(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0061】
(実施の形態)
本発明の実施の形態について、
図1〜
図5を用いて説明する。
【0062】
図1に発光装置の回路図の一例を示す。
図1において、発光装置は、画素部103、画
素部103の周辺に配置されたソース信号線駆動回路101及びゲート信号線駆動回路1
02を有している。なお、
図1において発光装置はソース信号線駆動回路101と、ゲー
ト信号線駆動回路102とをそれぞれ1つずつ有しているが、本発明はこれに限定されな
い。画素100の構成に応じて、ソース信号線駆動回路101とゲート信号線駆動回路1
02の数は任意に定めることができる。
【0063】
またソース信号線駆動回路101は、シフトレジスタ101a、バッファ101b、サ
ンプリング回路101cを有している。しかしながら本発明はこれに限定されず、保持回
路などを有していてもよい。
【0064】
シフトレジスタ101aにはクロック信号(CLK)及びスタートパルス(SP)
が入力される。シフトレジスタ101aは、クロック信号(CLK)及びスタートパルス(S
P)に基づき、タイミング信号を順に発生させ、バッファ101bを介してサンプリング
回路101cに順次入力される。
【0065】
シフトレジスタ101aから供給されるタイミング信号は、バッファ101bによって
緩衝増幅される。タイミング信号が入力される配線には、多くの回路あるいは素子が接続
されているために負荷容量が大きくなってしまう。そのためバッファ101bは、該負荷
容量が大きいために生ずるタイミング信号の立ち上がりまたは立ち下がりの鈍りを防ぐた
めに設けられている。
【0066】
サンプリング回路101cは、バッファ101bから入力されたタイミング信号に基づ
いて、ビデオ信号を順に画素100に出力していく。サンプリング回路101cは、ビデ
オ信号線125とサンプリング線(SA1〜SAx)とを有している。なお本発明はこの
構成に限定されず、アナログスイッチなどの半導体素子を有していてもよい。
【0067】
画素部103は、ソース信号線(S1〜Sx)と、ゲート信号線(G1〜Gy)と、電
源供給線(V1〜Vx)と、対向電源線(E1〜Ey)が設けられている。また画素部1
03には、複数の画素100がマトリクス状に設けられている。
【0068】
電源供給線(V1〜Vx)は、電流計130を介して電源131に接続されている。な
お電流計130と電源131は、画素部103が形成されている基板とは異なる基板上に
形成され、コネクター等を介して画素部103と接続されていてもよいし、作製が可能で
あれば画素部103と同じ基板上に形成してもよい。
なお電流計130と電源131の数は特に限定されず、任意に定めることができる。また
電流計130は、発光素子111に電流を供給する配線上に設ければよく、例えば対向電
源線(E1〜Ey)に電流計130を接続してもよい。つまり、電流計130を設ける場
所は特に限定されない。電流計130は、測定手段に相当する。
【0069】
そして電流計130により測定された電流値は、データとして補正回路210に送られ
る。補正回路210は、記憶媒体(記憶手段)211、計算回路(計算手段)202及び
信号補正回路(信号補正手段)204を有している。なお補正回路210の構成は、
図1
に示す構成に限定されず、増幅回路、変換回路などを設けてもよい。また必要に応じて、
記憶媒体211のみを設けてもよく、前記補正回路210の構成は、任意に定めることが
できる。
【0070】
記憶媒体211は、第1メモリ200、第2メモリ201及び第3メモリ203を有し
ている。しかし本発明はこれに限定されず、メモリの数は設計者が自由に設計することが
出来る。また記憶媒体211としては、ROM、RAM、フラッシュメモリ、磁気テープ
などの公知の記憶媒体を用いることが出来る。しかし画素部が設けられている基板上など
に一体化して記憶媒体211を設ける場合には、半導体メモリを用いることが好ましく、
特にROMを用いることが好ましい。またコンピュータの表示装置として、本発明の発光
装置を用いる場合には、該コンピュータ内に記憶媒体211を設けてもよい。
【0071】
計算回路202は、計算を行う手段を有する。より詳しくは、画素100にビデオ信号
P1、P2、・・・、Pnが入力されたときの電流値I1、I2、・・・、Inから、画
素部103が非発光の状態における電流値I0を減算し、電流値Q1、Q2、・・・、Q
nを算出する手段を有する。また上述した式(3)の補間関数の計算を行う手段を有する
。なお計算回路202としては、公知の計算回路、マイクロコンピュータなどを用いるこ
とが出来る。コンピュータの表示装置として、本発明の発光装置を用いる場合には、該コ
ンピュータ内に計算回路202を設けてもよい。
【0072】
信号補正回路204は、ビデオ信号を補正する手段を有する。より詳しくは記憶媒体2
11に記憶されている画素100の補間関数Fと、上述した式(3)から、画素100に
入力されるビデオ信号を補正する手段を有する。なお信号補正回路204としては、公知
の信号補正回路、マイクロコンピュータなどを用いることが出来る。コンピュータの表示
装置として、本発明の発光装置を用いる場合には、該コンピュータ内に信号補正回路20
4を設けてもよい。
【0073】
ソース信号線(S1〜Sx)は、サンプリング用トランジスタ126を介してビデオ信
号線125に接続されている。サンプリング用トランジスタ126のソース領域とドレイ
ン領域は、一方はソース信号線S(S1〜Sxのいずれか一つ)に接続され、もう一方は
ビデオ信号線125に接続されている。そしてサンプリング用トランジスタ126のゲー
ト電極は、サンプリング線SA(SA1〜SAxのいずれか一つ)に接続されている。
【0074】
次いで、i列目j行目に設けられた画素100の拡大図を
図2に示す。画素(i,j)
において、111は発光素子、112はスイッチング用トランジスタ、113は駆動用ト
ランジスタ、114はコンデンサである。
【0075】
スイッチング用トランジスタ112のゲート電極は、ゲート信号線(Gi)に接続され
ている。スイッチング用トランジスタ112のソース領域とドレイン領域は、一方はソー
ス信号線(Si)、もう一方は駆動用トランジスタ113のゲート電極に接続されている
。スイッチング用トランジスタ112は、画素100に信号を入力するときのスイッチン
グ素子として機能するトランジスタである。
なおスイッチング用トランジスタ112が接続しているソース信号線(Si)は、
図1に
示すようにサンプリング用トランジスタ126を介してビデオ信号線125に接続されて
いるが、
図2では図示を省略している。
【0076】
コンデンサ114は、スイッチング用トランジスタ112が非選択状態(オフ状態)に
あるときに、駆動用トランジスタ113のゲート電圧を保持するために設けられている。
なお本実施の形態では、コンデンサ114を設ける構成にしたが、本発明はこれに限定さ
れず、コンデンサ114を設けない構成にしてもよい。
