(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6448648
(24)【登録日】2018年12月14日
(45)【発行日】2019年1月9日
(54)【発明の名称】駆動ベルトの無端のフレキシブルな金属バンドのための原材料の疲労特性を測定する方法
(51)【国際特許分類】
G01N 3/34 20060101AFI20181220BHJP
G01M 13/02 20190101ALI20181220BHJP
【FI】
G01N3/34 C
G01M13/02
【請求項の数】6
【全頁数】9
(21)【出願番号】特願2016-542933(P2016-542933)
(86)(22)【出願日】2014年12月24日
(65)【公表番号】特表2017-502297(P2017-502297A)
(43)【公表日】2017年1月19日
(86)【国際出願番号】EP2014079328
(87)【国際公開番号】WO2015097295
(87)【国際公開日】20150702
【審査請求日】2017年12月21日
(31)【優先権主張番号】1040568
(32)【優先日】2013年12月24日
(33)【優先権主張国】NL
(73)【特許権者】
【識別番号】390023711
【氏名又は名称】ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
【氏名又は名称原語表記】ROBERT BOSCH GMBH
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100135633
【弁理士】
【氏名又は名称】二宮 浩康
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】ミン−デュク トラン
(72)【発明者】
【氏名】エル.イェー. ファン デル レーウヴェン
(72)【発明者】
【氏名】ベルト ペニングス
【審査官】
伊藤 昭治
(56)【参考文献】
【文献】
実開昭63−097844(JP,U)
【文献】
実開昭60−086955(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 3/00
G01M 13/00
(57)【特許請求の範囲】
【請求項1】
金属の試験部材(53)の疲労特性を測定する方法において、
前記試験部材(53)を、リング形状で提供し、前記試験部材(53)及びばね(54)の一方に接続されたリニアアクチュエータ(51)で前記ばね(54)に取り付け、前記試験部材(53)および前記ばね(54)の全体を、少なくとも前記試験部材(53)と前記ばね(54)とを含む試験システム(53,54)の共振周波数に合致する周波数で、周期的に圧縮および伸張させることにより振動させることを特徴とする、金属の試験部材(53)の疲労特性を測定する方法。
【請求項2】
前記試験システム(53,54)は、別個の質量(55)をさらに含み、該質量(55)は、前記試験部材(53)と前記ばね(54)との間に取り付けられておりかつ前記試験部材(53)と前記ばね(54)とを互いに接続している、請求項1記載の金属の試験部材(53)の疲労特性を測定する方法。
【請求項3】
前記ばね(54)は、リング形状でありかつ金属から形成されている、請求項1または2記載の金属の試験部材(53)の疲労特性を測定する方法。
【請求項4】
前記ばね(54)は、そのサイズおよび組成において前記試験部材(53)に適合する、請求項3記載の金属の試験部材(53)の疲労特性を測定する方法。
【請求項5】
前記疲労特性は、曲げ疲労強度である、請求項1から4のいずれか1項記載の金属の試験部材(53)の疲労特性を測定する方法。
【請求項6】
