(58)【調査した分野】(Int.Cl.,DB名)
前記リン酸エステルの含有量に対する前記ホスホン酸の含有量の比は、質量基準で0.10〜0.48であり、かつ、前記銅イオンの含有量に対する前記ホスホン酸の含有量の比は、物質量基準で0.45〜0.80である、請求項1又は2に記載の光吸収性組成物。
波長450〜600nmにおいて90%以上の平均分光透過率を有する透明誘電体基板の一方の主面に当該光吸収性組成物を塗布して硬化させて、当該光吸収性組成物の硬化物である光吸収層及び前記透明誘電体基板のみを備え、かつ、波長750〜900nmにおける最大の分光透過率が1.0%以下である積層体を形成したときに、前記積層体が下記の(i)及び(ii)を満たす、請求項1〜3のいずれか1項に記載の光吸収性組成物。
(i)前記積層体は、波長450nm〜600nmにおいて80%以上の平均分光透過率を有する。
(ii)前記積層体は、波長350nm〜370nmの範囲において4%以下の平均分光透過率を有する。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
【0017】
本発明に係る光吸収性組成物は、下記式(a)で表されるホスホン酸と銅イオンとによって形成され、光吸収性組成物において分散している光吸収剤と、その光吸収剤を分散させるリン酸エステルと、硬化性樹脂と、を含有している。
【化3】
[式中、R
11は、フェニル基又はフェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基である。]
【0018】
透明誘電体基板の一方の主面に本発明に係る光吸収性組成物を塗布して硬化させて、光吸収性組成物の硬化物である光吸収層及び透明誘電体基板のみを備えた積層体を形成したときに、積層体が下記(i)〜(v)を満たす。
(i)積層体は、波長450nm〜600nmにおいて80%以上の平均分光透過率を有する。
(ii)積層体は、波長750nm〜900nmにおいて1%以下の分光透過率を有する。(iii)積層体は、波長350nm〜370nmの範囲において4%以下の平均分光透過
率を有する。
(iv)積層体は、波長600nm〜800nmにおいて波長の増加に伴い減少する分光透過率を有し、波長600nm〜800nmにおいて積層体の分光透過率が50%になる波長を赤外側カットオフ波長(IRカットオフ波長)と定義したときに、積層体に0°の入射角で入射する光に対する赤外側カットオフ波長が620nm〜680nmである。
(v)積層体は、波長350nm〜450nmにおいて波長の増加に伴い増加する分光透過率を有し、波長350nm〜450nmにおいて積層体の分光透過率が50%になる波長を紫外側カットオフ波長(UVカットオフ波長)と定義したときに、積層体に0°の入射角で入射する光に対する紫外側カットオフ波長が380nm〜420nmである。
【0019】
上記の積層体の透明誘電体基板は、例えば、波長450nm〜600nmにおいて90%以上の平均分光透過率を有する。上記の積層体の透明誘電体基板は、典型的には、波長350nm〜900nmにおいて90%以上の平均分光透過率を有する。
【0020】
本発明者らは、試行錯誤を何度も重ねたうえで、所定のホスホン酸として式(a)で表されるホスホン酸を用いると、他の種類のホスホン酸を用いた場合と比べて、上記の積層体に上記の(i)〜(v)の特性を付与できることを新たに見出した。本発明に係る光吸収性組成物及び光学フィルタはこのような新たな知見に基づいて案出されたものである。
【0021】
図1〜
図4に示す通り、本発明に係る光学フィルタの例である光学フィルタ1a〜1dは、透明誘電体基板20と、光吸収層10とを備えている。光吸収層10は、上記式(a)で表されるホスホン酸と銅イオンとによって形成された光吸収剤と、光吸収剤を分散させるリン酸エステルと、硬化性樹脂とを含有し、光吸収剤が分散している光吸収性組成物の硬化物によって透明誘電体基板20の一方の主面と平行に形成されている。光学フィルタ1aは、下記(I)〜(V)を満たす。
(I)光学フィルタ1a〜1dは、波長450nm〜600nmにおいて80%以上の平均分光透過率を有する。
(II)光学フィルタ1a〜1dは、波長750nm〜900nmにおいて1%以下の分光透過率を有する。
(III)光学フィルタ1a〜1dは、波長350nm〜370nmの範囲において4%以
下の平均分光透過率を有する。
(IV)光学フィルタ1a〜1dは、波長600nm〜800nmにおいて波長の増加に伴い減少する分光透過率を有する。波長600nm〜800nmにおいて光学フィルタ1a〜1dの分光透過率が50%になる波長を赤外側カットオフ波長と定義したときに、光学フィルタ1a〜1dに0°の入射角で入射する光に対する赤外側カットオフ波長が620nm〜680nmである。
(V)光学フィルタ1a〜1dは、波長350nm〜450nmにおいて波長の増加に伴い増加する分光透過率を有する。波長350nm〜450nmにおいて光学フィルタ1a〜1dの分光透過率が50%になる波長を紫外側カットオフ波長と定義したときに、光学フィルタ1a〜1dに0°の入射角で入射する光に対する紫外側カットオフ波長が380nm〜420nmである。
【0022】
光学フィルタ1a〜1dが上記の(I)の条件を満たすことにより、光学フィルタ1a〜1dが撮像素子の前面に配置されている場合に、波長450nm〜600nmの範囲において撮像素子が受け取る可視光の光量が多い。光学フィルタ1a〜1dが上記の(II)の条件を満たすことにより、光学フィルタ1a〜1dは、750nm〜900nmの赤外線を有利に遮蔽できる。加えて、光学フィルタ1a〜1dが上記の(III)の条件を満た