【0077】
駆動用トランジスタ113のソース領域は、電源供給線(Vi)に接続され、ドレイン
領域は発光素子111に接続される。電源供給線(Vi)は、電流計130を介して電源
131に接続されており、常に一定の電源電位が与えられている。また電源供給線Viは
コンデンサ114に接続されている。駆動用トランジスタ113は、発光素子111に供
給する電流を制御するための素子(電流制御素子)として機能するトランジスタである。
【0078】
発光素子111は、陽極及び陰極、並びに前記陽極と前記陰極の間に設けられた有機化
合物層とからなる。陽極が駆動用トランジスタ113のドレイン領域と接続している場合
、陽極が画素電極、陰極が対向電極となる。逆に陰極が駆動用トランジスタ113のドレ
イン領域と接続している場合、陰極が画素電極、陽極が対向電極となる。
【0079】
なお、発光素子とは、一対の電極(陽極と陰極)間に有機化合物層が挟まれた構造とす
る。有機化合物層は、公知の発光材料を用いて作製することが出来る。
また有機化合物層には、単層構造と積層構造の二つの構造があるが、どちらの構造を用い
てもよい。有機化合物層におけるルミネッセンスには、一重項励起状態から基底状態に戻
る際の発光(蛍光)と、三重項励起状態から基底状態に戻る際の発光(リン光)とがある
が、どちらの発光を用いてもよい。
【0080】
発光素子の対向電極は、対向電源121に接続されている。なお、対向電源121の電
位を対向電位と呼ぶ。画素電極の電位と対向電極の電位の差が駆動電圧であり、当該駆動
電圧が有機化合物層にかかる。
【0081】
次いで、
図1、
図2で示した本発明の発光装置において、画素100に設けられた駆動
用トランジスタ113の特性を特定し、その結果に基づいて画素100に入力するビデオ
信号を補正する方法について、
図3(A)を用いて説明する。
なお説明を分かりやすくするために各段階をステップ1〜ステップ5とする。また
図3(
B)には、補正回路210を示しているので、
図3(A)、(B)をそれぞれ参照すると
よい。
【0082】
図4は発光装置に設けられた駆動回路(ソース信号線駆動回路101、ゲート信号線駆
動回路102)から出力される信号のタイミングチャートを示している。画素部103に
は、ゲート信号線がy本設けられているので、1フレーム期間中にy個のライン期間(L
1〜Ly)が設けられている。
【0083】
図4(A)は、1ライン期間(L)において、1本のゲート信号線G(G1〜Gyのい
ずれか一つ)が選択され、y本のゲート信号線(G1〜Gy)が選択されると1フレーム
期間が経過する様子を示している。
図4(B)は、x本のサンプリング線SA(SA1〜
SAxのいずれか一つ)が順に選択され、全てのサンプリング線(SA1〜SAx)が選
択されると1ライン期間が経過する様子を示している。
図4(C)は、ステップ1におい
てソース信号線(S1〜Sx)にビデオ信号P0が入力される様子を示している。
図4(
D)は、ステップ2においてソース信号線(S1〜Sx)にビデオ信号P1、P2、P3
、P0が入力される様子を示している。
【0084】
まずステップ1において、画素部103を全黒の状態にする。全黒の状態とは、全ての
発光素子111を非発光の状態、全ての画素を非点灯の状態にするということである。図
4(C)には、ステップ1においてソース信号線(S1〜Sx)にビデオ信号P0が入力
される様子が示されている。なお
図4(C)には、1ライン期間において、ソース信号線
(S1〜Sx)にビデオ信号P0が入力される様子のみが図示されているが、実際は1フ
レーム期間(F)に設けられた全てのライン期間(L1〜Ly)において行われる。そし
て1フレーム期間において、全ての画素100に同じビデオ信号P0が入力されると、画
素部103に設けられた全ての発光素子111は非発光の状態(全黒の状態)になる。
【0085】
このような状態になったら、電流計130を用いて電源供給線(V1〜Vx)
に流れる電流値I0を測定する。このとき測定される電流値I0は、発光素子111が有
する陽極と陰極間の一部がショートしていたり、画素100の一部がショートしていたり
、画素部103に接続されたFPCが正確に接続されていなかったりする場合に流れてし
まった電流値に相当する。そして測定された電流値I0は、補正回路210に設けられた
第1メモリ200に保存され、ステップ1が終了する。
【0086】
次いでステップ2において、画素部103に設けられた画素100にそれぞれ異なるビ
デオ信号P1、P2、P3、P0を入力する。
【0087】
本実施の形態では、
図4(D)に示すように、階段状に変化させた4つのビデオ信号P
1、P2、P3、P0をソース信号線(S1〜Sx)に入力している。
つまり1ライン期間(L)で、1つの画素100に4つのビデオ信号P1、P2、P3、
P0を入力し、1フレーム期間(F)で画素部103に設けられた全ての画素100に4
つのビデオ信号P1、P2、P3、P0を入力する。
【0088】
そして、3つのビデオ信号P1、P2、P3に対応した、駆動用トランジスタ113に
流れた電流、つまり電源供給線(V1〜Vx)に流れた電流値を電流計130により測定
する。
【0089】
なおここでは、1ライン期間(L)において、1つの画素に階段状に変化させた4つの
ビデオ信号P1、P2、P3、P0を入力したが、本発明はこれに限定されない。例えば
、1ライン期間(L)にビデオ信号P1のみを入力し、次の1ライン期間(L)にビデオ
信号P2を入力し、また次の1ライン期間(L)にビデオ信号P3を入力してもよい。ま
た本実施の形態では、階段状に変化させた4つのビデオ信号P1、P2、P3、P0を入
力したが、本発明は大きさ(電圧値)の異なるビデオ信号を入力して、該大きさ(電圧値
)の異なるビデオ信号に対応した電流値を測定すればよい。例えばランプ状(のこぎり刃
状)に変化させたビデオ信号を入力して、ある一定の期間ごとに電流計130を用いて複
数の電流値を測定するようにしてもよい。
【0090】
ここで、1例として、j行目のゲート信号線(Gj)がゲート信号線駆動回路102か
ら供給されるゲート信号によって選択される場合について説明する。1ライン期間(Lj
)には、一つの画素100に4つのビデオ信号P1、P2、P3、P0が入力されるので
、ビデオ信号が入力された画素100(ここでは(1、j)に設けられた画素100とす
る)以外は、全てオフ状態にある。そのため、電流計130で測定される電流値は、ある
特定の画素(着目している画素)100の駆動用トランジスタ113を流れる電流値とス
テップ1で測定された電流値I0を足した値となる。そして、(1、j)に設けられた画
素100において、P1、P2、P3の各々のビデオ信号に対応した電流値I1、I2、
I3を測定して、該電流値IA、IB、ICを第2メモリ201に保存する。
【0091】
次いで、画素(1、j)にビデオ信号P0を入力し、画素100の発光素子111を非
発光の状態、画素(1、j)を非点灯の状態にする。これは、次の画素(2、j)を測定
するときに、電流が流れてしまうことを防ぐためである。