前記測定する方法は、少なくとも偶然におよび/または無作為に、無段変速機用の駆動ベルト(3)の製造方法の一部においてまたは無段変速機用の駆動ベルト(3)の製造方法の一部として、適用され、前記駆動ベルト(3)は、少なくとも一つの無端のフレキシブルな金属バンド(30)を含み、前記金属の試験部材(53)は、前記無端のフレキシブルな金属バンド(30)の半完成品である、請求項1から5までのいずれか1項記載の金属の試験部材(53)の疲労特性を測定する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、無端のフレキシブルな金属バンドのための原材料の疲労特性を測定する方法に関する。このような金属バンドは、主に自動車において適用される公知の無段変速機の2つの調節可能なプーリの間の動力伝達のための駆動ベルトにおける適用から公知である。このタイプの駆動ベルトは、例えば欧州特許出願公開第1815160号明細書から公知である。駆動ベルトは、複数の板状の横断エレメントから成り、横断エレメントは、駆動ベルトの少なくとも1つの積層された無端引張り手段において駆動ベルトに摺動可能に組み込まれている。積層された無端引張り手段は、互いに重ね合わされた無端でフレキシブルな金属バンドのセットから成る。
【0002】
前記変速機における作動の間、駆動ベルトは、変速機のプーリによって変速機のプーリの周囲を回転させられる。その結果、駆動ベルトの金属バンドは、交互に曲げられたり、伸ばされたりし、また、典型的には、変速機における駆動ベルトの寿命の間、多数の応力サイクルにおいて様々な程度に緊張させられる。これにより、金属バンドの疲労破壊に対する抵抗性、すなわち疲労強度は、金属バンドの重要な特性である。典型的には、金属バンドは、これにより、マルエージング鋼原材料から製造される。マルエージング鋼原材料は、好適には、高い疲労強度の特性を、析出硬化および表面窒化のプロセスステップを含む、原材料を、最終製品である無端でフレキシブルな金属バンドに加工するための比較的好適な可能性と組み合わせる。
【0003】
駆動ベルトの製造プロセスの一部として、すなわち、駆動ベルト品質保証の一部として、少なくとも前記原材料の曲げ疲労強度が規則的に測定され、そのための所定の必要条件と比較される。さらに、このような曲げ疲労試験は、駆動ベルトの開発において、特に、駆動ベルトの金属バンド構成部品の(新規の)原材料および/または駆動ベルトの製造において使用されるプロセスステップの選択および最適化において、重要な役割を果たす。
【0004】
金属の曲げ疲労強度を測定、すなわち定量化するために複数の試験方法が公知技術において利用可能である。典型的には、それぞれのこのような試験方法において、ストリップ状の、すなわち矩形の試験片は、適用された曲げ応力の平均値および振幅に依存して疲労破壊による破損が決定されるまで、周期的に変化する曲げ応力および複数の応力サイクルに曝される。しかしながら、公知の試験方法は、曲げ応力が試験片に導入される形式において異なる。このような公知の試験方法のうちの1つにおいて、ストリップ状の試験片は、その長さに沿って曲げられ、このような曲げられた試験片の第1の一方の遠位端部は固定されるのに対し、試験片の他方の遠位端部は、リニアアクチュエータによって前記第1の一方の遠位端部に対して近づいたり離れたりするように振動させられる。この後者の試験方法が好ましい。なぜならば、最大曲げ応力(ひいては試験片の極限疲労破壊)は、試験片に適用される曲げの十分に規定された支点において生じるからである。さらに、この後者の試験方法において、前記最大曲げ応力は、リニアアクチュエータによって試験片の前記他方の遠位端部に課される変位の大きさに直接に関連させられる。
【0005】
曲げ疲労強度を測定するこの後者の試験方法およびその他の公知の試験方法の典型的に生じる制限は、この方法において得られる応力振動の周波数が約50Hz程度であり、この応力振動周波数は、少なくとも典型的には工業において破断までに必要とされる曲げ応力の応力サイクルの回数を考慮すると、かなり制限されている。特に、試験片に適用される曲げ応力の平均値および振幅が、原材料の現在考慮されている駆動ベルト適用において生じる曲げ応力の平均値および振幅に対応するように設定されている場合、試験片の曲げ疲労強度の一回の測定でさえも、完了するのに容易に数週間かかる可能性がある。さらに、このような測定の間、かなりの電力がリニアアクチュエータによって消費され、測定を完了するための250kWhの合計電力消費は、珍しくない。