すことにより、光学フィルタ1a〜1dは、370nm以下の紫外線を有利に遮蔽できる。その結果、光学フィルタ1a〜1dが撮像素子の前面に配置されている場合に、撮像素子の分光感度を人間の視感度に有利に近づけることができる。さらに、光学フィルタ1a〜1dが上記の(IV)及び(V)の条件を満たすことにより、赤外線領域及び紫外線領域の光が有利に遮蔽される。その結果、光学フィルタ1a〜1dが撮像素子の前面に配置されている場合に、撮像素子の分光感度を人間の視感度に有利に近づけることができる。
【0023】
上記(i)及び(I)の条件に関し、積層体は、望ましくは、波長450nm〜600nmにおいて85%以上の平均分光透過率を有し、光学フィルタ1a〜1dは、望ましくは、波長450nm〜600nmにおいて85%以上の平均分光透過率を有する。これにより、光学フィルタ1a〜1dが撮像素子の前面に配置されている場合に、波長450nm〜600nmの範囲において撮像素子が受け取る可視光の光量がより多い。
【0024】
上記(ii)及び(II)の条件に関し、積層体は、望ましくは、波長750nm〜900nmにおいて0.5%以下の分光透過率を有し、光学フィルタ1a〜1dは、望ましくは、波長750nm〜900nmにおいて0.5%以下の分光透過率を有する。上記(iii
)及び(III)の条件に関し、積層体は、望ましくは、波長350nm〜370nmの範
囲において1%以下の平均分光透過率を有し、光学フィルタ1a〜1dは、望ましくは、波長350nm〜370nmの範囲において1%以下の平均分光透過率を有する。これにより、光学フィルタ1a〜1dが撮像素子の前面に配置されている場合に、撮像素子の分光感度を人間の視感度にさらに近づけることができる。
【0025】
上記(iv)及び(IV)の条件に関し、望ましくは、積層体に0°の入射角で入射する光に対する赤外側カットオフ波長が630nm以上であり、又は、660nm以下である。また、望ましくは、光学フィルタ1a〜1dに0°の入射角で入射する光に対する赤外側カットオフ波長が630nm以上であり、又は、660nm以下である。上記(v)及び(V)の条件に関し、望ましくは、積層体に0°の入射角で入射する光に対する紫外側カットオフ波長が390nm以上であり、又は、410nm以下である。また、望ましくは、光学フィルタ1a〜1dに0°の入射角で入射する光に対する紫外側カットオフ波長が390nm以上であり、又は、410nm以下である。これにより、光学フィルタ1a〜1dが撮像素子の前面に配置されている場合に、撮像素子の分光感度を人間の視感度にさらに近づけることができる。
【0026】
積層体は、望ましくは、さらに下記(vi)及び(vii)を満たす。
(vi)積層体に0°の入射角で入射する光に対する赤外側カットオフ波長と積層体に40°の入射角で入射する光に対する赤外側カットオフ波長との差が20nm以下であり、望ましくは10nm以下である。
(vii)積層体に0°の入射角で入射する光に対する紫外側カットオフ波長と積層体に4
0°の入射角で入射する光に対する紫外側カットオフ波長との差が20nm以下であり、望ましくは10nm以下である。
【0027】
積層体が上記の(vi)及び(vii)を満たすことにより、光学フィルタ1a〜1dはさ
らに(VI)及び(VII)を満たす。
(VI)光学フィルタ1a〜1dに0°の入射角で入射する光に対する赤外側カットオフ波長と光学フィルタ1a〜1dに40°の入射角で入射する光に対する赤外側カットオフ波長との差が20nm以下であり、望ましくは10nm以下である。
(VII)光学フィルタ1a〜1dに0°の入射角で入射する光に対する紫外側カットオフ
波長と光学フィルタ1a〜1dに40°の入射角で入射する光に対する紫外側カットオフ波長との差が20nm以下であり、望ましくは10nm以下である。
【0028】
光学フィルタ1a〜1dが上記の(VI)及び(VII)の条件を満たすことにより、光学
フィルタ1a〜1dが撮像素子の前面に配置されている場合に、撮像素子の分光感度が撮像素子に入射する光の入射角によって変化しにくい。
【0029】
光学フィルタ1a〜1dにおける透明誘電体基板20は、450nm〜600nmにおいて90%以上の平均分光透過率を有する誘電体基板である限り、特に制限されない。場合によっては、透明誘電体基板20として、赤外線領域に吸収能を有するCuO(酸化銅)を含有するガラスでできた基板であってもよい。この場合でも、上記の(I)〜(V)の条件を満たす光学フィルタ1a〜1dを得ることができる。もちろん、透明誘電体基板20は、例えば波長350nm〜900nmにおいて90%以上の平均分光透過率を有していてもよい。透明誘電体基板20の材料は、特定の材料に制限されないが、例えば、所定のガラス又は樹脂である。透明誘電体基板20の材料がガラスである場合、透明誘電体基板20は、例えば、ソーダ石灰ガラス及びホウケイ酸ガラスなどのケイ酸塩ガラスでできた透明なガラス又は赤外線カットガラスである。赤外線カットガラスは、例えば、CuOを含むリン酸塩ガラス又はフツリン酸塩ガラスである。透明誘電体基板20が赤外線カットガラスである場合、赤外線カットガラスが有する赤外線吸収能により、光吸収層10
に求められる赤外線吸収能を軽減できる。その結果、光吸収層10の厚みを薄くでき、又は、光吸収層10に含まれる光吸収剤の濃度を低減できる。赤外線カットガラスの透過率スペクトルにおける赤外側カットオフ波長は比較的長波長側に存在する傾向がある。このため、上記の光吸収性組成物を硬化させて赤外線カットガラスである透明誘電体基板20に光吸収層10を形成することにより、光学フィルタ1a〜1dの赤外側カットオフ波長が短波長側に存在しやすく、撮像素子の分光感度を人間の視感度に一致させやすい。
【0030】
透明誘電体基板20の材料が樹脂である場合、その樹脂は、例えば、ノルボルネン系樹脂等の環状オレフィン系樹脂、ポリアリレート系樹脂、アクリル樹脂、変性アクリル樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリカーボネート樹脂、又はシリコーン樹脂である。
