【実施例】
【0024】
図1は、皮膚変化予測システム1の構成を示すブロック図であり、
図2は、放射線照射によるグレード決定の説明図であり、
図3は、皮膚変化の説明図である。
【0025】
図1に示すように、皮膚変化予測システム1は、撮影装置であるカメラ2と、パーソナルコンピュータである表示入力装置3と、パーソナルコンピュータである皮膚変化予測装置4とで構成されている。なお、
図3の各画像は、元はカラー画像であるが、モノクロ画像となる特許図面上で違いをわかりやすくするために、実際のものよりも全て一定濃度で濃度を濃くしたものである。
【0026】
カメラ2は、生体の皮膚を撮影した撮影画像データ(皮膚画像色成分データ)を表示入力装置3へ送信する。この撮影画像データは、
図3(A)に示すRGB表現形式(図示はモノクロで表示されるが、実際にはカラー画像である)の皮膚画像のデータである。ここで取得される撮影画像データは、撮影環境として撮影対象の皮膚に当たっている照明量がある程度の一様性を有していることが必要である。この一様性は厳密である必要はなく、不自然な不均一さがない程度でよい。
【0027】
なお、撮影画像の色成分は、光の三原色(RGB表現形式)であるR成分(赤)とG成分(緑)とB成分(青)、または、色の三原色(SMY表現形式)であるC成分(シアン)とM成分(マゼンタ)とY成分(イエロー)、あるいは、印刷の四原色(CMYK表現形式)であるC成分(シアン)とM成分(マゼンタ)とY成分(イエロー)とK成分(ブラック)等、色を表現する適宜の成分で構成することができる。この実施例では、好ましい色成分として光の三原色を用いている。
【0028】
表示入力装置3は、操作入力を受け付けるキーボードとマウスまたはタッチパネルなどの入力部と、画像表示を行う液晶ディスプレイまたはCRTモニタ等の表示部と、データおよびプログラムを記憶するハードディスク等の記憶部と、前記プログラムに従って各種動作や演算を行うCPUとROMとRAMによる制御部と、カメラ2や皮膚変化予測装置4等の外部機器と接続されてデータ送受信を行うUSB等の接続インターフェースとを備えている。
【0029】
表示入力装置3は、カメラ2から受信した撮影画像データを皮膚変化予測装置4に送信する処理、撮影画像と入力部で構成される入力画面を表示して皮膚線量、照射領域、およびテスト領域を入力させる処理、入力された皮膚線量、照射領域、およびテスト領域を皮膚変化予測装置4に送信する処理を実行する。
【0030】
皮膚変化予測装置4は、少なくともプログラムおよびデータを記憶する記憶部と、前記プログラムに従って各種動作や演算を行うCPUと、表示入力装置3等の外部機器を接続するUSB等の接続インターフェースとを備えている。記憶部には、記録媒体9から皮膚変化予測プログラムがインストールされている。なお、皮膚変化予測装置4は、表示入力装置3と同様に、入力部および表示部等をさらに備えても良い。この皮膚変化予測装置4は、画像処理を行う画像処理装置でもある。
【0031】
皮膚変化予測装置4は、記憶部のプログラムに従って制御部が動作する処理機能部として、放射線情報受付部11(要因情報受付部)、変化量対応データ12、変化量決定部13、グレード判定部14、グレード対応データ15、グレード出力部16、照射領域受付部17、照射前皮膚画像取得部21(皮膚画像取得部)、皮膚領域抽出部211、表現形式変換部22、画像変化部23、表現形式復元部24、予測皮膚画像出力部25、テスト領域画像取得部31、皮膚領域抽出部311、主成分分析部32、独立成分分析部33、色素ベクトル適切性判定部34、色素ベクトル決定部35、及び色素ベクトル標準データ36を備えている。このうちの表現形式変換部22と、変化量決定部13と、画像変化部23と、表現形式復元部24は、放射線照射による皮膚変化を演算する変化演算部として機能する。
【0032】
放射線情報受付部11は、放射線治療計画における放射線情報(要因情報)の入力を表示入力装置3により受け付ける。この放射線情報の受付は、手入力によって入力される、USB等の情報媒体から入力される、あるいは治療計画装置から通信手段を介して受信するなど、適宜の方法によって実行するとよい。このとき受け付ける放射線情報は、少なくとも放射線種別と線量を必須とし、放射線種別によってはさらに線質を必須とする。具体的には、放射線種別がX線であれば、線量の入力を受け付ける。放射線種別が荷電粒子線(陽子、炭素を含む重イオン粒子)であれば、線量と線質の入力を受け付ける。線量は物理的に測定可能な吸収線量(単位 グレイ(Gy)、または臨床効果の指標として生物学的効果比(RBE)を乗じた臨床線量(単位 Gy (RBE))で表現され、線質は粒子の単位長さあたりのエネルギー付与量(LETまたは線エネルギー、単位 keV/micrometer)で表現される。また、放射線情報には、放射線を照射するタイミングに関して、基準日からの経過時間(経過日数)も受け付ける。なお、本明細書において、「皮膚線量」の用語は、X線であれば線量を指すもの、荷電粒子線であれば線量と線質を指すものとして用いる。