【0006】
本開示は、少なくとも前記合計電力消費の減少の観点から、しかしながら好適にはまたそれと共に達成可能な応力振動の前記周波数の増大の観点から、特に、前記後者の公知の試験方法を改良することを目的とする。さらに、試験片は、好適には、同じ(試験)応力に曝され、これにより、測定結果は、別の測定結果に相関させられ続けることができる。
【0007】
本開示によれば、駆動ベルトリングのフレキシブルな金属バンドのための原材料の疲労特性を測定する新規の方法は、無端の、すなわち円形またはリング状の原材料の試験片と、このような試験リングに取り付けられたばねとを提供することを含み、試験リングおよびばねのこの試験システムは、例えば試験リングの疲労破壊が生じるまで、疲労強度測定を行うために、システムの共振周波数にほぼ合致するサイクル時間または周波数で周期的に圧縮および伸張、すなわち励起させられる。このような試験システムをその共振周波数で励起させることによって、曲げ疲労強度の作動のために必要な電力、すなわち試験リングにおける曲げ応力の振動のために必要な電力が、特に前記後者の公知の試験方法よりも、好適には減じられる。
【0008】
試験システムのばねは、好適には、単にばね(力)定数を適応させることによって前記共振周波数が影響されることを可能にする。さらに、ばねは、単に振動の前にばねおよび試験片のシステムにプレストレスをかけることによって曲げ応力の前記平均値が影響されることを可能にする。加えて、この新規の疲労試験方法では、前記後者の公知の試験方法におけるように前と同じまたは類似のリニアアクチュエータを使用することができる。
【0009】
上記新規の疲労試験方法の第1の詳細において、試験システムの試験リングおよびばねとは別個に、好適には試験リングとばねとの間において、試験システムに付加的な質量が設けられている。実際には、このような質量は、金属クランプなどの、試験リングとばねとの間に設けられ試験リングとばねとを接続したコネクタの形式であることができる。質量を適用することによって、試験片に適用される曲げ応力の振幅を増大させることができる。他方では、試験システムの質量を付加することによって試験片の共振周波数は減じられるが、この効果は、より剛性のばねを適用することによっておよび/または試験片の剛性を高めることによって打ち消され得る。
【0010】
上記新規の疲労試験方法の第2の詳細において、ばねはリング状である。新規の疲労試験方法のこの構成は、好適には、一回の疲労強度測定において2つの同じ試験片が使用、すなわち試験されることを可能にし、これにより、試験片のうちの一方が破損したときでも、他方の試験片は、曲げ応力の同じ回数(およびサイズ)の振動に曝されているので、このような他方の試験片を用いた第2の重複測定もしくは確認測定を、通常は迅速に完了することができる。これに代えて、試験システムの前記共振周波数に影響を与えて試験システムのための好適な値と一致させるように、リング状ばねのサイズは、すなわちその厚さ、幅および/または直径の観点から、比較的容易に適応させることができる。
【0011】
本開示による新規の疲労試験方法の上述の基本的な特徴をここで添付の図面を参照しながら例として説明する。
【図面の簡単な説明】
【0012】
【
図1】公知の駆動ベルトおよびこのような公知のベルトを組み込んだ変速機の透視図における概略図である。
【
図2】複数のフレキシブルな金属バンドの2つのセットと、複数の横断部材とを有する公知の駆動ベルトの一部の概略図である。
【
図3】駆動ベルトのフレキシブルな金属バンドの公知の製造方法を象徴的に示している。
【
図4】駆動ベルトのフレキシブルな金属バンドの原材料の曲げ疲労強度を測定する公知の方法および構成を概略的に示している。
【
図5】第1の実施の形態における駆動ベルトのフレキシブルな金属バンドの原材料の曲げ疲労強度を測定する新規の方法および構成を概略的に示している。
【
図6】第2の実施の形態における駆動ベルトのフレキシブルな金属バンドの原材料の曲げ疲労強度を測定する新規の方法および構成を概略的に示している。