【0031】
式(a)に記載の通り、光吸収剤を形成するホスホン酸は、フェニル基又はフェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基を含む。フェニル基及びハロゲン化フェニル基は高い親油性を有するので、トルエン等の有機溶媒に対して高い相溶性を有し、光吸収剤が凝集しにくい。光吸収剤を形成するホスホン酸が有するフェニル基又はハロゲン化フェニル基により、光学フィルタ1a〜1dの光吸収層10が柔軟な構造を有しやすい。その結果、光吸収層10が良好な耐クラック性を有する。
【0032】
式(a)で表されるホスホン酸と銅イオンによって形成された光吸収剤を含む光吸収性組成物における、リン酸エステルの含有量に対するホスホン酸の含有量の比は、例えば、質量基準で0.10〜0.48であり、かつ、銅イオンの含有量に対するホスホン酸の含有量の比は、例えば、物質量(モル)基準で0.45〜0.80である。これにより、光吸収性組成物において、光吸収剤が良好に分散しやすい。
【0033】
例えば、光学フィルタ1a〜1dの光吸収層10において、リン酸エステルの含有量に対するホスホン酸の含有量の比は、質量基準で0.10〜0.48であり、かつ、銅イオンの含有量に対するホスホン酸の含有量の比は、物質量基準で0.45〜0.80である。
【0034】
光吸収性組成物は、場合によっては、下記式(b)で表されるホスホン酸と銅イオンとによって形成された補助光吸収剤をさらに含有していてもよい。
【化4】
[式中、R
12は、6個以下の炭素原子を有するアルキル基である。]
【0035】
例えば、光学フィルタ1a〜1dの光吸収層10は、上記の式(b)で表されるホスホン酸と銅イオンとによって形成された補助光吸収剤をさらに含有している。
【0036】
光吸収性組成物が補助光吸収剤を含有していることにより、例えば、光学フィルタ1a〜1dの波長850nm以上又は波長900nm以上の光の透過率を有利に低減できる。R
12であるアルキル基は、直鎖及び分岐鎖のいずれであってもよい。式(a)で表されるホスホン酸の含有量に対する式(b)で表されるホスホン酸の含有量の比は、例えば、質量基準で0.05〜0.50であり、望ましくは0.07〜0.30である。
【0037】
光吸収性組成物に含有されるリン酸エステルは、光吸収剤を適切に分散できる限り特に制限されないが、例えば、下記式(c1)で表されるリン酸ジエステル及び下記式(c2)で表されるリン酸モノエステルの少なくとも一方を含む。これにより、光吸収性組成物において光吸収剤を凝集させることなくより確実に分散させることができる。なお、下記式(c1)及び下記式(c2)において、R
21、R
22、及びR
3は、それぞれ、−(CH
2CH
2O)
nR
4で表される1価の官能基であり、nは、1〜25の整数であり、R
4は、炭素数6〜25のアルキル基を示す。R
21、R
22、及びR
3は、互いに同一又は異なる種類
の官能基である。
【化5】
【0038】
光吸収剤は、例えば、式(a)で表されるホスホン酸が銅イオンに配位することによって形成されている。また、例えば、光吸収性組成物において光吸収剤を少なくとも含む微粒子が形成されている。この場合、リン酸エステルの働きにより、微粒子同士が凝集することなく光吸収性組成物において分散している。この微粒子の平均粒子径は、例えば5nm〜200nmである。微粒子の平均粒子径が5nm以上であれば、微粒子の微細化のために特別な工程を要さず、光吸収剤を少なくとも含む微粒子の構造が壊れる可能性が小さい。また、光吸収性組成物において微粒子が良好に分散する。また、微粒子の平均粒子径が200nm以下であると、ミー散乱による影響を低減でき、光学フィルタにおいて可視光の透過率を向上させることができ、撮像装置で撮影された画像のコントラスト及びヘイズなどの特性の低下を抑制できる。微粒子の平均粒子径は、望ましくは100nm以下である。この場合、レイリー散乱による影響が低減されるので、光吸収性組成物を用いて形成された光吸収層において可視光に対する透明性がさらに高まる。また、微粒子の平均粒子径は、より望ましくは75nm以下である。この場合、光吸収層の可視光に対する透明性がとりわけ高い。なお、微粒子の平均粒子径は、動的光散乱法によって測定できる。
【0039】
光吸収性組成物が補助光吸収剤を含む場合、補助光吸収剤は、例えば、式(b)で表されるホスホン酸が銅イオンに配位することによって形成されている。また、例えば、光吸収性組成物において補助光吸収剤を少なくとも含む微粒子が形成されている。補助光吸収剤を含む微粒子の平均粒子径は、例えば、光吸収剤を含む微粒子の平均粒子径と同様である。
【0040】
光吸収性組成物における銅イオンの供給源は、例えば、銅塩である。銅塩は、例えば酢酸銅又は酢酸銅の水和物である。銅塩としては、塩化銅、ギ酸銅、ステアリン酸銅、安息香酸銅、ピロリン酸銅、ナフテン酸銅、及びクエン酸銅の無水物又は水和物を挙げることができる。例えば、酢酸銅一水和物は、Cu(CH
3COO)
2・H
2Oと表され、1モル
の酢酸銅一水和物によって1モルの銅イオンが供給される。
【0041】
光吸収性組成物の硬化性樹脂は、例えば、光吸収剤を分散させることができ、熱硬化又は紫外線硬化が可能であり、その硬化物が波長350nm〜900nmの光に対して透明である樹脂である。式(a)で表されるホスホン酸の含有量は、例えば、硬化性樹脂100質量部に対して3〜180質量部である。
【0042】