【0092】
そして次に、(2、j)に設けられた画素100に、4つのビデオ信号P1、P2、P
3、P0を入力する。ビデオ信号P1、P2、P3に対応した電流値I1、I2、I3を
取得して、第2メモリ201に保存する。
【0093】
このようにして上述した動作を繰り返し、j行目に設けられた1列目からx列目までの
画素100にビデオ信号の入力が終了する。つまり、全てのソース信号線(S1〜Sx)
へのビデオ信号の入力が終了すると、1つのライン期間Ljが終了する。
【0094】
そして、次のライン期間L
j+1となり、ゲート信号線駆動回路102から供給されるゲ
ート信号によってゲート信号線G
j+1が選択される。そして、全てのソース信号線(S1
〜Sx)に4つのビデオ信号P1、P2、P3、P0が入力される。
【0095】
このようにして上述した動作を繰り返し、全てのゲート信号線(G1〜Gy)
にゲート信号が入力されると、全てのライン期間(L1〜Ly)が終了する。そして全て
のライン期間(L1〜Ly)が終了すると、1フレーム期間が終了する。
【0096】
こうして画素部103に設けられた画素100に入力された3つのビデオ信号P1、P
2、P3に対応する電流値I1、I2、I3を測定することが出来る。
そして得られたデータは、第2メモリ201に保存される。
【0097】
そして、計算回路202において、画素部103に設けられた画素100ごとに電流値
I1、I2、I3から、ステップ1において第1メモリ200に保存された電流値I0と
の差を求めて、電流値Q1(=I1-I0)、Q2(=I2-I0)、Q3(=I3-I0
)を求める。そして電流値Q1、Q2、Q3は第2メモリ201に保存され、ステップ2
は終了する。
【0098】
なお画素部103にショートしている画素がなく、また画素部103に接続されたFP
Cなどが正確に接続されている場合には、電流値I0はゼロ、又はほぼゼロである値が測
定される場合がある。このような場合には、画素部103に設けられた画素100ごとに
電流値I1、I2、I3から、電流値I0を引く動作や電流値I0を測定する動作を削除
してもよく、これは任意に設定することが出来る。
【0099】
次いでステップ3においては、上述した式(1)を用いて、計算回路202において、
各画素の駆動用トランジスタの電流電圧特性(I
DS−V
GS特性)を取得する。なお式(1
)において、I
DS→I、V
GS→P、V
TH→Bとし、Q=I-I0とすると、以下の式(4
)が求められる。
【0101】
式(4)において、AとBは定数である。定数Aと定数Bは少なくとも2組の(Pn、
Qn)のデータがあれば求めることができる。つまり、ステップ2において求めた少なく
とも2つの大きさ(電圧値)の異なるビデオ信号(Pn)と、そのビデオ信号(Pn)に
対応した少なくとも2つの電流値(Qn)を式(3)
に代入すれば、定数Aと定数Bを求めることが出来る。そして、定数Aと定数Bは第3メ
モリ203に保存される。
【0102】
第3メモリ203に保存された定数Aと定数Bを用いることで、ある電流値(Qn)を
流すために必要なビデオ信号(Pn)の値を求めることができる。その際には、以下の式
(5)を用いる。
【0104】
ここで、一例として式(4)、式(5)を用いて、画素D、画素E、画素Fの定数Aと
定数Bの値を求め、それをグラフに示したものを
図5に示す。
図5に示すように、画素D
、画素E、画素Fに同じビデオ信号(ここでは一例としてビデオ信号P2とする)を入力
した場合、画素DではIqで示す電流が流れ、画素EではIrで示す電流が流れ、画素F
ではIpで示す電流が流れている。つまり同じビデオ信号(P2)を入力しても、画素D
、E、Fに設けられたトランジスタの特性が異なるために、電流値が異なってしまってい
る。そこで本発明はこのような特性バラツキの影響を抑制するために、上述した式(4)
を用いて、画素100の特性に応じたビデオ信号を画素100に入力する。
【0105】
なお
図5では、画素D、画素E、画素Fの特性を式(4)、式(5)を用いて2次曲線
で示したが、本発明はこれに限定されない。
図16には、以下の式(6)を用いて画素D
、画素E、画素Fに入力したビデオ信号(P)と、該ビデオ信号(P)に対応した電流値
(Q)との関係を直線としたグラフを示す。
【0107】
式(6)にステップ2で求めた画素ごとの電圧値(P)と電流値(Q)を代入すること
で、定数aと定数bを求める。そして、求められた定数aと定数bは、画素100ごとに
第3メモリ203に保存されてステップ3は終了する。
【0108】
図16に示すグラフは、
図5に示すグラフと同じように、画素D、画素E、画素Fに同
じビデオ信号(ここでは一例としてビデオ信号P2とする)を入力した場合、画素Dでは
Iqで示す電流が流れ、画素EではIrで示す電流が流れ、画素FではIpで示す電流が
流れている。つまり同じビデオ信号(P2)を入力しても、画素100に設けられたトラ
ンジスタの特性が異なるために、電流値が異なってしまっている。そこで本発明はこのよ
うな特性バラツキの影響を抑制するために、上述した式(6)を用いて、画素100の特
性に応じたビデオ信号を画素100に入力する。
【0109】
なお、ビデオ信号の電圧値(P)と電流値(Q)との関係を特定する方法としては、図
5に示すように2次曲線で示すことにより特定してもよいし、
図16に示すように直線で
示すことにより特定してもよい。またスプライン曲線(スプライン関数)やベジェ曲線(
ベジェ関数)で特定してもよいし、また曲線上にうまく電流値がのらない場合には、最小
自乗法を用いて曲線(1次関数)を最適化してもよく、その方法は特に限定されない。
【0110】
続いて、ステップ4において、信号補正回路204において、上述した式(5)(又は
式(6))などを用いて各画素100の特性に応じたビデオ信号の値を計算する。そうす
るとステップ4は終了し、ステップ5において、計算されたビデオ信号を画素100に入
力すれば、駆動用トランジスタの特性バラツキの影響を抑制して、発光素子に所望の電流
を流すことが可能となり、その結果所望の発光量(輝度)を得ることが出来る。なお画素
100ごとに求められた定数Aと定数B(又は定数aと定数b)の値が一旦第3メモリ2
03に保存されたら、後はステップ4とステップ5を交互に繰り返せばよい。
【0111】
ここで再び
図5を参照する。仮に、画素D、画素E、画素Fを同じ輝度で発光させたい
ときは、同じ電流値Irを流すことが必要となる。そのためには、駆動用トランジスタの
特性に応じたビデオ信号を入力することが必要であり、
図5に示すように、画素Dにはビ
デオ信号P1を入力し、画素Eにはビデオ信号P2を入力し、画素Fにはビデオ信号P3
を入力することが必要となる。そのためには、ステップ4において、各画素の特性に応じ
たビデオ信号を求め、その求められた信号を各画素に入力することが必須となる。
【0112】
なお電流計130を用いて複数の異なるビデオ信号に対応した複数の電流値を測定する
動作(ステップ1〜ステップ3の動作)は、実際に画像を表示させる直前、又は直後に行