【
図7】
図6の曲げ疲労強度を測定するための構成の2つの写真である。
【0013】
図1は、エンジンと、エンジンの駆動輪との間の自動車の動力伝達経路において一般的に適用される公知の無段変速機の中央部分を示している。変速機は2つのプーリ1,2を有する。各プーリ1,2には2つのプーリディスク4,5が設けられている。プーリディスク4,5の間には、一方のプーリ1,2から他方のプーリ2,1へ回転運動Mおよび付随するトルクを伝達するために、プッシュタイプ駆動ベルト3が存在している。プーリディスク4,5は概して円錐形に形成されており、少なくとも一方のプーリディスク4は、両ディスク4,5が配置されているそれぞれのプーリ軸6,7に沿って軸方向に可動に変速機に組み込まれている。変速機は、通常、作動手段を有する。作動手段は、前記少なくとも1つの可動なディスク4に、それぞれの他方のプーリディスク5に向かって方向付けられた、軸方向に向けられた締付力を加え、これにより、プッシュベルト3がディスク4,5の間に締め付けられる。
【0014】
プッシュベルト3は、無端引張り手段31と、複数の比較的薄い横断エレメント32とを含む。横断エレメント32は、引張り手段31の長手方向に沿って可動に引張り手段31に設けられており、大部分が前記長手方向に対して横方向に向けられている。エレメント32は前記締付力を受け取り、これにより、駆動プーリ1が回転すると、ディスク4,5とプッシュベルト3との間の摩擦によりエレメント32は前記運動Mの方向へ前記駆動プーリ1から被駆動プーリ2へおよび再びその逆へ推進され、これにより、引張り手段31によって案内および支持される。変速機の幾何学的な変速比は、非駆動プーリ2におけるプッシュベルト3の有効接触半径R2と、駆動プーリ1におけるプッシュベルト3の有効接触半径R1との比によって決定され、この比は、複数の値の範囲において連続的に変化させられてもよい。
【0015】
図2は、公知のプッシュベルトの断面図を示しており、この断面図はベルト3の長手方向に向けられている。
図2において、プッシュベルト3の横断エレメント構成部材32が正面図で示されている。横断エレメント32はプッシュベルト3に組み込まれており、プッシュベルト3の無端引張り手段31に取り付けられている。無端引張り手段31は、少なくともこの例においては、2つの積層された部材から成る。各部材は、複数の無端のフレキシブルな金属バンド30によって形成されている。金属バンド30は、比較的薄くかつ平坦であり、半径方向で一方が他方の周囲に重ね合わされている。各部材は、横断エレメント32のそれぞれの開口33に収容されている。さらに、横断エレメント32の前側主面には突出部39が設けられている。突出部39は、隣接する横断エレメント32の後側主面に設けられた穴(見えていない)に収容される。突出部39と、穴とは、変速機における作動中にプッシュベルト3の隣接する横断エレメント32を互いに接続しかつ整列させるために設けられている。いわゆる傾斜エッジ36の下方の横断エレメント32の下側部分はくさび形であり、プーリ1,2のディスク4,5の間に締め付けられたときに、隣接するエレメント32が軸方向を中心にして互いに傾斜することを可能にしている。
【0016】
図3は、駆動ベルトのフレキシブルな金属バンド構成部材30の公知の製造方法の関連する部分を示している。この公知の製造方法は、自動車用途のための金属駆動ベルト3の製造のために当該技術分野において一般的に適用される。公知の製造方法の別個のプロセスステップは、ローマ数字によって示されている。
【0017】
第1のプロセスステップIでは、約0.4mmの厚さを有するマルエージング鋼基礎材料の薄いシートまたはプレート11が円筒状に曲げられ、突き合わされたプレート端部12が第2のプロセスステップIIにおいて互いに溶接され、中空の円筒もしくは管13を形成する。プロセスの第3のステップIIIにおいて、管13は焼きなましされる。その後、第4のプロセスステップIVにおいて、管13は複数の環状の、すなわち無端のリング14に切断され、これらのリング14は、その後、第5のプロセスステップVにおいて、延伸させられながら、通常は約0.2mmまでその厚さを減じるように、ローリングされる。ローリングの後、リング14は、ここでは、金属バンド30と称される。
