが、第2の実施形態では、RF信号処理部205が開口合成する前のRF信号を、適応重み(w1〜wk)によってそれぞれ重み付けする。本実施形態では、重み付け部10が、受信焦点ごとに開口合成される信号の数が、受信焦点によって分布することを考慮して適応重み(w1〜wk)生成する。
【0050】
第2の実施形態の重み付け部10の構成を
図8に、その動作を
図9のフローに示す。
図8のように、第2の実施形態の重み付け部10の構成は、
図3と同様であるが、適応処理エンジン11が、RF信号ごとに適応重み(w1〜wk)を求める点が第1の実施形態とは異なっている。また、開口合成重み部205bが、RF信号ごとに適応重み(w1〜wk)を演算する乗算部205eを
図2のように備えている点においても第1の実施形態とは異なっている。
【0051】
図9のように、ステップS401〜S412、および、S414は、第1の実施形態と同様に行う。適応処理エンジン11は、ステップS414で受け取った送信ごとのRF信号を用いて、適応重み(w1〜wk)を以下のように求める(S815)。
【0052】
適応処理エンジン11への入力は、k回の送信で得たRF信号s1〜skである。適応処理エンジンは、共分散行列R(t)を以下の式(2)を用いて作成する。なおtは受信時刻であるが、tの代わりに、撮像深度dもしくはサンプル点jの関数であってもよい。なお、式(2)において*は、共役複素数を表す。ただし、式(2)において、s
iは、i番目の送信で得て、マスキングおよび重み付けした後のRF信号を表す。また、E[ ]は期待値を表す。
【0054】
共分散行列を用いて、たとえばMVDR法による適応重みベクトルw(t)は、以下の式(3)から計算できる。pは、ステップS406で設定された適応処理パラメータマップ(p)の値である。通常の適応重みベクトルw(t)には指数p=1の場合に対応する。この処理により重みw(t)に信号の加算数に応じた非線形な重み付けを付与することができる。
【0056】
また、数値不安定性を排除するために相関行列(共分散行列R(t))に加える対角行列の大きさを式(4)のように変化させる。pは、ステップS406で設定された適応処理パラメータマップ(p)の値である。式(4)の右辺第2項は、適応処理に数値安定性を付加するための対角行列Iである。第2項の大きさは、行列のサイズにも依存する。すなわち、加算数Kの違いによってIにかかる係数を変化させる必要がある。よって式(4)のようにパラメータマップ(p)の値によって決定される関数α(p)を対角行列Iに乗算することによって、処理結果のばらつきを抑制することができる。α(p)のもっとも簡単な例としては、任意の定数βを乗算したα=βpの形があげられる。
【数4】
【0057】
式(3)において、aはステアリングベクトルであり,入力されるベクトル(s)の方向に対する傾きであり,各送信番号n(=1、2・・・N)の位相関係から,式(5)のように表される。
【0059】
式(5)において、θは,位相周りが各送信番号間でゼロである場合をθ=0としたときの位相シフト量を表し,fは超音波の周波数である。一般的にθ=0として考えると,a= [1, 1, …, 1]と全ての要素が1のベクトルで表現することができ,このベクトルをステアリングベクトル方向とする。
【0060】
適応処理エンジン11においては、以上のプロセスから,送信番号1〜kに対応する適応重みベクトルw(t) = [w1,w2 … wk]を算出することができる(S815)。算出された適応重み(w1〜wk)は、開口合成重み付け部205bに受け渡される。
【0061】
開口合成重み付け部205bは、RF信号ごとに重み付けを行うための乗算部205eを内蔵しており、k個のRF信号に適応重み(w1〜wk)をそれぞれ乗算し、重み付けする。重み付け後のk個のRF信号は、加算部205cによって加算される(S816)。ステップS417は、第1の実施形態と同様に行う。
【0062】
これにより、開口合成時のRF信号の加算数(n)が、超音波画像中で大きく分布を持つような撮像条件(例えば集束送信ビーム)であっても、適応ビームフォーミングによるクラッタ低減効果を画像全体に均質に得ることができ、ノイズを低減した高解像度の超音波画像を生成することができる。
【0063】
なお、適応重みの演算方法は、MVDR法に限られるものではなく、APES法,MUSIC法,ESMV法など各種重み生成プロセスを用いてw(t)を算出しても構わない。
【0064】
また、下式(6)〜(8)のようなサブアレイ平均を行う共分散行列を用いてもよい。サブアレイ数Lや時間方向の平均窓幅S大きさも指標となる。式(6)に示すようなK個の信号s
i(t)において、サブアレイ行列は式(7)、式(8)のようにあらわされる。ここで、Lはサブアレイの大きさである。また、Nは時間方向の平均数であり、ある点tを基準に±Sの時間幅の行列の平均をとる。サブアレイ平均や時間平均を行うことで信号の平滑化を行うことができ、よりロバストな出力を得ることができる。このとき、信号の平滑化の度合いも適応処理パラメータマップ(p)を用いて、式(10)、式(11)のように、関数ε(p)やγ(p)として演算することで、頑健性の高い、重み演算が可能となる。