ってもよいし、ある一定の期間ごとに行ってもよい。また記憶手段に所定の情報を記憶さ
せる前に行ってもよい。さらに出荷前のみに行ってもよいが、その場合には計算回路20
2において計算された補間関数Fを一旦記憶媒体211に記憶させて、該記憶媒体211
を画素部103と一体化形成すればよい。そうすれば、後は記憶媒体211に記憶された
補間関数Fを参照して、画素の特性に応じたビデオ信号を計算することができるので、電
流計130を発光装置に設ける必要がない。
【0113】
なお本実施の形態においては、補間関数Fが記憶媒体211に記憶されたら、それをも
とに画素100に入力するビデオ信号を計算回路202において随時計算して、その計算
したビデオ信号を画素100に入力しているが、本発明はこれに限定されない。
【0114】
例えば記憶媒体211に記憶された補間関数Fを基に、表示される画像の階調数に対応
したビデオ信号を、あらかじめ画素100ごとに計算回路202において計算しておき、
その計算されたビデオ信号を記憶媒体211に記憶させておいてもよい。例えば16階調
で画像を表示するとしたら、該16階調分の16個のビデオ信号を画素100ごとにあら
かじめ計算しておく。そして計算したビデオ信号は、記憶媒体211に記憶させておく。
そうすれば、画素100ごとにある階調を表示するときに入力するビデオ信号の情報が記
憶媒体211に記憶されているので、その情報をもとに、画像を表示することが出来る。
つまり、計算回路202を発光装置に設けなくても、記憶媒体211に記憶させた情報を
もとに画像を表示することが出来る。
【0115】
また表示される画像の階調数に対応したビデオ信号を、あらかじめ画素100ごとに計
算回路202において計算しておくときには、該ビデオ信号に、ガンマ値でガンマ補正を
したビデオ信号を記憶媒体211に記憶させておいてもよい。
なお用いるガンマ値は、画素部で共通であってもよいし、各画素で異なっていてもよい。
そうすると、より鮮明な画像を表示することが出来る。
【実施例1】
【0116】
本発明は、
図2とは異なる構成の画素の発光装置にも適用できる。本実施例ではその一
例について
図6、
図18(B)(C)を用いて説明する。
【0117】
図6に示す画素(i、j)は、発光素子311、スイッチング用トランジスタ312、
駆動用トランジスタ313、消去用トランジスタ315及び保持容量314とを有する。
また画素100は、ソース信号線(Si)、電源供給線(Vi)、ゲート信号線(Gj)
、消去用ゲート信号線(Rj)に囲まれた領域に配置されている。
【0118】
スイッチング用トランジスタ312のゲート電極は、ゲート信号線(Gj)に接続され
ている。スイッチング用トランジスタ312のソース領域とドレイン領域は、一方がソー
ス信号線(Si)、もう一方が駆動用トランジスタ313のゲート電極に接続されている
。スイッチング用トランジスタ312は、画素100に信号を入力するときのスイッチン
グ素子として機能するトランジスタである。
【0119】
コンデンサ314は、スイッチング用トランジスタ312が非選択状態(オフ状態)に
あるときに、駆動用トランジスタ313のゲート電圧を保持するために設けられている。
なお本実施の形態では、コンデンサ314を設ける構成にしたが、本発明はこれに限定さ
れず、コンデンサ314を設けない構成にしてもよい。
【0120】
駆動用トランジスタ313のソース領域は電源供給線(Vi)に接続され、ドレイン領
域は発光素子311に接続される。電源供給線(Vi)は、電流計130を介して電源1
31に接続されており、常に一定の電源電位が与えられている。また電源供給線(Vi)
はコンデンサ314に接続されている。駆動用トランジスタ313は、発光素子311に
供給する電流を制御するための素子(電流制御素子)として機能するトランジスタである
。
【0121】
発光素子311は、陽極及び陰極、並びに前記陽極と前記陰極の間に設けられた有機化
合物層とからなる。陽極が駆動用トランジスタ313のドレイン領域と接続している場合
、陽極が画素電極、陰極が対向電極となる。逆に陰極が駆動用トランジスタ313のドレ
イン領域と接続している場合、陰極が画素電極、陽極が対向電極となる。
【0122】
消去用トランジスタ315のゲート電極は、消去用ゲート信号線(Rj)に接続されて
いる。消去用トランジスタ315のソース領域とドレイン領域は、一方が電源供給線(V
i)、もう一方が駆動用トランジスタ313のゲート電極に接続されている。消去用トラ
ンジスタ315は、画素100に書き込まれた信号を消去(リセット)するための素子と
して機能するトランジスタである。
【0123】
消去用トランジスタ315をオン状態にすると、コンデンサ314に保持された容量は
放電される。そうすると、画素100に書き込まれた信号は消去(リセット)されて、発
光素子は非発光となる。つまり消去用トランジスタ315をオン状態にすることで、画素
100は強制的に非発光となる。このように消去用トランジスタ315を設けることで、
画素100を強制的に非発光とできることには様々な効果がある。例えば、デジタル方式
の場合には、発光素子の点灯時間を任意に設定することができるため、高階調の画像を表
示することができる。またアナログ方式の場合には、フレーム期間が切り替わるたびに画
素を非発光状態にすることができるため、残像を残すことなく動画をきれいに表示するこ
とが出来る。
【0124】
そして電源供給線(Vi)は電流計130を介して電源131に接続されている。なお
、電流計130と電源131は、画素部103が形成されている基板とは異なる基板上に
形成され、コネクター等を介して画素部103と接続されていてもよいし、作製が可能で
あれば画素部103と同じ基板上に形成してもよい。
なお電流計130と電源131の数は特に限定されず、任意に設定することができる。
【0125】
そして電流計130により測定された電流値は、データとして補正回路210に送られ
る。補正回路210は、記憶媒体211、計算回路202及び信号補正回路204を有し
ている。なお補正回路210の構成は、
図6に示す構成に限定されず、増幅回路などを設
けてもよい。補正回路210の構成は、設計者が自由に設計することが出来る。
【0126】
そして画素部(図示せず)には、
図6に示す画素(i、j)がマトリクス状に設けられ
ている。また画素部には、ソース信号線(S1〜Sx)と、ゲート信号線(G1〜Gy)
と、電源供給線(V1〜Vx)と、消去用ゲート信号線(R1〜Ry)とが設けられてい
る。
【0127】
また
図18(B)には、
図2に示した画素にリセット線Rjを追加して配置した構成の
画素を示し、コンデンサ114が電源供給線Viではなく、リセット線Rjに接続されて
いる。この場合、このコンデンサ114は画素(i、j)をリセットする役目を担う。さ
らに
図18(C)には、
図2に示した画素にリセット線Rj及びダイオード150を追加
した構成の画素を示し、該ダイオードが画素(i、j)をリセットする役目を担う。
【0128】
なお本発明が適用される発光装置の画素の構成とは、発光素子とトランジスタを有する