光吸収性組成物の硬化性樹脂は、望ましくはポリシロキサン(シリコーン樹脂)である。これにより、光吸収性組成物によって形成される光吸収層の耐熱性を向上させることができる。ポリシロキサンは、望ましくはフェニル基等のアリール基を含んでいる。光学フィルタに含まれる樹脂層が硬い(リジッドである)と、その樹脂層の厚みが増すにつれて、光学フィルタの製造工程中に硬化収縮によりクラックが生じやすい。光吸収性組成物の硬化性樹脂がアリール基を含むポリシロキサンであると、光吸収性組成物によって形成される光吸収層が良好な耐クラック性を有しやすい。また、アリール基を含むポリシロキサンは、フェニル基又はハロゲン化フェニル基を有するホスホン酸と高い相溶性を有し、光吸収剤が凝集しにくい。さらに、光吸収性組成物の硬化性樹脂がアリール基を含むポリシロキサンである場合に、光吸収性組成物に含まれるリン酸エステルが式(c1)又は式(c2)で表されるリン酸エステルのようにオキシアルキル基等の柔軟性を有する直鎖有機官能基を有することが望ましい。なぜなら、フェニル基又はハロゲン化フェニル基を有するホスホン酸と、アリール基を含むポリシロキサンと、オキシアルキル基等の直鎖有機官能基を有するリン酸エステルとの組合せに基づく相互作用により、光吸収剤が硬化性樹脂及びリン酸エステルに対して高い相溶性を有し、かつ、光吸収性組成物を硬化させることによって良好な剛性及び良好な柔軟性を併せ持つ光吸収層を形成できるからである。硬化性樹脂として使用可能なポリシロキサンの具体例としては、KR−255、KR−300、KR−2621−1、KR−211、KR−311、KR−216、KR−212、及びKR−251を挙げることができる。これらはいずれも信越化学工業社製のシリコーン樹脂である。硬化性樹脂としては、アクリル樹脂、エポキシ樹脂、及びビニルアセタール樹脂等の樹脂を使用することもできる。なお、これらの樹脂は、構成単位として、単官能又は多官能のモノマー、オリゴマー、及びポリマーのいずれを含んでいてもよい。また、ポリシロキサン(シリコーン樹脂)は、SiO
2を含むガラス基板、又は、ポリシロキサ
ンと接する層がSiO
2層である誘電体膜に対して高い付着力を発揮できることが期待さ
れる。
【0043】
本発明に係る光吸収性組成物の調製方法の一例を説明する。まず、酢酸銅一水和物などの銅塩をテトラヒドロフラン(THF)などの所定の溶媒に添加して撹拌し、銅塩の溶液を得る。次に、この銅塩の溶液に、式(c1)で表されるリン酸ジエステル及び式(c2)で表されるリン酸モノエステルなどのリン酸エステル化合物を加えて撹拌し、A液を調製する。また、式(a)で表されるホスホン酸をTHFなどの所定の溶媒に加えて撹拌し、B液を調製する。B液の調製において、必要に応じて、式(b)で表されるホスホン酸が所定の溶媒に加えられてもよい。次に、A液を撹拌しながら、A液にB液を加えて所定時間撹拌する。次に、この溶液にトルエンなどの所定の溶媒を加えて撹拌し、C液を得る。次に、C液を加温しながら所定時間脱溶媒処理を行う。これにより、THFなどの溶媒及び酢酸(沸点:約118℃)などの銅塩の解離により発生する成分が除去され、式(a)で表されるホスホン酸と銅イオンとによって光吸収剤が生成される。C液を加温する温度は、銅塩から解離した除去されるべき成分の沸点に基づいて定められている。なお、脱溶媒処理においては、C液を得るために用いたトルエン(沸点:約110℃)などの溶媒も揮発する。この溶媒は、光吸収性組成物においてある程度残留していることが望ましいので、この観点から溶媒の添加量及び脱溶媒処理の時間が定められているとよい。なお、C液を得るためにトルエンに代えてo‐キシレン(沸点:約144℃)を用いることもできる。この場合、o‐キシレンの沸点はトルエンの沸点よりも高いので、添加量をトルエンの添加量の4分の1程度に低減できる。
【0044】
C液の脱溶媒処理の後にポリシロキサン(シリコーン樹脂)などの硬化性樹脂が添加され、所定時間撹拌される。例えば、このようにして、本発明に係る光吸収性組成物を調製できる。光吸収性組成物の調製に使用される溶媒は、式(a)で表されるホスホン酸と銅イオンとによって光吸収剤を適切に形成する観点から、所定の極性を有することが望ましい。なぜなら、溶媒の極性は、光吸収剤を少なくとも含む微粒子の光吸収性組成物における分散に影響を及ぼすからである。例えば、A液の調製に使用されるリン酸エステルの種類に応じて適切な極性を有する溶媒が選択される。
【0045】
光学フィルタ1a〜1dにおける光吸収層10は、例えば、30μm〜800μmの厚みを有する。これにより、光学フィルタ1a〜1dが有利に上記の(I)〜(V)の条件を満たす。なお、
図3に示す通り、光吸収層10が2層以上に分かれている場合には、各層の厚みの合計を光吸収層10の厚みと定める。上記の通り、アリール基を含むポリシロキサンを光吸収性組成物の硬化性樹脂として使用すると、光吸収性組成物を硬化させることによって良好な剛性及び良好な柔軟性を併せ持つ光吸収層を形成できる。このため、アリール基を含むポリシロキサンを光吸収性組成物の硬化性樹脂として使用する場合、光吸収層10の厚みを比較的大きくしやすく、光吸収剤を光吸収層に多く含ませることができる。アリール基を含むポリシロキサンを光吸収性組成物の硬化性樹脂として使用する場合、光学フィルタ1a〜1dにおける光吸収層10の厚みは、望ましくは80μm〜500μmであり、より望ましくは100μm〜400μmである。
【0046】
本発明の一例に係る光学フィルタ1aの製造方法の一例について説明する。まず、液状の光吸収性組成物をスピンコーティング又はディスペンサによる塗布により、透明誘電体基板20の一方の主面に塗布して塗膜を形成する。次に、この塗膜に対して所定の加熱処理を行って塗膜を硬化させる。このようにして、光学フィルタ1aを製造できる。光吸収層10を強固に形成しつつ光学フィルタ1aの光学特性を高める観点から、加熱処理における塗膜の雰囲気温度の最高値は、例えば140℃以上であり、望ましくは160℃以上である。また、加熱処理における塗膜の雰囲気温度の最高値は、例えば、170℃以下である。