【0018】
金属バンド30は、摂氏600℃よりもかなり高い温度、例えば約800℃においてリング材料の回復および再結晶によって、前のローリングプロセスステップの加工硬化の効果を除去するために、別の焼きなましプロセスステップVIを受ける。その後、第7のプロセスステップVIIにおいて、金属バンド30は、金属バンド30を2つの回転するローラの周囲に取り付け、前記ローラを離反させることによって金属バンド30を所定の周長まで伸張させることによって、較正される。金属バンド較正のこの第7のプロセスステップVIIにおいて、内部応力もまた金属バンド30に課される。
【0019】
その後、金属バンド30は、組み合わされた時効またはバルク析出硬化および窒化または表面硬化の第8のプロセスステップVIIIにおいて熱処理される。特に、このような組み合わされた熱処理は、アンモニア、窒素および水素ガスを含む制御されたガス雰囲気を含有するオーブンチャンバに金属バンド30を保持することを必要とする。オーブンチャンバ、すなわちプロセス雰囲気において、アンモニア分子は金属バンド30の表面において水素ガスと窒素原子とに分解し、窒素原子は金属バンド30の金属格子に進入することができる。これらの介在する窒素原子により、摩耗および疲労破壊に対する抵抗性が著しく高められることが知られている。通常、組み合わされた時効および窒化の第8のプロセスステップVIIIは、金属バンド30の外面に形成された窒化層または窒素拡散ゾーンが25〜35ミクロンの厚さになるまで行われる。複数のこのように加工された無端かつフレキシブルな金属バンド30は、隣接する金属バンド30の各対の間に最小限の半径方向遊びもしくは間隙を備えながらこれらの金属バンド30を半径方向に積層、すなわち同心状に重ね合わせることによって、無端引張り手段31に組み立てられる。
【0020】
特に、以下のことが留意される。すなわち、その代わりに、金属バンド較正の第7のプロセスステップVIIの直後に、すなわち、金属バンド30の組み合わされた時効および窒化の第8のプロセスステップVIIIの前に、引張り手段31を複数の個々の金属バンド30から組み立てることもまた当該技術分野において公知である。さらに、この後者の組み合わされた熱処理(プロセスステップVIII)を択一的に、時効および窒化の2つの別個の前後する段階において行うことができることが当該技術分野において公知である。
【0021】
金属駆動ベルト3の全体的な製造方法の一部として、金属バンド30の原材料の品質が、典型的にはランダムに試験される。特に、マルエージング鋼プレート11のストリップ50の形式の試験片を使用し、この試験片の曲げ疲労強度を測定することが実践されている。
図4は、駆動ベルトのフレキシブルな金属バンド構成部材30の原材料の曲げ疲労強度を測定するというこのような目的のための公知の構成を概略的に示している。
【0022】
図4において、試験ストリップ50はリニアアクチュエータ51と固定面52との間に長さ方向に配置される。試験ストリップ50の曲げ疲労強度の実際の試験のために、リニアアクチュエータ51および試験ストリップ50の所定の回数の振動が生じるまでまたは試験ストリップ50が破損するまで、
図4に矢印Oによって示したように、リニアアクチュエータ51が試験ストリップ50の長さ方向に振動させられる。この公知の試験構成では、リニアアクチュエータ51は、試験試料を曲げかつ弛緩させる際に、すなわち試験試料に曲げ応力の所要の振動を発生させるために、かなりの量の電力を使用する。
【0023】
特に試験方法の電力消費の観点から、このような公知の曲げ疲労強度試験方法を改良するために、
図5に概略的に示された新規の試験方法が考えられた。
【0024】
図5の新規の試験方法では、試験片はリング53の形式で提供され、さらに、ばね54がこのような試験リング53に取り付けられる。次いで、このような試験リング53およびばね54の試験システム53,54の全体をその共振周波数で振動させるために、(