構成である。前記画素において発光素子とトランジスタとの接続関係は特に限定されず、
どのような接続関係でもよく、本実施例で示した画素の構成はその一例である。
【0129】
ここで、
図6に示した画素を例に挙げて、その動作について簡単に説明する。
前記画素には、デジタル方式、アナログ方式のいずれの方式も適用することができるが、
ここでは時間階調方式と組み合わせたデジタル方式を適用したときの動作について説明す
る。なお時間階調方式とは、特開2001-343933号公報にて詳しく報告されてい
るように、発光素子の点灯期間を制御することにより、階調表現を行う方式である。具体
的には、1フレーム期間を長さの異なる複数のサブフレーム期間に分割し、各期間での発
光素子の発光又は非発光を選択することで、1フレーム期間内における点灯期間の長さの
差をもって階調を表現する。つまりビデオ信号により点灯期間の長さを制御することで、
階調を表現する。
【0130】
なお、デジタル方式では、すでに述べたように、主に線形領域で動作させるが、飽和領
域で動作させてもよい。線形領域で動作させる場合は、有機化合物層が劣化したときに、
電流量が変化してしまう。一方、飽和領域で動作させる場合は、駆動用トランジスタの特
性バラツキの影響を受けやすい。
【0131】
なお本発明では、各画素に入力するビデオ信号を補正することで、各画素の特性バラツ
キの影響を抑制する。つまり、アナログ方式が適用された発光装置では、ビデオ信号の補
正とは、該ビデオ信号の振幅値の補正に相当する。また、時間階調方式と組み合わせたデ
ジタル方式が適用された発光装置では、ビデオ信号の補正とは、該ビデオ信号が入力され
た画素の点灯期間の長さの補正に相当する。
【0132】
時間階調方式と組み合わせたデジタル方式が適用された発光装置では、直線で示される
式(6)を用いることが好ましい。但し、デジタル方式では、非発光の状態をわざわざ測
定する必要がないため、式(6)における定数bの値をゼロとするとよい。そして各画素
の特性の測定は一度だけ行って定数aの値を求めるとよい。
【0133】
上記の構成を有する本発明はアナログ方式で駆動させた発光装置において、トランジス
タの特性バラツキによる影響を防止し、鮮明な多階調の表示が可能な発光装置及びその駆
動方法を提供することができる。さらに本発明は、経時変化により発光素子の両電極間に
流れる電流量の変化を抑制し、鮮明な多階調表示が可能な発光装置及びその駆動方法を提
供することが出来る。
【0134】
なお本実施例は、実施の形態と自由に組み合わせることが可能である。
【実施例2】
【0135】
本実施例では、画素の断面構造の一例について
図7を用いて説明する。
【0136】
図7において、基板4501上に設けられたスイッチング用トランジスタ4502は公
知の方法で形成されたnチャネル型トランジスタを用いる。なお、本実施例ではダブルゲ
ート構造としているが、シングルゲート構造でも構わないし、トリプルゲート構造やそれ
以上のゲート本数を持つマルチゲート構造でも構わない。また、公知の方法で形成された
pチャネル型トランジスタを用いて形成しても構わない。
【0137】
駆動用トランジスタ4503は、公知の方法で形成されたnチャネル型トランジスタを
用いる。スイッチング用トランジスタ4502のドレイン配線4504は配線(図示せず
)によって駆動用トランジスタ4503のゲート電極4506に電気的に接続されている
。
【0138】
駆動用トランジスタ4503は発光素子4510を流れる電流量を制御するための素子
であるため、多くの電流が流れ、熱による劣化やホットキャリアによる劣化の危険性が高
い素子でもある。そのため、駆動用トランジスタ4503のドレイン領域、あるいはソー
ス領域とドレイン領域の両方に、ゲート絶縁膜を介してゲート電極に重なるようにLDD
領域を設ける構造は極めて有効である。
図7においては、一例として駆動用トランジスタ
4503のソース領域とドレイン領域の両方にLDD領域を形成した例を示している。
【0139】
また、本実施例では駆動用トランジスタ4503をシングルゲート構造で図示している
が、複数のトランジスタを直列に接続したマルチゲート構造としても良い。さらに、複数
のトランジスタを並列につなげて実質的にチャネル形成領域を複数に分割し、熱の放射を
高い効率で行えるようにした構造としても良い。このような構造は熱による劣化対策とし
て有効である。
【0140】
また、駆動用トランジスタ4503のゲート電極4506を含む配線(図示せず)は、
駆動用トランジスタ4503のドレイン配線4512と絶縁膜を介して一部で重なり、そ
の領域では保持容量が形成される。この保持容量は駆動用トランジスタ4503のゲート
電極4506にかかる電圧を保持する機能を有する。
【0141】
スイッチング用トランジスタ4502および駆動用トランジスタ4503の上には第1
の層間絶縁膜4514が設けられ、その上に樹脂絶縁膜でなる第2の層間絶縁膜4515
が形成される。
【0142】
4517は透光性の高い導電膜でなる画素電極(発光素子の陽極)であり、駆動用トラ
ンジスタ4503のドレイン領域に一部が覆い被さるように形成され、電気的に接続され
る。画素電極4517としては酸化インジウムと酸化スズとの化合物(ITOと呼ばれる
)、或いは酸化インジウムと酸化亜鉛の化合物を用いることが好ましい。もちろん、他の
透光性の導電膜を用いてもよい。
【0143】
次に有機樹脂膜4516を画素電極4517上に形成し、画素電極4517に面する部
分をパターニングした後、有機化合物層4519が形成される。なおここでは図示してい
ないが、R(赤)、G(緑)、B(青)の各色に対応した有機化合物層4519を作り分
けても良い。有機化合物層4519とする発光材料としてはπ共役ポリマー系材料を用い
る。代表的なポリマー系材料としては、ポリパラフェニレンビニレン(PPV)系、ポリ
ビニルカルバゾール(PVK)系、ポリフルオレン系などが挙げられる。また、有機化合
物層4519は、単層構造、積層構造の二つの構造があるが、本発明はどちらの構造を作
製してもよい。公知の材料、及び構造を自由に組み合わせて有機化合物層4519(発光
およびそのためのキャリアの移動を行わせるための層)を形成すれば良い。
【0144】
例えば、本実施例ではポリマー系材料を有機化合物層4519として用いる例を示した
が、低分子系有機発光材料を用いても良い。また、電荷輸送層や電荷注入層として炭化珪
素等の無機材料を用いることも可能である。これらの有機発光材料や無機材料は公知の材
料を用いることができる。
【0145】
陰極4523まで形成されると、発光素子4510が完成する。なお、ここでいう発光
素子4510とは、画素電極4517と、有機化合物層4519と、正孔注入層4522
および陰極4523で形成された積層体を示す。
【0146】
ところで、本実施例では、陰極4523の上にパッシベーション膜4524を設けてい
る。パッシベーション膜4524としては窒化珪素膜または窒化酸化珪素膜が好ましい。