【0047】
図2に示す通り、本発明の別の一例に係る光学フィルタ1bは、赤外線反射膜30を備えている。赤外線反射膜30は、異なる屈折率を有する複数の材料が代わる代わる積層されて形成された膜である。赤外線反射膜30を形成する材料は、例えば、SiO
2、Ti
O
2、及びMgF
2などの無機材料又はフッ素樹脂などの有機材料である。赤外線反射膜30を透明誘電体基板に形成した積層体は、例えば、波長350nm〜800nmの光を透過させるとともに、波長850nm〜1200nmの光を反射する。赤外線反射膜30を備えたその積層体は、波長350nm〜800nmにおいて、例えば85%以上、望ましくは90%以上の分光透過率を有し、かつ、波長850nm〜1200nmにおいて、例えば1%以下、望ましくは0.5%以下の分光透過率を有する。これにより、光学フィルタ1bは、波長850nm〜1200nmの範囲の光又は波長900nm〜1200nmの範囲の光をさらに効果的に遮蔽できる。また、赤外線反射膜30を備えた積層体の分光透過率が上記の特性を有することにより、光の入射角の変化による赤外線反射膜30を備えた積層体の透過率スペクトルのシフトが光学フィルタ1bの透過率スペクトルに与える影響を抑制できる。なぜなら、光の入射角の変動に伴って赤外線反射膜の透過スペクトルに波長シフトが現れる領域に、式(a)で表されるホスホン酸と銅イオンとによって形成された光吸収剤が光吸収能を有するためである。
【0048】
光学フィルタ1bの赤外線反射膜30を形成する方法は、特に制限されず、赤外線反射膜30を形成する材料の種類に応じて、真空蒸着、スパッタリング、CVD(Chemical Vapor Deposition)、及びスピンコーティング又はスプレーコーティングを利用したゾル
ゲル法のいずれかを用いることができる。
【0049】
図3に示す通り、本発明の別の一例に係る光学フィルタ1cは、透明誘電体基板20の両方の主面上に光吸収層10が形成されている。これにより、1つの光吸収層10によってではなく、2つの光吸収層10によって、光学フィルタ1cが所望の光学特性を得るために必要な光吸収層の厚みを確保できる。透明誘電体基板20の両方の主面上における光吸収層10の厚みは同一であってもよいし、異なっていてもよい。すなわち、光学フィルタ1cが所望の光学特性を得るために必要な光吸収層の厚みが均等に又は不均等に分配されるように、透明誘電体基板20の両方の主面上に光吸収層10が形成されている。これにより、透明誘電体基板20の両方の主面上に形成された各光吸収層10の厚みが比較的小さい。このため、光吸収層の厚みが大きい場合に生じる光吸収層の厚みのばらつきを抑制できる。また、液状の光吸収性組成物を塗布する時間を短縮でき、光吸収性組成物の塗膜を硬化させるための時間を短縮できる。透明誘電体基板20が非常に薄い場合、透明誘電体基板20の一方の主面上のみに光吸収層10を形成すると、光吸収性組成物から光吸収層10を形成する場合に生じる収縮に伴う応力によって、光学フィルタが反る可能性がある。しかし、透明誘電体基板20の両方の主面上に光吸収層10が形成されていることにより、透明誘電体基板20が非常に薄い場合でも、光学フィルタ1cにおいて反りが抑制される。
【0050】
図4に示す通り、本発明の別の一例に係る光学フィルタ1dは、透明誘電体基板20の一方の主面と平行に形成された補助光吸収層15をさらに備えている。補助光吸収層15は、例えば、上記の式(b)で表されるホスホン酸と銅イオンとによって形成された補助光吸収剤と、この補助光吸収剤を分散させるリン酸エステルと、硬化性樹脂とを含有している補助光吸収性組成物の硬化物によって形成されている。これにより、光学フィルタ1dは、補助光吸収層15を備えていることにより、波長850nm以上又は波長900nm以上の光の透過率を有利に低減できる。
【0051】
図4に示す通り、例えば、透明誘電体基板20の一方の主面に光吸収層10が形成され、かつ、透明誘電体基板20の他方の主面に補助光吸収層15が形成されている。この場合、光吸収層10の形成に伴い透明誘電体基板20に加わる応力と補助光吸収層15の形成に伴い透明誘電体基板20に加わる応力とがバランスし、光学フィルタ1dに反りが発生することを防止できる。
【0052】
補助光吸収性組成物におけるリン酸エステル及び硬化性樹脂としては、例えば、光吸収性組成物におけるリン酸エステル及び硬化性樹脂と同様の材料を用いることができる。
【0053】
液状の補助光吸収性組成物をスピンコーティング又はディスペンサによる塗布により、透明誘電体基板20の一方の主面に塗布して塗膜を形成する。次に、この塗膜に対して所定の加熱処理を行って塗膜を硬化させる。このようにして、光学フィルタ1dを製造できる。補助光吸収層15を強固に形成しつつ光学フィルタ1dの光学特性を高める観点から、加熱処理における塗膜の雰囲気温度の最高値は、例えば140℃以上であり、望ましくは160℃以上である。また、加熱処理における塗膜の雰囲気温度の最高値は、例えば、170℃以下である。光吸収層10及び補助光吸収層15を形成するための加熱処理は同時に行われてもよい。
【0054】
図5に示す通り、例えば、光学フィルタ1aを用いて、撮像光学系100を提供できる。撮像光学系100は、光学フィルタ1aに加え、例えば、撮像レンズ3をさらに備えている。撮像光学系100は、デジタルカメラなどの撮像装置において、撮像素子2の前方に配置されている。撮像素子2は、例えば、CCD又はCMOSなどの撮像素子である。
図5に示す通り、被写体からの光は、撮像レンズ3によって集光され、光学フィルタ1aによって紫外線及び赤外線がカットされた後、撮像素子2に入射する。このため、撮像素
子2の分光感度が人間の視感度に近く、色再現性の高い良好な画像を得ることができる。撮像光学系100は、光学フィルタ1aに代えて、光学フィルタ1b、光学フィルタ1c、及び光学フィルタ1dのいずれかを備えていてもよい。