【0033】
変化量対応データ12は、皮膚線量とヘモグロビン流量の変化量を対応付けたデータである。このデータは、皮膚線量とヘモグロビン流量の数値を対応付けた表データとする、あるいは、皮膚線量を入力するとヘモグロビン流量が算出される計算式データとするなど、適宜の形式のデータとすることができる。この変化量対応データ12は、皮膚線量照射前後の照射領域のヘモグロビン量がレーザー血流計等の測定器によって測定され、皮膚線量と対応づけられた臨床データを用いて、事前に作成され登録されたものである。
【0034】
ここで、本実施例における変化量対応データ12を詳述する。
図2(A)は、ヘモグロビン色素画像の画素値であるH(x,y)とヘモグロビン流量(皮膚血流量)の変化量の測定結果をプロットしたグラフである。全データに対して原点を通る直線でフィットすると、傾きは0.0139(20)(ml/min100g)
−1であった。相関係数は0.74であり、両者の間に相関があると言える。なお図中に点線で図示するエラーバンドに、照明環境に起因する15%の画素値の誤差、血流量測定に起因する0.2ml/min/100gの誤差、そしてフィットによる誤差を二乗和して算出されている。血流量測定に起因する誤差とは主には心拍による生体的な効果が原因である。
【0035】
図2(B)は、皮膚線量とヘモグロビン流量の関係のデータをプロットしたグラフである。この定量関係が皮膚障害における皮膚の紅斑の度合いを数値化する重要な関係となる。グラフ中の塗りつぶしシンボルはレーザー血流計によって直接測定されたデータであり、中抜きシンボルは
図2(A)の関係式を用いて画像解析した画素値から変換して得たヘモグロビン流量(血流量)である。その結果、0.205(18)ml/min/100g/Gy(RBE)の傾きを得た。レーザーによるデータだけの場合の相関係数は0.75、画像も含めた全データの場合は0.60であり相関が認められる。ここで図中に点線で図示するエラーバンドは、血流量測定に起因する0.2ml/min/100gの誤差、そしてフィットによる誤差を二乗和して算出されている。
【0036】
従って、本実施例においては、ヘモグロビン色素画像の画素値に対するヘモグロビン流量(皮膚血流量)の変化量の傾き0.0139(20)(ml/min100g)
−1、および、ヘモグロビン流量に対する皮膚線量の傾き0.205(18)ml/min/100g/Gy(RBE)を変化量対応データ12としている。
【0037】
このように、ヘモグロビン色素画像の画素値とヘモグロビン流量(皮膚血流量)に相関関係があり、かつ、ヘモグロビン流量(皮膚血流量)と皮膚線量に相関関係があることから、ヘモグロビン色素画像における画素値変化量から皮膚線量を推定する、逆に皮膚線量からヘモグロビン色素画像における画素値変化量を推定することができる。
【0038】
変化量決定部13は、放射線情報受付部11から取得する放射線情報と変化量対応データ12に基づいて、ヘモグロビン流量を変化させる変化量を決定する。決定した変化量は、画像変化部23へ送信する。
【0039】
グレード判定部14は、放射線情報受付部11から変化量決定部13を介して受け取る放射線情報と、グレード対応データ15に基づいて、グレードを判定する。この時判定するグレードは、例えば従来の4段階のグレードをさらに10倍の精細度に高めた40段階のグレードとするなど、精度よく詳細なグレードとする。グレード判定部14は、判定したグレードをグレード出力部16へ送信する。
【0040】
グレード対応データ15は、放射線情報とグレードを対応付けるためのデータであり、表形式のデータとする、あるいは、放射線情報の数値を代入することで解を求める演算式とするなど、適宜の形式のデータとすることができる。
【0041】
このグレード対応データ15は、臨床データによって事前に作成されたものである。詳述すると、
図2(C)及び