この目的は、外部と発光素子4510とを遮断することであり、発光材料の酸化による劣
化を防ぐ意味と、有機発光材料からの脱ガスを抑える意味との両方を併せ持つ。これによ
り発光装置の信頼性が高められる。
【0147】
以上のように本実施例において説明してきた発光装置は
図7に示す構造の画素からなる
画素部を有し、オフ電流値の十分に低い選択用トランジスタと、ホットキャリア注入に強
い駆動用トランジスタとを有する。従って、高い信頼性を有し、且つ、良好な画像表示が
可能な発光装置が得られる。
【0148】
本実施例において説明した構造を有する発光素子の場合、有機化合物層4519で発生
した光は、矢印で示されるようにトランジスタが形成された基板4501の方向に向かっ
て出射される。なお、発光素子4510から発せられる光が基板4501の方向に向かっ
て出射することを下面出射とよぶ。
【0149】
次いで、発光素子から発せられる光が、基板4510と反対の方向に向かって出射する
(上面出射)発光装置の断面構造について
図17を用いて説明する。
【0150】
図17(A)において、基板1600上には、駆動用トランジスタ1601が形成され
ている。駆動用トランジスタ1601は、ソース領域1604aとドレイン領域1604
cと、チャネル形成領域1604bとを有する。またゲート絶縁膜1605を介して、チ
ャネル形成領域1604b上に設けられたゲート電極1603aを有する。なお駆動用ト
ランジスタ1601は、
図17(A)に示した構成だけでなく、公知の構成のトランジス
タを自由に用いることができる。
【0151】
駆動用トランジスタ1601上には層間膜1606が形成されている。次いで、ITO
等の透明導電膜を成膜して、所望の形状にパターニングして、画素電極1608を形成す
る。ここで画素電極1608は、発光素子1614の陽極として機能する。
【0152】
そして層間膜1606は、駆動用トランジスタ1601のソース領域1604a及びド
レイン領域1604cに達するコンタクトホールを形成し、Ti、Tiを含むAlおよび
Tiでなる積層膜を成膜して、所望の形状にパターニングする。そうすると、配線160
7及び配線1609が形成される。
【0153】
続いて、アクリル等の有機樹脂材料等でなる絶縁膜を形成し、発光素子1614の画素
電極1608に対応する位置に開口部を形成して絶縁膜1610を形成する。ここで、開
口部の側壁の段差に起因する有機化合物層の劣化、段切れ等の問題を回避するため、開口
部は十分になだらかなテーパー形状の側壁を有するように形成する。
【0154】
そして有機化合物層1611を形成した後、発光素子1614の対向電極(陰極)16
12を、2nm以下の厚さのセシウム(Cs)膜及び10nm以下の厚さの銀(Ag)膜を順に
成膜した積層膜によって形成する。発光素子1614の対向電極1612の膜厚を極めて
薄くすることにより、有機化合物層1611から発せられた光は対向電極1612を透過
して、基板1600と反対の方向に出射される。そして、発光素子1614の保護を目的
として、保護膜1613を成膜する。
【0155】
図17(B)は、
図17(A)と異なる構成の断面図である。なお
図17(B)におい
て、
図17(A)と同じ部分は同じ符号を用いて説明する。また
図17(B)において、
駆動用トランジスタ1601と層間膜1606を形成するまでは、
図17(A)で示した
構成と同様であるので説明は省略する。
【0156】
層間膜1606に、駆動用トランジスタ1601のソース領域1604a及びドレイン
領域1604cに達するコンタクトホールを形成する。その後、Ti、Tiを含むAlお
よびTiでなる積層膜を成膜して、続いて、ITO等を代表とする透明導電膜を成膜する
。Ti、Tiを含むAlおよびTiでなる積層膜と、ITO等を代表とする透明導電膜と
を、所望の形状にパターニングして、配線1607、配線1608、配線1609、画素
電極1620を形成する。なお画素電極1620は、発光素子1624の陽極として機能
する。
【0157】
続いて、アクリル等の有機樹脂材料等でなる絶縁膜を形成し、発光素子1624の画素
電極1620に対応する位置に開口部を形成して絶縁膜1610を形成する。ここで、開
口部の側壁の段差に起因する有機化合物層の劣化、段切れ等の問題を回避するため、開口
部は、十分になだらかなテーパー形状の側壁を有するように形成する。
【0158】
次に、有機化合物層1611を形成した後、発光素子1624の対向電極(陰極)16
12を、2nm以下の厚さのセシウム(Cs)膜及び10nm以下の厚さの銀(Ag)膜を順に成
膜した積層膜によって形成する。発光素子1624の対向電極1612の膜厚を極めて薄
くすることにより、有機化合物層1611から発せられた光は対向電極1612を透過し
て、基板1600とは反対の方向に出射される。次いで、発光素子1624の保護を目的
として、保護膜1613を成膜する。
【0159】
このように、基板1600とは反対の方向に光を出射する発光装置は、基板1600上
に形成された、駆動用トランジスタ1601等の素子を介して、発光素子1614の発光
を視認する必要が無いために、開口率を大きくすることが出来る。
【0160】
図17(B)で示した構成の画素は、
図17(A)で示した構成の画素と比較すると、
駆動用トランジスタのソース領域またはドレイン領域と接続される配線1619と、画素
電極1620を、共通のフォトマスクを用いてパターニングして形成することができるた
め、作成工程において必要となるフォトマスクの削減及び工程の簡略化が可能となる。
【0161】
なお、本実施例は、実施の形態及び実施例1と自由に組み合わせることが可能である。
【実施例3】
【0162】
本実施例では、本発明の発光装置の外観について、
図8を用いて説明する。
【0163】
図8(A)は、発光装置の上面図であり、
図8(B)は、
図8(A)のA−A’におけ
る断面図、
図8(C)は
図8(A)のB−B’における断面図である。
【0164】
基板4001上に設けられた画素部4002と、ソース信号線駆動回路4003と、第
1及び第2のゲート信号線線駆動回路4004a、bとを囲むようにして、シール材40
09が設けられている。また画素部4002と、ソース信号線駆動回路4003と、第1
及び第2のゲート信号線線駆動回路4004a、bとの上にシーリング材4008が設け
られている。画素部4002と、ソース信号線駆動回路4003と、第1及び第2のゲー
ト信号線線駆動回路4004a、bとは、基板4001とシール材4009とシーリング
材4008とによって、充填材4210と共に密封されている。
【0165】
なお本実施例において、1組(2つ)のゲート信号線駆動回路が設けられているが、本
発明はこれに限定されず、ゲート信号線駆動回路とソース信号線駆動回路の数は設計者が
任意に定めることが出来る。
【0166】
また基板4001上に設けられた画素部4002と、ソース信号線駆動回路4003と
、第1及び第2のゲート信号線線駆動回路4004a、bとは、複数のトランジスタを有
している。
図8(B)では、下地膜4010上に形成されたソース信号線駆動回路400