【実施例】
【0055】
実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。まず、実施例及び比較例に係る光学フィルタの分光透過率に関する評価方法を説明する。
【0056】
<光学フィルタの透過率スペクトル測定>
波長300nm〜1200nmの範囲の光を一部の実施例及び一部の比較例に係る光学フィルタに入射させたときの透過率スペクトルを、紫外線可視分光光度計(日本分光社製、製品名:V−670)を用いて測定した。この測定において、一部の実施例及び一部の比較例に係る光学フィルタに対する入射光の入射角を0°(度)に設定した。光学フィルタの光吸収層の厚みの違いによる透過率スペクトルの影響を排除するために、波長750nm〜900nmの範囲における透過率が、それぞれある所定の値になるように正規化した。具体的には、一部の実施例及び一部の比較例に係る光学フィルタについて実測された透過率スペクトルに100/92を乗じて界面における反射をキャンセルし、各波長における透過率を吸光度に換算したうえで正規化係数を乗じて調整した値に92/100をさらに乗算して、正規化した透過率スペクトルを算出した。ここで、正規化係数は、以下の2つの条件(1)及び(2)のそれぞれに従って定めた。
条件(1):実測された透過率スペクトルにおける波長750〜900nmの範囲における最大の透過率が1.0%になるように調整
条件(2)実測された透過率スペクトルにおける波長750〜900nmの範囲における最大の透過率が0.5%になるように調整。
【0057】
正規化係数の決定のための上記の条件(1)及び(2)は、光学フィルタに求められる波長750nm〜900nmの範囲における透過率特性を参考に定めた。このように、光学フィルタの材料及び条件の最適化のための検討においては、検討対象の材料を用いて適当な厚み(例えば、50μm〜100μm程度)の層(光吸収層)を形成し、その層を備えた積層体サンプルについて実測した透過率スペクトルを所定の条件下で正規化したうえで、その正規化の結果に基づいて検討対象を評価することが効率的である。実用に供される光学フィルタを製造する場合には、このような評価において肯定的な結果が得られた材料及び条件に従って、所望の透過率スペクトルが得られるように層の厚みを調整すればよい。
【0058】
<透過率スペクトルの入射角依存性の評価>
波長300nm〜1200nmの範囲の光を一部の実施例及び一部の比較例に係る光学フィルタに0°及び40°の入射角で入射させたときの透過率スペクトルを、紫外線可視分光光度計(日本分光社製、製品名:V−670)を用いて測定し、上記の通り、正規化した。一部の実施例及び一部の比較例のそれぞれについて、0°の入射角における正規化された透過率スペクトルと40°の入射角における正規化された透過率スペクトルとを対比して透過率スペクトルの入射角依存性を評価した。
【0059】
<実施例1>
酢酸銅一水和物1.125gとテトラヒドロフラン(THF)60gとを混合して、3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208F(第一工業製薬社製)を1.55g加えて30分間撹拌し、A液を得た。フェニルホスホン酸(日産化学工業社製)0.4277gにTHF10gを加えて30分間撹拌し、B−1液を得た。4‐ブロモフェニルホスホン酸(東京化成工業社
製)0.2747gにTHF10gを加えて30分間撹拌し、B−2液を得た。次に、A液を撹拌しながらA液にB−1液及びB−2液を加え、室温で1分間撹拌した。次に、この溶液にトルエン28gを加えた後、室温で1分間撹拌してC液を得た。このC液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB−2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N−1110SF)によって、18分間脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の溶液を取り出した。取り出した溶液に、シリコーン樹脂(信越化学工業社製、製品名:KR−300)を4.400g添加し、室温で30分間撹拌し、実施例1に係る光吸収性組成物を得た。各材料の添加量を表1に示す。実施例1に係る光吸収性組成物は高い透明性を有し、実施例1に係る光吸収性組成物において光吸収剤の微粒子が良好に分散していた。
【0060】
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263)の一方の主面の中心部の約30mm×30mmの範囲にディスペンサを用いて実施例1に係る光吸収性組成物を約0.3g塗布して塗膜を形成した。次に、未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で3時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、光吸収層を備えた、実施例1に係る光学フィルタを作製した。上記の条件(1)及び(2)に従って正規化された、実施例1に係る光学フィルタの透過率スペクトルをそれぞれ
図6A及び
図6Bに示す。また、正規化された、実施例1に係る光学フィルタの透過率スペクトルにおける主要な値を表2に示す。
図6A、
図6B、及び表2に示す通り、光吸収層を備えた実施例1に係る光学フィルタにおいて、上記の条件(I)〜(V)が満たされていることが確認された。さらに、実施例1に係る光学フィルタに関する0°の入射角における正規化された透過率スペクトルと40°の入射角における正規化された透過率スペクトルとの対比の結果、実施例1に係る光学フィルタは、上記の条件(VI)及び(VII)を満たしていた。実施例1に係る光