図2(D)は、画素値変化量から算出できるヘモグロビン流量(血流量)とグレード判定の関係を示すグラフであり、第一縦軸(図示左側の縦軸)がヘモグロビン流量(血流量)、横軸がグレードを示している。
図2(C)における第二縦軸(図示右側の縦軸)は画素値変化量、
図2(D)における第二縦軸(図示右側の縦軸)は皮膚線量を示している。
【0042】
このグラフより、本実施例では、グレード対応データ15として、ヘモグロビン流量(血流量)が6.4ml/min/100g以上増加する場合にグレードは2以上と定めた。また、本実施例では、ヘモグロビン流量変化(血流量変化)との変換係数を使うと、グレード1/2の境界線に対応する画素値変化量、皮膚線量が算出でき、それぞれ0.09,32Gy(RBE)程度と推測される。この場合の誤差は、+−20%である。
【0043】
なお、グレード判定の閾値は上記数値に限られるものではなく、適宜定めることができる。重要なことは、グラフに示すように、ヘモグロビン流量(血流量)、皮膚線量、画素値変化量のそれぞれが精密なグレード値と1:1で定量的に対応付けられていることである。
【0044】
グレード出力部16は、グレード判定部14で得られたグレードを表示入力装置3へ送信し、表示入力装置3にグレード表示画面として表示する、
照射領域受付部17は、生体の皮膚のうち放射線治療計画において放射線を照射する照射領域の入力を表示入力装置3から受け付ける。照射領域受付部17は、受け付けた照射領域を画像変化部23へ送信する。
【0045】
照射前皮膚画像取得部21は、放射線照射前に皮膚を撮影した照射前皮膚画像データを表示入力装置3から取得する。この照射前皮膚画像データは、RGB表現形式であるため、R成分とG成分とB成分に容易に分離できる。照射前皮膚画像取得部21は、この分離可能な照射前皮膚画像データを表現形式変換部22へ送信する。
【0046】
皮膚領域抽出部211は、照射前皮膚画像取得部21で取得した照射前皮膚画像データから皮膚領域(肌領域)を抽出する。この皮膚領域の抽出は、照射前皮膚画像データの各ピクセルのうち、皮膚領域条件を満たすピクセルを抽出することで実行する。
【0047】
皮膚領域条件は、RGB表現形式における次の条件を全て満たすピクセルを皮膚領域とする。
<皮膚領域条件>
R>R_th
G/R>R_ratio1
B/R>R_ratio2
(注)RはR成分の濃度(例えば0〜255)を示す。
GはG成分の濃度(例えば0〜255)を示す。
BはB成分の濃度(例えば0〜255)を示す。
R_thは所定値であり、例えば100〜160とする、あるいは10とすることができる。なお、R_thは、10以上とすることができ、50以上とすることが好ましく、100以上とすることがより好ましい。また、R_thは、200以下とすることが好ましく、160以下とすることがより好ましい。
R_ratio1は所定値であり、例えば1.1とする、あるいは1.0とする等、適宜の値とすることができる。なお、R_ratio1は、0.5〜1.5とすることが好ましく、0.9〜1.2とすることがより好ましく、1.0〜1.1とすることがさらに好ましい。
R_ratio2は所定値であり、例えば1.1とする、あるいは1.0とする等、適宜の値とすることができる。なお、R_ratio2は、0.5〜1.5とすることが好ましく、0.9〜1.2とすることがより好ましく、1.0〜1.1とすることがさらに好ましい。
【0048】
なお、上記皮膚領域の抽出条件により適切な画像を得るための撮影条件は、(1)肌色が認識できる程度の明るさがあること、(2)不自然な影や白とびが生じることなく皮膚領域が照らされていること、の2点のみである。この2点の条件をクリアできていれば、上記皮膚領域の抽出が良好に行われる。なお、条件(2)においては、皮膚領域が略均一に照らされていることがより好ましい。
【0049】
表現形式変換部22は、取得した照射前皮膚画像データ(皮膚領域抽出済み)を、RGB表現形式から色素ベクトル表現形式へ変換する。この変換は、色素ベクトル決定部35から受け取る色素ベクトルを用いることで実行する。ここで、色素ベクトルとは、本実施形態においてヘモグロビンベクトルとメラニンベクトルを指す。色素ベクトル表現形式は、ヘモグロビン成分と、メラニン成分と、その他成分の3成分に情報が分離されている。表現形式変換部22による表現形式の変更の詳細については後述する。
【0050】