3に含まれる駆動回路用トランジスタ(但し、ここではnチャネル型トランジスタとpチ
ャネル型トランジスタを図示する)4201及び画素部4002に含まれる駆動用トラン
ジスタ(発光素子への電流を制御するトランジスタ)4202を図示した。
【0167】
本実施例では、駆動回路用トランジスタ4201には公知の方法で作製されたpチャネ
ル型トランジスタまたはnチャネル型トランジスタが用いられ、駆動用トランジスタ42
02には公知の方法で作製されたpチャネル型トランジスタが用いられる。また、画素部
4002には駆動用トランジスタ4202のゲート電極に接続された保持容量(図示せず
)が設けられる。
【0168】
駆動回路用トランジスタ4201及び駆動用トランジスタ4202上には層間絶縁膜(
平坦化膜)4301が形成され、その上に駆動用トランジスタ4202のドレインと電気
的に接続する画素電極(陽極)4203が形成される。画素電極4203としては仕事関
数の大きい透明導電膜が用いられる。透明導電膜としては、酸化インジウムと酸化スズと
の化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジ
ウムを用いることができる。また、前記透明導電膜にガリウムを添加したものを用いても
良い。
【0169】
そして、画素電極4203の上には絶縁膜4302が形成され、絶縁膜4302は画素
電極4203の上に開口部が形成されている。この開口部において、画素電極4203の
上には有機化合物層4204が形成される。有機化合物層4204は公知の有機発光材料
または無機発光材料を用いることができる。また、有機発光材料には低分子系(モノマー
系)材料と高分子系(ポリマー系)材料があるがどちらを用いても良い。
【0170】
有機化合物層4204の形成方法は公知の蒸着技術もしくは塗布法技術を用いれば良い
。また、有機化合物層の構造は正孔注入層、正孔輸送層、発光層、電子輸送層または電子
注入層を自由に組み合わせて積層構造または単層構造とすれば良い。
【0171】
有機化合物層4204の上には遮光性を有する導電膜(代表的にはアルミニウム、銅も
しくは銀を主成分とする導電膜またはそれらと他の導電膜との積層膜)
からなる陰極4205が形成される。また、陰極4205と有機化合物層4204の界面
に存在する水分や酸素は極力排除しておくことが望ましい。従って、有機化合物層420
4を窒素または希ガス雰囲気で形成し、酸素や水分に触れさせないまま陰極4205を形
成するといった工夫が必要である。本実施例ではマルチチャンバー方式(クラスターツー
ル方式)の成膜装置を用いることで上述のような成膜を可能とする。そして陰極4205
は所定の電圧が与えられている。
【0172】
以上のようにして、画素電極(陽極)4203、有機化合物層4204及び陰極420
5からなる発光素子4303が形成される。そして発光素子4303を覆うように、絶縁
膜4302上に保護膜4209が形成されている。保護膜4209は、発光素子4303
に酸素や水分等が入り込むのを防ぐのに効果的である。
【0173】
4005aは電源線に接続された引き回し配線であり、駆動用トランジスタ4202の
ソース領域に電気的に接続されている。引き回し配線4005aはシール材4009と基
板4001との間を通り、異方導電性フィルム4300を介してFPC4006が有する
FPC用配線4301に電気的に接続される。
【0174】
シーリング材4008としては、ガラス材、金属材(代表的にはステンレス材)、セラ
ミックス材、プラスチック材(プラスチックフィルムも含む)を用いることができる。プ
ラスチック材としては、FRP(Fiberglass−Reinforced Pla
stics)板、PVF(ポリビニルフルオライド)
フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用い
ることができる。また、アルミニウムホイルをPVFフィルムやマイラーフィルムで挟ん
だ構造のシートを用いることもできる。
【0175】
但し、発光素子からの光の放射方向がカバー材側に向かう場合にはカバー材は透明でな
ければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまた
はアクリルフィルムのような透明物質を用いる。
【0176】
また、充填材4103としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化
樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル
、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはE
VA(エチレンビニルアセテート)を用いることができる。本実施例では充填材として窒
素を用いた。
【0177】
また充填材4103を吸湿性物質(好ましくは酸化バリウム)もしくは酸素を吸着しう
る物質にさらしておくために、シーリング材4008の基板4001側の面に凹部400
7を設けて吸湿性物質または酸素を吸着しうる物質4207を配置する。そして、吸湿性
物質または酸素を吸着しうる物質4207が飛び散らないように、凹部カバー材4208
によって吸湿性物質または酸素を吸着しうる物質4207は凹部4007に保持されてい
る。なお凹部カバー材4208は目の細かいメッシュ状になっており、空気や水分は通し
、吸湿性物質または酸素を吸着しうる物質4207は通さない構成になっている。吸湿性
物質または酸素を吸着しうる物質4207を設けることで、発光素子4303の劣化を抑
制できる。
【0178】
図8(C)に示すように、画素電極4203が形成されると同時に、引き回し配線40
05a上に接するように導電性膜4203aが形成される。
【0179】
また、異方導電性フィルム4300は導電性フィラー4300aを有している。基板4
001とFPC4006とを熱圧着することで、基板4001上の導電性膜4203aと
FPC4006上のFPC用配線4301とが、導電性フィラー4300aによって電気
的に接続される。
【0180】
本発明の発光装置が有する電流計及び補正回路は、基板4001とは異なる基板(図示
せず)上に形成され、FPC4006を介して、基板4001上に形成された電源線及び
陰極4205に電気的に接続されている。
【0181】
なお本実施例は、実施の形態及び実施例1、2と自由に組み合わせて実施することが可
能である。
【実施例4】
【0182】
本実施例では、実施例3とは異なる本発明の発光装置の外観について、
図9を用いて説
明する。より詳しくは、電流計及び補正回路を、画素部が形成されている基板とは異なる
基板上に形成し、ワイヤボンディング法、COG(チップ・オン・グラス)法等の手段に
よって画素部が形成されている基板上の配線と接続した場合の発光装置の外観について、
図9を用いて説明する。
【0183】
図9に本実施例の発光装置の外観図を示す。基板5001上に設けられた画素部500