学フィルタは撮像装置において撮像素子とともに用いるのに望ましい特性を有することが示唆された。
【0061】
<実施例2>
酢酸銅一水和物1.125gとTHF60gとを混合して3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208F(第一工業製薬社製)を2.3382g加えて30分間撹拌し、A液を得た。また、フェニルホスホン酸(日産化学工業社製)0.5848gにTHF10gを加えて30分間撹拌し、B液を得た。次に、A液を撹拌しながらA液にB液加え、室温で1分間撹拌した。次に、この溶液にトルエン45gを加えた後、室温で1分間撹拌し、C液を得た。このC液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB−2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N−1110SF)によって、25分間脱溶媒処理を行った。オイルバスの設定温度は、120℃に調整した。その後、フラスコの中から脱溶媒処理後の溶液を取り出した。取り出した溶液に、シリコーン樹脂(信越化学工業社製、製品名:KR−300)を4.400g添加し、室温で30分間撹拌し、実施例2に係る光吸収性組成物を得た。各材料の添加量を表1に示す。実施例2に係る光吸収性組成物において光吸収剤の微粒子が良好に分散していた。なお、プライサーフA208Fは、上記の式(c1)及び(c2)において、R
21、R
22、及びR
3
が、それぞれ、同一種類の(CH
2CH
2O)
nR
4であり、R
4は炭素数が8の1価の基で
ある、リン酸エステル化合物であった。
【0062】
実施例1に係る光吸収性組成物の代わりに実施例2に係る光吸収性組成物を使用した以外は、実施例1と同様にして実施例2に係る光学フィルタを作製した。上記の条件(1)及び(2)に従って正規化された、実施例2に係る光学フィルタの透過率スペクトルにお
ける主要な値を表2に示す。表2に示す通り、光吸収層を備えた実施例2に係る光学フィルタにおいて、上記の条件(I)〜(V)が満たされていることが確認された。さらに、実施例2に係る光学フィルタに関する0°の入射角における正規化された透過率スペクトルと40°の入射角における正規化された透過率スペクトルとの対比の結果、実施例2に係る光学フィルタは、上記の条件(VI)及び(VII)を満たしていた。実施例2に係る光
学フィルタは撮像装置において撮像素子とともに用いるのに望ましい特性を有することが示唆された。
【0063】
<実施例3〜18>
フェニルホスホン酸及びリン酸エステル化合物(プライサーフA208F)の添加量を表1の通り変更した以外は、実施例2と同様にして、実施例3〜15に係る光吸収性組成物を得た。リン酸エステル化合物としてプライサーフA208Fの代わりにNIKKOL
DDP−2(日光ケミカルズ社製)を用い、フェニルホスホン酸及びリン酸エステル化合物の添加量を表1の通りに調整した以外は、実施例2と同様にして、実施例16に係る光吸収性組成物を得た。NIKKOL DDP−2は、上記の式(c1)及び(c2)において、R
21、R
22、及びR
3が、それぞれ、同一種類の(CH
2CH
2O)
mR
5であり、
m=2であり、R
5は炭素数が12〜15の1価の基であるリン酸エステル化合物である
。リン酸エステル化合物としてプライサーフA208Fの代わりにNIKKOL DDP−6(日光ケミカルズ社製)を用い、フェニルホスホン酸及びリン酸エステル化合物の添加量を表1の通りに調整した以外は、実施例2と同様にして、実施例17に係る光吸収性組成物を得た。NIKKOL DDP−6は、上記の式(c1)及び(c2)において、R
21、R
22、及びR
3が、それぞれ、同一種類の(CH
2CH
2O)
mR
5であり、m=6で
あり、R
5は炭素数が12〜15の1価の基であるリン酸エステル化合物である。フェニ
ルホスホン酸及びリン酸エステル化合物の添加量を表1の通りに調整した以外は、実施例2と同様にして、実施例18に係る光吸収性組成物を得た。実施例3〜18に係る光吸収性組成物において光吸収剤の微粒子が良好に分散していた。
【0064】
実施例1に係る光吸収性組成物の代わりに、実施例3〜18のそれぞれに係る光吸収性組成物を用いた以外は、実施例1と同様にして、実施例3〜18に係る光学フィルタを作製した。上記の条件(1)及び(2)に従って正規化された、実施例3〜18に係る光学フィルタの透過率スペクトルにおける主要な値を表2に示す。表2に示す通り、光吸収層を備えた実施例3〜18に係る光学フィルタにおいて、上記の条件(I)〜(V)が満たされていることが確認された。さらに、実施例3〜18に係る光学フィルタのそれぞれにおいて、0°の入射角における正規化された透過率スペクトルと40°の入射角における正規化された透過率スペクトルとの対比の結果から、実施例3〜18に係る光学フィルタは、上記の条件(VI)及び(VII)を満たしていた。実施例3〜18に係る光学フィルタ
は撮像装置において撮像素子とともに用いるのに望ましい特性を有することが示唆された。
【0065】
<実施例19〜24>
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263)の一方の主面に実施例1に係る光吸収性組成物を塗布した。未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で8時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、光吸収層を備えた実施例19に係る光学フィルタを得た。なお、実施例19に係る光学フィルタの光吸収層の厚みは、波長750nm〜900nmにおける光の透過率の最大値が0.4〜0.5%になるように調整された。このように、上記の条件(2)で正規化された、実施例1に係る光学フィルタの透過率スペクトルの結果を踏まえて、実施例19に係る光学フィルタの光吸収層の厚みを定めた。実施例2、6、13、15、及び17に係る光吸収性組成物を用いた以外は、実施例