画像変化部23は、照射前皮膚画像データから表現形式変換部22によって抽出されたヘモグロビン成分のうち、照射領域受付部17によって定められた照射領域に対して、変化量決定部13で決定した変化量を適用し、当該照射領域のヘモグロビン成分を変化させる。この画像変化部23による画像変化処理の詳細は後述する。
【0051】
表現形式復元部24は、変化量決定部13で変化させた後の色素ベクトル表現形式の画像データ(皮膚画像生体要素成分データ)を、RGB表現形式に変換することで表現形式の復元を実行する。表現形式復元部24は、復元後のRGB表現形式の画像データを予測皮膚画像として予測皮膚画像出力部25へ送信する。
【0052】
予測皮膚画像出力部25は、受信した予測皮膚画像を表示入力装置3へ送信し、表示させる。
【0053】
テスト領域画像取得部31は、表示入力装置3によって入力されたテスト領域を取得する。このテスト領域は、撮影した皮膚画像の一部を選択した領域であり、例えば100ピクセル×100ピクセルの小領域とするなど、適宜の領域とすることができる。
【0054】
皮膚領域抽出部311は、テスト領域の皮膚画像に対して皮膚領域抽出部211と同一の操作を実施して肌画像を抽出する。なお、この皮膚領域抽出部311を設けず、皮膚領域抽出部211で抽出された皮膚領域からテスト領域画像取得部31がテスト領域を抽出する構成としてもよい。
【0055】
主成分分析部32は、テスト領域の皮膚画像(皮膚領域抽出済み)に対して主成分分析(多変量解析の一種)を行う。主成分分析部32は、最も相関の高い方向(最も分布の広い方向)へ主成分の座標軸(第一成分の第一軸)を取り出し、以降、それまでの座標軸に直交する平面(多次元上での平面)の上で最も相関の高い方向(最も分布の広い方向)へ第n成分の第n軸を取り出す作業を繰り返す。演算した結果は、最も相関のある高い第一成分(第一軸)と、この第一成分に直交する第二成分(第二軸)の二軸により、98%以上を表現できている。このため、残りの成分をまとめて第三成分として破棄し、以降の処理で第一成分と第二成分のみを用いる。これにより、皮膚変化予測装置4は、高精度かつ高速の処理を実現している。テスト領域画像での画像データを主成分分析したベクトルで表現すると、次の(数1)に示す式となる。
【0056】
【数1】
(注)(r
0,g
0,b
0)は、肌色のベース色を示す。
r
ave、g
ave、b
aveは、画像中の(r,g,b)の値から(r
0,g
0,b
0)の値を減算した後の値の平均値を示す。
pc1は第一成分、pc2は第二成分、pc3は第三成分を示す。
(r
1,g
1,b
1)は、第一成分を表すベクトルである。
(r
2,g
2,b
2)は、第二成分を表すベクトルである。
(r
3,g
3,b
3)は、第三成分を表すベクトルである。
なお、各ベクトルは1に規格化されており、互いに直交しているためにお互いの内積はゼロとなる。
【0057】
独立成分分析部33は、主成分分析部32で得られた第一成分と第二成分で表現されるデータに対して独立成分分析(多変量解析の一種)を実行し、各軸が最も独立な状態となる直交しない二軸の座標軸を取る。得られた座標軸の各成分は、一方の成分がヘモグロビンベクトルとなり、他方の成分がメラニンベクトルとなる。テスト領域画像での画像データを独立成分分析したベクトルで表現すると、次の(数2)に示す式となる。
【0058】
【数2】
(注)r
ave、g
ave、b
aveは、画像中の(r,g,b)の値から(r
0,g
0,b
0)の値を減算した後の値の平均値を示す。
(r
h,g
h,b
h)は、ヘモグロビンベクトルを表す。
(r
m,g
m,b
m)は、メラニンベクトルを表す。
hは、ヘモグロビン量(ヘモグロビン座標)を示す係数である。
mは、メラニン量(メラニン座標)を示す係数である。
なお、等号ではなく近似等号を使っているのは、第三成分を無視したためである。また、各色素ベクトルは1に規格化されているが、色素ベクトル同士に直交関係はない。
また、上記(数1)および(数2)では平均値r
ave、g
ave、b
aveを各成分に加算することを明確に表記しているが、平均値r
ave、g
ave、b
aveを(数1)及び(数2)の数式におけるR
0,B
0,G
0に含ませて表現上は見えない形に表現してもよい。この場合でも、同じ意味の数式であるから、RGB表現形式をヘモグロビンベクトル等が用いられた生体要素表現形式に変換することができる。
【0059】