【数6】
【数7】
【数8】
【数9】
【数10】
【数11】
【0065】
なお、第2の実施形態では、
図9のフローのステップS411において、RF信号処理部205の開口合成重み付け部205bが、マスク/重み演算部12が設定した
図5(b)の固定重みによって重み付けしたRF信号を用いて、ステップS414、815で適応処理エンジン11が適応重みw1〜wkを算出している。このように、固定重みで重み付けしたRF信号を用いて、適応処理エンジン11が適応重みを算出することにより、固定重みによりある程度不要成分が除去されたRF信号を用いて適応重みを算出することができる。よって、アーチファクトやクラッタの低減能力が向上するという効果が得られる。なお、第2の実施形態において、ステップS411で固定重みでRF信号を重み付けするステップを省略することも可能である。この場合、適応処理エンジン11は、RF信号そのまま、もしくは、マスキングのみ施されたRF信号を用いて適応重みw1〜wkを算出する。
【0066】
(第3の実施形態)
第3の実施形態では、重み付け部10が、遅延加算部204が加算した後のRF信号を、適応重み(Ψ)によって重み付けする構成について説明する。本実施形態では、重み付け部10が、遅延加算される信号の数が、受信焦点の位置によって分布することを考慮して適応重み(Ψ)を生成する。
【0067】
図10に示すように、第3の実施形態では、遅延加算部205の遅延部204aと加算部204bの間に、第1の実施形態のマスキング部205aおよび開口合成重み付け部205bと同様の、マスキング部204cと、遅延加算重み付け部204dとを配置する。また、加算部204bの後段に乗算部204eを配置する。
【0068】
マスク/重み演算部12は、マスキング部204c用のマスクおよび遅延加算重み付け部204dの重みとして、たとえば、深さが浅いところは回折の影響を考えて少ない素子数を加算し、深くなるにつれ、素子数を増やしてゆくようなマスクや、口径方向にハニング関数、raised cosine関数であらわされるような重みなどを生成する。これにより、遅延部204aが受信走査線の受信焦点に焦点を結ばせるように遅延させた複数の受信信号を、マスキング部204cがマスキングし、遅延加算重み付け部204dは、それぞれ重み付けする。
【0069】
積分重み空間分布演算部14は、マスク/重み演算部12が生成したマスクおよび重みにより第1の実施形態と同様に、加算数(n)の分布を示すマップ(加算数マップ)を生成する。統計指標パラメータ変換部13は、加算数マップから第1の実施形態と同様に、適応処理パラメータマップを生成する。
【0070】
適応処理エンジン11は、遅延加算重み付け部205bが重み付けした後の複数の受信信号を受け取って、例えば式(1)により、そのコヒーレント値を算出し、適応処理パラメータマップのpにより非線形に重み付けし、適応重みΨを求める。
【0071】
遅延加算部204の加算部204bは、遅延加算204dが重み付けした後の複数の受信信号を加算し、RF信号を得る。遅延加算部204の乗算部204eは、加算部204bが加算して得たRF信号に、適応処理エンジン11が求めた適応重みΨを乗算し、重み付けする。
【0072】
適応重みΨは、加算数マップで重み付けされているため、重み付け後のRF信号をRF信号処理部205で開口合成することにより、遅延加算時の受信信号の加算数(n)が、超音波画像中で大きく分布を持つような撮像条件(例えば焦点が浅い、口径が大きい、2Dアレイやフェーズドアレイプローブのようなステアリング確度の大きい場合)であっても、適応ビームフォーミングによるクラッタ低減効果を画像全体に均質に得ることができ、ノイズを低減した高解像度の超音波画像を生成することができる。
【0073】
(第4の実施形態)
第4の実施形態では、重み付け部10が、遅延加算部204が加算する前の受信信号を、適応重み(w1〜wk)によって重み付けする構成について説明する。本実施形態では、重み付け部10が、遅延加算される信号の数が、受信焦点の位置によって分布することを考慮して適応重み(w1〜wk)を生成する。
【0074】
図11に示すように、第4の実施形態では、遅延加算部205の遅延部204aと加算部204bの間に、第3の実施形態と同様の、マスキング部204cと、遅延加算重み付け部204dとを配置する。また、遅延加算重み付け部204dは、
図2のような乗算部205eを内蔵している。
【0075】
マスク/重み演算部12は、第3の実施形態と同様に、マスキング部204c用のマスクおよび遅延加算重み付け部204dの重みを生成する。遅延部204aは受信走査線の受信焦点に焦点を結ばせるように遅延させた複数の受信信号を、マスキング部204cがマスキングし、遅延加算重み付け部204dは、それぞれ重み付けする。
【0076】