19と同様にして、それぞれ実施例20、21、22、23、及び24に係る光学フィルタを得た。実施例19〜24に係る光学フィルタの透過率スペクトルを
図7〜
図12にそれぞれ示す。また、実施例19〜24に係る光学フィルタの透過率に関する主要な値及び光吸収層の厚みを表3に示す。なお、光吸収層の厚みは、デジタルマイクロメータにより測定した。実施例19〜24に係る光学フィルタは、条件(I)〜(V)を満足することが確認された。加えて、実施例19〜24によれば、条件(2)によって正規化された光学フィルタを再現できることが示唆された。実施例19〜24に係る光学フィルタは、撮像装置において撮像素子とともに用いるのに望ましい特性を有することが示唆された。
【0066】
<比較例1〜7>
フェニルホスホン酸及びリン酸エステル化合物の添加量を表4に示す通りに変更した以外は、実施例2と同様にして比較例1及び2に係る組成物を得た。フェニルホスホン酸の代わりに4‐ブロモフェニルホスホン酸を用い、4‐ブロモフェニルホスホン酸及びリン酸エステル化合物の添加量を表4に示す通りに調整した以外は、実施例2と同様にして比較例3に係る組成物を得た。比較例1〜3に係る組成物の透明性が低く、比較例1〜3に係る組成物において、ホスホン酸銅の微粒子は分散しておらず、ホスホン酸銅の微粒子が凝集していた。比較例1〜3に係る組成物は、光吸収性組成物として利用することは相当に困難であり、比較例1〜3に係る組成物を用いて光学フィルタを作製することはできなかった。実施例1〜18に係る光吸収性組成物と比較例1〜3に係る組成物との対比より、式(a)で表されるホスホン酸と銅イオンとによって形成された光吸収剤を含む光吸収性組成物において、リン酸エステルの含有量に対するホスホン酸の含有量の比が質量基準で0.10〜0.48であり、かつ、銅イオンの含有量に対するホスホン酸の含有量の比が物質量(モル)基準で0.45〜0.80であると、光吸収剤の微粒子が良好に分散しやすいことが示唆された。
【0067】
フェニルホスホン酸の代わりにn‐ブチルホスホン酸を用い、n‐ブチルホスホン酸及びリン酸エステル化合物の添加量を表4に示す通りに調整した以外は、実施例2と同様にして比較例4に係る光吸収性組成物を得た。フェニルホスホン酸の代わりにヘキシルホスホン酸を用い、ヘキシルホスホン酸及びリン酸エステル化合物の添加量を表4に示す通りに調整した以外は、実施例2と同様にして比較例5及び6に係る光吸収性組成物を得た。フェニルホスホン酸の代わりにエチルホスホン酸を用い、エチルホスホン酸及びリン酸エステル化合物の添加量を表4に示す通りに調整した以外は、実施例2と同様にして比較例7に係る光吸収性組成物を得た。比較例4〜7に係る光吸収性組成物は高い透明性を有し、比較例4〜7に係る光吸収性組成物において光吸収剤の微粒子が良好に分散していた。
【0068】
実施例1に係る光吸収性組成物の代わりに比較例4〜7に係る光吸収性組成物を用いた以外は、実施例1と同様にして、比較例4〜7に係る光学フィルタをそれぞれ作製した。上記の条件(1)及び(2)に従って正規化された、比較例4〜7に係る光学フィルタの透過率スペクトルをそれぞれ
図13〜
図16に示す。
図13〜
図16において、実線のグラフは条件(1)に従って正規化された透過率スペクトルを示し、破線のグラフは条件(2)に従って正規化された透過率スペクトルを示す。また、上記の条件(1)及び(2)に従って正規化された、比較例4〜7に係る光学フィルタの透過率スペクトルに関する主要な値を表5に示す。上記の条件(1)及び(2)に従って正規化された、比較例4〜7に係る光学フィルタの透過率スペクトルのいずれも上記の条件(I)〜(V)を同時に満たすことはできなかった。特に、比較例4〜7に係る光学フィルタの透過率スペクトルにおいて、IRカットオフ波長が比較的長波長側に存在し、UVカットオフ波長が比較的短波長側に存在する傾向が示唆された。
【0069】
比較例4〜7に係る光学フィルタの光吸収層において光吸収剤(ホスホン酸銅)の濃度を増加させ又は光吸収層の厚みを増加させることにより、比較例4〜7に係る光学フィル
タの光吸収層における光吸収剤の含有量を増加させることが考えられる。この場合、光学フィルタの透過率スペクトルにおいて、IRカットオフ波長が短波長側にシフトしつつUVカットオフ波長が長波長側にシフトする可能性があり、上記の条件(IV)及び(V)を同時に満たすには有利であるように思われる。しかし、比較例4〜7に係る光学フィルタの光吸収層における光吸収剤の含有量を増加させると、可視光域の透過率が必然的に低下してしまい、上記の条件(I)〜(V)を同時に満たすことがかなり難しい。
【0070】
逆に、実施例によれば、上記の条件(I)〜(V)を同時に満たすために許容される設計パラメータの範囲が広い。このように、実施例に裏付けられた本発明の実施形態によれば、上記の条件(I)〜(V)を満たす光学フィルタの設計の自由度が高い。
【0071】
【表1】
【0072】
【表2】
【0073】
【表3】
【0074】
【表4】
【0075】
【表5】
本発明に係る光吸収性組成物は、下記式(a)で表されるホスホン酸と銅イオンとによって形成され、当該光吸収性組成物において分散している光吸収剤と、光吸収剤を分散させるリン酸エステルと、硬化性樹脂と、を含有している。透明誘電体基板の一方の主面に当該光吸収性組成物を塗布して硬化させて、当該光吸収性組成物の硬化物である光吸収層及び前記透明誘電体基板のみを備えた積層体を形成したときに、積層体が所定の条件を満たす。