色素ベクトル適切性判定部34は、得られた色素ベクトルが適切か否かを判定する。詳述すると、テスト領域画像取得部31で取得されるテスト領域は、主成分分析部32でヘモグロビンとメラニンを第一成分と第二成分に選び、独立成分分析部33で独立成分として分離してくれるものでなければならない。このようなテスト領域が操作者によって表示入力装置3で入力されたか否かを判定するために、色素ベクトル適切性判定部34は、得られた色素ベクトルがヘモグロビンベクトルとメラニンベクトルであるか否かを判定する。
【0060】
色素ベクトル決定部35は、色素ベクトル適切性判定部34による判定結果が「適切」であれば、独立成分分析部33から送信されたヘモグロビンベクトルとメラニンベクトルを色素ベクトルとして決定する。色素ベクトル適切性判定部34による判定結果が「不適切」であれば、色素ベクトル決定部35は、色素ベクトル標準データ36から標準的なヘモグロビンベクトルとメラニンベクトルを取得して、これを色素ベクトルとして決定する。色素ベクトル決定部35は、決定したヘモグロビンベクトルとメラニンベクトルを表現形式変換部22へ送信する。なお、この実施例では、一度不適切であれば色素ベクトル標準データ36を使用することとしているが、これに限らず、テスト領域の取得から適否の判定までを複数回繰り返し、所定回数繰り返しても全て不適切であった場合に色素ベクトル標準データ36を用いる構成としてもよい。
【0061】
色素ベクトル標準データ36は、予め算出された標準的な色素ベクトル(ヘモグロビンベクトルとメラニンベクトル)を記憶している。
【0062】
<表現形式変換部22による表現形式の変更の詳細>
表現形式変換部22は、独立成分分析部33で得られた色素ベクトルを用いて、(r,g,b)の三成分を、次の(数3)の式に示す(h,m,s)の三成分に線形変換(座標変換)する。
【0063】
【数3】
(注)sは、照明の単位ベクトル(陰影ベクトル)の係数であり、ヘモグロビンおよびメラニンによる色素ベクトルにて表現できない情報をすべて押し込んだものに該当する。
【0064】
ここで、(数3)への線形変換について説明する。(数3)をより正確に表現すると、次の(数4)で表すことができる。
【数4】
(注)(x,y)の二次元の位置関数になっている変数は画像データのピクセル毎に異なる値が入る。
(x、y)の関数になっていない箇所は定数であることを意味している。
【0065】
上記(数4)は、(r(x,y),g(x,y)b(x,y))で表現されていたフルカラー画像が(H(x,y),M(x,y),S(x,y))の三種類の色素画像に分解されることを示している。
【0066】
ここで、H(x,y),M(x,y),S(x,y)は、次の(数5)で表すことができる。
【数5】
(注)h
ave,m
ave,s
aveは、h,m,sの各成分の平均値を示す。この平均値は、画像全体の平均値とする等、適宜の平均値とできるが、皮膚を表現する領域だけのRGB成分から算出する平均値であることが好ましい。従って、この実施例では皮膚領域のRGBの平均値を用いる。
【0067】
上記(数5)におけるh(x,y),m(x,y),s(x,y)は、上述した(数1)により示した主成分分析を行って得た第一成分と第二成分の主成分ベクトルを用いて、次の(数6)の計算式により導出する。
【数6】
【0068】
h
ave,m
ave,s
aveについては、上記(数6)におけるr(x,y),g(x,y),b(x,y),h(x,y)の箇所をr
ave,g
ave,b
ave,h
aveにそれぞれ置き換えた式により導出できる。
【0069】
この表現形式の変換により、
図3(A)に示した皮膚画像が、
図3(B)に示すヘモグロビン成分皮膚画像、
図3(C)に示すメラニン成分皮膚画像、
図3(D)に示すその他成分皮膚画像に分離される。図はモノクロ画像となっているが、実際には、
図3(B)は薄い赤色系の単一色スケール画像であり、
図3(C)は薄い黄土色系の単一色スケール画像であり、
図3(D)は薄い灰色系の単一色スケール画像(グレースケール画像)である。例えば青い血管は、ヘモグロビンまたはメラニンの色素ベクトルでは表現できないため、その影響が影となってその他成分である
図3(D)に見えている。
図3(B)〜
図3(D)に図示する例は、皮膚領域抽出を行わないで変換した場合の画像であるが、例えば、背景など皮膚以外が写りこんでいる画像の場合は、平均値r
ave、g
ave、b
aveに対して皮膚領域抽出を行うとさらに良好なヘモグロビン成分皮膚画像が得られる(後述の
図7参照)。
【0070】