2と、ソース信号線駆動回路5003と、第1及び第2のゲート信号線線駆動回路500
4a、bとを囲むようにして、シール材5009が設けられている。また画素部5002
と、ソース信号線駆動回路5003と、第1及び第2のゲート信号線線駆動回路5004
a、bとの上にシーリング材5008が設けられている。よって画素部5002と、ソー
ス信号線駆動回路5003と、第1及び第2のゲート信号線線駆動回路5004a、bと
は、基板5001とシール材5009とシーリング材5008とによって、充填材(図示
せず)と共に密封されている。
【0184】
なお本実施例において、2つのゲート信号線駆動回路が設けられているが、これに限定
されず、ゲート信号線駆動回路とソース信号線駆動回路の数は設計者が任意に定めること
が出来る。
【0185】
シーリング材5008の基板5001側の面に凹部5007を設けて吸湿性物質または
酸素を吸着しうる物質を配置する。
【0186】
基板5001上に引き回されている配線(引き回し配線)は、シール材5009と基板
5001との間を通り、FPC5006を介して発光装置の外部の回路または素子に接続
されている。
【0187】
電流計及び補正回路は、基板5001とは異なる基板(以下、チップと呼ぶ)
5020に形成され、COG(チップ・オン・グラス)法等の手段によって基板5001
上に取り付けられ、基板5001上に形成された電源線及び陰極(図示せず)に電気的に
接続されている。
【0188】
本実施例では、チップ5020は、ワイヤボンディング法、COG法等により基板50
01上に取り付けることで、発光装置を1枚の基板で構成することができ、装置自体がコ
ンパクトになり、機械的強度も上がる。
【0189】
なお、基板上にチップを接続する方法に関しては、公知の方法を用いて行うことが可能
である。また、電流計と、補正回路以外の回路及び素子を、基板5001上に取り付けて
も良い。
【0190】
本実施例は、実施の形態及び実施例1〜3と自由に組み合わせて実施することが可能で
ある。
【実施例5】
【0191】
発光装置は自発光型であるため、液晶ディスプレイに比べ、明るい場所での視認性に優
れ、視野角が広い。従って、様々な電子機器の表示部に用いることができる。
【0192】
本発明の発光装置を用いた電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル
型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装
置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム
機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍
等)、記録媒体を備えた画像再生装置(具体的にはデジタルビデオディスク(DVD)等
の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられ
る。特に、斜め方向から画面を見る機会が多い携帯情報端末は、視野角の広さが重要視さ
れるため、発光装置を用いることが望ましい。それら電子機器の具体例を
図10に示す。
【0193】
図10(A)は発光装置であり、筐体3001、支持台3002、表示部3003、ス
ピーカー部3004、ビデオ入力端子3005等を含む。本発明の発光装置は表示部30
03に用いることができる。発光装置は自発光型であるためバックライトが必要なく、液
晶ディスプレイよりも薄い表示部とすることができる。なお、発光装置は、パソコン用、
TV放送受信用、広告表示用などの全ての情報表示用表示装置が含まれる。
【0194】
図10(B)はデジタルスチルカメラであり、本体3101、表示部3102、受像部
3103、操作キー3104、外部接続ポート3105、シャッター3106等を含む。
本発明の発光装置は表示部3102に用いることができる。
【0195】
図10(C)はノート型パーソナルコンピュータであり、本体3201、筐体3202
、表示部3203、キーボード3204、外部接続ポート3205、ポインティングマウ
ス3206等を含む。本発明の発光装置は表示部3203に用いることができる。
【0196】
図10(D)はモバイルコンピュータであり、本体3301、表示部3302、スイッ
チ3303、操作キー3304、赤外線ポート3305等を含む。本発明の発光装置は表
示部3302に用いることができる。
【0197】
図10(E)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)
であり、本体3401、筐体3402、表示部A3403、表示部B3404、記録媒体
(DVD等)読み込み部3405、操作キー3406、スピーカー部3407等を含む。
表示部A3403は主として画像情報を表示し、表示部B3404は主として文字情報を
表示するが、本発明の発光装置はこれら表示部A、B3403、3404に用いることが
できる。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。
【0198】
図10(F)はゴーグル型ディスプレイ(ヘッドマウントディスプレイ)であり、本体
3501、表示部3502、アーム部3503を含む。本発明の発光装置は表示部350
2に用いることができる。
【0199】
図10(G)はビデオカメラであり、本体3601、表示部3602、筐体3603、
外部接続ポート3604、リモコン受信部3605、受像部3606、バッテリー360
7、音声入力部3608、操作キー3609等を含む。本発明の発光装置は表示部360
2に用いることができる。
【0200】
ここで
図10(H)は携帯電話であり、本体3701、筐体3702、表示部3703
、音声入力部3704、音声出力部3705、操作キー3706、外部接続ポート370
7、アンテナ3708等を含む。本発明の発光装置は表示部3703に用いることができ
る。なお、表示部3703は黒色の背景に白色の文字を表示することで携帯電話の消費電
力を抑えることができる。
【0201】
なお、将来的に有機発光材料の発光輝度が高くなれば、出力した画像情報を含む光をレ
ンズ等で拡大投影してフロント型若しくはリア型のプロジェクターに用いることも可能と
なる。
【0202】
また、上記電子機器はインターネットやCATV(ケーブルテレビ)などの電子通信回
線を通じて配信された情報を表示することが多くなり、特に動画情報を表示する機会が増
してきている。有機発光材料の応答速度は非常に高いため、発光装置は動画表示に好まし
い。
【0203】
また、発光装置は発光している部分が電力を消費するため、発光部分が極力少なくなる
ように情報を表示することが望ましい。従って、携帯情報端末、特に携帯電話や音響再生
装置のような文字情報を主とする表示部に発光装置を用いる場合には、非発光部分を背景
として文字情報を発光部分で形成するように駆動することが望ましい。
【0204】
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが
可能である。