図5に示したように)リニアアクチュエータ51が試験リング53またはばね54に接続される。試験システム53,54を共振周波数で励起させることによって、曲げ疲労強度の作動、すなわち試験リング53における曲げ応力の振動のために必要な電力を、実際には、
図4の公知の試験方法と比べて大幅に減じることができる。ばね54に比剛性を提供することによって、新規の試験システム53,54の共振周波数に比較的容易に影響することができる。
【0025】
本開示による新規の試験方法の別の利点は、この試験方法において適用される試験リング53を別個に製造する必要がなく、単に、好適には、半完成品として製造された無端リング14の形式で、駆動ベルトのフレキシブルな金属バンド構成部材30のための上述の一般的に実施される製造方法から得ることができるということである。
【0026】
図6は、本開示による新規の試験方法の代替的な実施の形態を示している。この代替的な実施の形態では、ばね54は金属リングの形式で提供されている。この金属リングは、その形状、サイズおよび材料において試験リング53(14)に適合することさえでき、ひいては、前記公知の製造方法から得ることもできる。加えて、
図6の実施の形態では、別個の質量55が、試験リング53(14)とばね54(14)との間において試験システム53,54,55に設けられている。別個の質量55を適用することによって、試験片53(14)に適用される曲げ応力の振幅を増大させることができる。他方では、試験システム53,54,55全体の共振周波数は、別個の質量55を付加することによって減じられるが、この効果は、より剛性のばね54(14)を提供することによっておよび/または試験片53(14)自体の剛性を高めることによって打ち消され得る。
【0027】
図7は、
図6による新規の試験方法の物理的な実施の形態の写真である。新規の試験方法のこの物理的な実施の形態では、試験リング53(14)およびばね54(14)の両方が、無端のフレキシブルな金属バンド30の一般的に実施される製造方法によって得られた前記中間リング製品14によって表されている。これらの2つのリング14は、それぞれの磁石56によってリニアアクチュエータ51および固定面52のそれぞれに対して所定の位置に保持されている。さらに、2つのリング14は、ナットおよびボルトコネクタ57によって互いに接続されており、ナットおよびボルトコネクタ57も、付加的な質量を試験システムに提供し、すなわち、試験システム53,54,55(14,14,57)の前記別個の質量55として機能する。
【0028】
実際には、
図7において、試験システム53,54,55(14,14,57)が、その作動中において、すなわち、リニアアクチュエータ51による共振周波数での振動中の2つの瞬間において、示されている。
図7から分かることは、試験システム53,54,55(14,14,57)の共振により、試験リング53の(曲げ)変形を表す別個の質量57(55)の変位が、リニアアクチュエータ51の変位よりも著しく大きいということである。これに対して、
図4による曲げ疲労強度を測定するための公知の構成では、試験リング53の(曲げ)変形は、リニアアクチュエータ51の変位に相当する。その結果、曲げ疲労強度を測定するための新規の構成では、リニアアクチュエータ51は大幅に少ない電力を使用する。
【0029】
本開示は、前記説明の全ておよび添付図面の全ての詳細に加えて、添付の特許請求の範囲の全ての特徴にも関しかつこれらの特徴を含む。請求項における括弧書きの符号は、請求項の範囲を限定するのではなく、単に、それぞれの特徴の拘束しない例として提供されている。請求項に記載された特徴は、場合によって、任意の製品または任意の方法において別々に適用することができるが、これらの特徴のうちの2つ以上のあらゆる組合せを適用することも可能である。
【0030】
本開示によって提示された発明は、明細書に明示的に言及された実施の形態および/または実施例に限定されるのではなく、その補正、変更および実用的な適用、特に当業者の到達範囲にあるものをも包含する。