なお、この実施例では、生体要素成分としてヘモグロビン成分とメラニン成分による色素成分を用いているが、これに限らず、他の成分を用いる構成としてもよい。この場合、ヘモグロビン成分、ユーメラニン成分、フェオメラニン成分、カロチン成分、またはこれらの複数等とすることができ、このうちのユーメラニン成分とフェオメラニン成分をまとめてメラニン成分とすることができる。どのように構成する場合でも、生体要素成分は、少なくともヘモグロビン成分を有することが好ましい。
【0071】
<画像変化部23による画像変化処理の詳細>
画像変化部23は、上記(数3)の式におけるh成分に対して、変化量決定部13で決定された変化量(ヘモグロビン増加量)を増加させる。
このようにして画像変化させた後に各成分を合成し元のRGB表現形式に復元すると、
図3(E)に示す予測皮膚画像が得られる。
図3(E)の予測皮膚画像は、特許図面としてモノクロ画像になっているが、実際にはカラー画像である。この
図3(E)の例は、四角形の第1照射領域41と、この第1照射領域41と一部重なる四角形の第2照射領域42にそれぞれ放射線を照射した場合の予測皮膚画像を示している。この第1照射領域41と第2照射領域42は、照射領域受付部17で受け付けた領域である。第1照射領域41は、第2照射領域42よりも皮膚線量が多いために第2照射領域42よりも濃く(赤く)表示されており、かつ、第1照射領域41と第2照射領域42が重なっている重複照射領域43はさらに濃く(赤く)表示されている。
【0072】
なお、表示入力装置3と皮膚変化予測装置4は、別の装置として構成したが、1つの装置としてまとめて構成してもよい。この場合、1つのコンピュータとして構成することができる。例えばタッチパネルモニタなどの表示入力部、あるいはキーボードやマウス等の入力部と液晶ディスプレイやCRTモニタ等の表示部を、表示入力装置3とすることができる。また、例えば、制御部と記憶部を皮膚変化予測装置4とすることができる。これにより1つのコンピュータで表示入力装置3と皮膚変化予測装置4を構成できる。
【0073】
図4は、グレード出力部16が表示入力装置3に出力して表示するグレード判定画面50の画面構成図である。
【0074】
グレード判定画面50は、予測グレード値表示部51、予測グレード目盛表示部52、急性期スコア表示部56、および皮膚反応表示部58を備えている。
【0075】
予測グレード値表示部51は、グレード判定部14によって判定されたグレード値が表示される。このグレード値は、従来の1〜4の4段階よりもさらに細かい段階を示せる値であり、例えば0.1〜4.0までの40段階で表示される。
【0076】
なお、このグレード値の細かい段階は、どこからどこまでが従来の4段階のどこに入るかが明確な段階とすることが好ましく、この実施例では、本発明によるグレード(以下新グレードという)が0.1〜1.0までは従来グレードの1に対応し、新グレードの1.1〜2.0までが従来グレードの2に対応し、新グレードの2.1〜3.0までが従来グレードの3に対応し、新グレードの3.1〜4.0までが従来グレードの4に対応している。
【0077】
予測グレード目盛表示部52は、従来グレードを新グレードに対応させて細かく分割した目盛を示し、この目盛を指す予測値マーク53を表示する。
予測値マーク53は、予測値を正確に示す予測値明示部54と、この予測値から誤差が生じ得る範囲を示す誤差範囲表示部55とを備えている。この誤差範囲表示部55が予測グレード目盛表示部52の目盛の並ぶ報告に幅をもっており、その内側で重なるように予測値マーク53が設けられていることで、予測値の中央値と誤差の範囲を直観的にわかりやすく認識できる。誤差範囲表示部55で表示される誤差は、予め定めた一定の範囲とする、あるいは、その都度演算で求めるなど、適宜の方法によって定めることができる。予め定めた一定の範囲とする場合は、例えば、レーザー血流計によって測定するヘモグロビン量の誤差(例えば10%〜15%)に撮影環境に依存する誤差(例えば15%)を加味した誤差(例えば18%〜21%)とすることができる。
【0078】
急性期スコア表示部56は、従来のグレード1〜4を示しており、皮膚反応表示部58は、従来のグレード1〜4に対応する皮膚反応である「軽い紅斑」「強い紅斑」「水泡、糜爛(ビラン)」「潰瘍」をそれぞれグレードに対応させて表示している。
【0079】
急性期スコア表示部56と皮膚反応表示部58は、予測される新グレードが位置するグレード部分を、色付きで表示する等の差別化表示58を行う。これにより、従来グレードであればどのグレードに該当するかを容易に把握できるようにしている。