積分重み空間分布演算部14は、第3の実施形態と同様に、加算数(n)の分布を示すマップ(加算数マップ)を生成する。統計指標パラメータ変換部13は、第3の実施形態と同様に、適応処理パラメータマップを生成する。
【0077】
適応処理エンジン11は、遅延加算重み付け部205bが重み付けした後の複数の受信信号を受け取って、第2の実施形態の式(2)〜(5)により、適応処理パラメータマップのpにより非線形に重み付けした、適応重み(w1〜wk)を求める。
【0078】
遅延加算部204の遅延加算重み付け部204dは、マスキング部204cが重み付けした後のk個の受信信号を適応重み(w1〜wk)でそれぞれ重み付けする。加算部204bは、重み付け後の受信信号を加算をし、RF信号を得る。
【0079】
適応重み(w1〜wk)は、加算数マップpで重み付けされているため、重み付け後のRF信号をRF信号処理部205で開口合成することにより、遅延加算時の受信信号の加算数(n)が、超音波画像中で大きく分布を持つような撮像条件(例えば、焦点が浅い、口径が大きい、2Dアレイやフェーズドアレイプローブのようなステアリング確度の大きい場合)であっても、適応ビームフォーミングによるクラッタ低減効果を画像全体に均質に得ることができ、ノイズを低減した高解像度の超音波画像を生成することができる。
【0080】
(第5の実施形態)
第5の実施形態は、
図12のように、第1の実施形態の
図3の構成と同様であるが、適応処理エンジン121に入力する複数の信号を平滑化するための平滑化フィルタ121と、適応処理エンジン121が出力する適応重みΨを平滑化する平滑化フィルタ122とを適応処理エンジン121とRF信号処理部205との間に配置している点が第1の実施形態とは異なっている。
【0081】
適応処理エンジン11が行う適応処理は、信号のサンプル点毎にその値が決定されるが、実際の信号のコヒーレンスは、もっと大きな時間スケールで起こっている。具体的には、超音波の波長程度(信号のサンプル点の間隔(サンプリング周期)の10倍程度)の時間スケールでコヒーレンスの変動が起きている。そのため、平滑化フィルタ121,122を配置することにより、コヒーレンスをより精度よく検出することが可能になるため、さらに画質の向上を図ることができる。
【0082】
なお、
図12では、第1の実施形態の構成に平滑化フィルタ121,122を配置したが、第1の実施形態に限られるものではなく、第2〜第4の実施形態の構成においても、同様に適応処理エンジン11の入力信号と出力信号に平滑化フィルタ121,122を配置することが可能である。平滑化のアルゴリズムとしては、移動平均など単純なものを用いてもよいし、間引き後のローパスフィルタもしくはFIRサンプル補間、スプライン補間などを用いてもよい。
【0083】
(第6の実施形態)
図13は、第6の実施形態として、第1〜第5の実施形態の超音波撮像装置の受信信号処理部108をIC(集積回路)で構成したハードウエア構成の一例を示している。受信信号処理部108の遅延加算部204は、複数の遅延加算用ICで構成されている。複数の遅延加算用ICは、相互に接続され、複数の超音波素子の出力する受信信号をいずれかの遅延加算用ICで処理する。また、RF信号処理部205は、一つの受信信号処理用ICによって構成されている。
【0084】
これら遅延加算用ICおよびRF信号処理用ICは、FPGA(field-programmable gate array)やASIC(application specific integrated circuit)などにより構成することができる。
【0085】
また、
図13の構成の例では、画像処理部109は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)と、メモリと、記憶部により構成され、メモリに格納されたプログラムをCPUやGPUが実行することにより、画像処理部109の動作を実現するように構成されている。
【0086】
(第7の実施形態)
図14は、第7の実施形態として、第1〜第5の実施形態の超音波撮像装置の送信ビームフォーマ104と、受信信号処理部108を、CPUもしくはGPU、もしくはCPUとGPUの組合せ151と、メモリ152と、記憶部153により構成した例である。メモリ152に格納されたプログラムをCPUやGPU151が実行することにより、送信ビームフォーマ104の動作と、受信信号処理部108の遅延加算部204およびRF信号処理部205の動作をそれぞれソフトウエアで実現するように構成されている。
【0087】
(実施例)
図15(a)に、実施例として、第1の実施形態の超音波撮像装置によって、送受信して得た画像1601を示す。
図15(b)は、比較例の(送信間での重みづけΨを施さない場合の)超音波装置で送受信して得た画像1602である。
【0088】
比較例の画像1602は、真の像1603の横にクラッタ1604が存在しているが、実施例の画像1601は、クラッタ1604が抑制され、真の像1603のみが表示されていることが確認できる。