【0080】
図5は、これまでに説明した皮膚変化予測システム1に検証装置6を追加した皮膚変化検証システム10の構成を示すブロック図である。
検証装置6は、予測皮膚画像取得部61と、照射後皮膚画像取得部62と、比較検証部63と、検証結果出力部64とを備えている。検証装置6は、少なくともプログラムおよびデータを記憶する記憶部と、前記プログラムに従って各種動作や演算を行うCPUと、皮膚変化予測装置4等の外部機器を接続するUSB等の接続インターフェースとを備えている。検証装置6の記憶部には、記録媒体9から検証プログラムがインストールされている。この検証装置6は、皮膚変化予測装置4と別のハードウェアとしても良いが、皮膚変化予測装置4と同じハードウェアに機能を搭載して構成してもよい。
【0081】
予測皮膚画像取得部61は、皮膚変化予測装置4の予測皮膚画像出力部25(
図1参照)から予測皮膚画像を取得する。
【0082】
照射後皮膚画像取得部62は、放射線照射後にカメラ2で皮膚が撮影された照射後皮膚画像を表示入力部3を介して取得する。
【0083】
比較検証部63は、予測皮膚画像取得部61から受信する予測皮膚画像と、照射後皮膚画像取得部62から受信する照射後皮膚画像を比較し、放射線照射計画に対する照射領域および皮膚変化の適切性を検証する。具体的には、放射線照射によって皮膚反応の生じている領域と放射線照射計画における照射領域の一致度を算出し、この一致度が所定範囲内であるか否かによって適否を判定する。ここで、予測皮膚画像取得部61から受信する予測皮膚画像は、別途の治療計画装置で計画された放射線情報等に基づいて予測された画像である。このため、この時点で治療計画に関する放射線情報は無くとも良いが、放射線情報を得てより詳細に比較検証する構成としてもよい。
【0084】
また、皮膚反応によって回りの皮膚と色が異なっている程度を放射線治療計画によって色が変化する程度との一致度を算出し、この一致度が所定範囲内であるか否かによって適否を判定する。この色変化の一致度の算出は、予測皮膚画像と照射後皮膚画像を直接比較して行う、あるいは、上述した表現形式変換部22による色素ベクトル表現への変換をしてヘモグロビン成分のみを比較して行うなど、適宜の構成とすることができる。
【0085】
検証結果出力部64は、比較検証部63で検証した結果である適否判定と一致度を表示入力装置3に出力して表示させる。このとき、検証結果出力部64は、次に
図6と共に説明する検証用画像も表示させる。なお、
図6の各画像は、元はカラー画像であるが、モノクロ画像となる特許図面上で違いをわかりやすくするために、実際のものよりも全て一定濃度で濃度を濃くしたものである。
【0086】
図6は、照射領域の検証用画像を示す説明図である。
図6(A)は、治療計画から算出した皮膚線量の分布を示す皮膚線量分布画像である。図示の例では、1門12.5Gy(RBE)の処方線量を二方向から照射しており、二門照射が重なった部分の皮膚線量22Gy(RBE)を100%としている。
図6(B)は、
図6(A)に示した治療計画による照射後に写真撮影した照射後皮膚画像である。この照射後皮膚画像は、
図6(A)における長方形の白枠部分を拡大表示している。
図6(C)は、照射後皮膚画像を色素分解したヘモグロビン色素画像である。
図6(D)は、
図6(A)〜
図6(C)における照射領域を説明するための説明図である。図示するように、本実施例の照射では、第一照射領域71と、第二照射領域75と、第一照射領域71および第二照射領域75の重なり部分である重複照射領域73が存在している。このように、
図6(A)〜
図6(C)に示す各画像を検証結果出力部64により出力することで、
図6(A)の治療計画における皮膚線量分布画像と
図6(C)の治療後のヘモグロビン色素画像を比較して計画通りに適切な照射が出来たか否かを検証できる。
【0087】
なお、比較検証部63および検証結果出力部64は、治療計画における皮膚線量分布画像(
図6(A)参照)から推定した予測皮膚画像と照射後皮膚画像(
図6(C)のヘモグロビン色素画像)を並べて表示入力装置3に表示し、医師の目視判断によって最終決定されて表示入力装置3に入力された適否を受け取る構成としてもよい。この場合、比較検証部63で検証した結果を表示入力装置3に表示した上で最終判断を医師にゆだねる構成とすることができるが、比較検証部63では比較検証を行わずに適否判断を完全に医師にゆだねる構成とすることも可能である。
【0088】
以上の構成及び動作により、放射線照射による皮膚反応を事前に精度よく予測することができる。
また、皮膚変化予測装置4は、放射線照射後の皮膚の変化を予測皮膚画像で明瞭に表示することができる。このため、操作者は、放射線治療を行う前に、どの程度の皮膚変化が生じるかを目視で分かり易く把握することができる。
【0089】
また、皮膚変化予測装置4は、従来よりも詳細なグレード値を出力することができる。このため、操作者は、例えばグレード2であっても、グレード1に近いグレード2なのか、それともグレード3に近いグレード2なのかを、明瞭に把握できる。従って、操作者が予測されたグレード値を見て皮膚線量を治療前に最適に調節することを容易に実現できる。
【0090】
また、皮膚変化予測装置4は、精度の良いグレード値を定量的に出力できる。このため、グレード値は、医師間の意思疎通の共通尺度として利用されることができる。そして、皮膚変化予測装置4は、放射線照射による皮膚変化を示す尺度としてグレード値の標準化を実現し得る。
【0091】
また、皮膚変化予測装置4は、グレード判定画面50に従来グレードと新グレードとを並べて表示するため、従来グレードに慣れている医師が新グレードを違和感なく利用することができる。特に、予測値マーク53を表示することにより、皮膚変化予測装置4は、医師が直観的にわかり易い形で表示することができる。
【0092】
また、皮膚変化予測装置4は、放射線照射による皮膚の変化を、元の皮膚画像に対して相対量の変化として予測皮膚画像を作成する。このため、操作者は、撮影環境等の厳密性が要求されず、皮膚変化予測装置4を簡易に利用することができる。
【0093】
また、皮膚変化予測装置4は、偏光照明などの特殊な撮影環境を必要とせず、照明(若しくは自然光)に不自然な不均一さがなければ十分である。このため、様々な環境で様々なカメラ2を用いて簡易に撮影した皮膚画像を利用することができる。
【0094】
また、検証装置6は、皮膚変化予測装置4により予測された予測皮膚画像と、実際に放射線が照射された後の照射後皮膚画像とを比較検証することができる。これにより、操作者は、計画通りの放射線治療が行われたか否かを容易に確認することができる。また、予測皮膚画像と照射後皮膚画像の誤差が大きいような場合には、その原因を追究して予測精度を高めることに活用することができる。
【0095】
また、皮膚領域抽出部211により皮膚領域を抽出してから計算を行うことで、
図7の説明図に示すように色素分解の精度を向上させることができる。すなわち、
図7(A)は照射後に撮影した撮影画像であり、ここから皮膚領域を抽出することなくヘモグロビン色素画像を求めると
図7(B)に示すヘモグロビン色素画像となる。これに対して皮膚領域を抽出して計算することで、
図7(C)に示す撮影画像から
図7(D)に示す高精度なヘモグロビン色素画像を得ることができる。なお、
図7(A)と
図7(C)は同一の撮影画像である。また、
図7の各画像は、元はカラー画像であるが、モノクロ画像となる特許図面上で違いをわかりやすくするために、実際のものよりも全て一定濃度で濃度を濃くしたものである。
【0096】
また、RGB表現形式と色素ベクトル表現形式との変換に、RGB表現形式の画素の平均値を用いることで、変換を実現できる。
また、この平均値を、画像全体の平均値ではなく皮膚領域のみのRGB画素値から算出した平均値とすることで、照明環境や撮影環境の影響を受けずに精度よくヘモグロビン量を推定することができる。すなわち、背景色や衣服の色による影響を防止することができ、ゆるやかな撮影条件で誰でも容易に利用することができる。また、過去に撮影した撮影画像で解析を意図していない撮影画像であっても、精度よく解析してヘモグロビン量を推定することができる。
【0097】
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
例えば、色素ベクトルとしてヘモグロビンベクトルとメラニンベクトルを用いたが、メラニン成分をその他成分としてまとめてヘモグロビンベクトルとその他としてもよい。この場合でも、ヘモグロビン成分のみに画像変化を行えば良いため、皮膚線量の照射による皮膚変化の予測画像を適切に作成することができる。
【0098】
また、放射線の影響による皮膚の変化に限らず、他の要因によっておこる皮膚紅斑の症状の定量化、および皮膚紅斑の予測に用いても良い。この場合、予測に使うことに加えて、現状の定量化による正確な把握、および医師間の正確な情報伝達に役立てることができる。