特許第6450101号(P6450101)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイメック・ヴェーゼットウェーの特許一覧

<>
  • 特許6450101-処理前の多孔質基板の保護 図000003
  • 特許6450101-処理前の多孔質基板の保護 図000004
  • 特許6450101-処理前の多孔質基板の保護 図000005
  • 特許6450101-処理前の多孔質基板の保護 図000006
  • 特許6450101-処理前の多孔質基板の保護 図000007
  • 特許6450101-処理前の多孔質基板の保護 図000008
  • 特許6450101-処理前の多孔質基板の保護 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6450101
(24)【登録日】2018年12月14日
(45)【発行日】2019年1月9日
(54)【発明の名称】処理前の多孔質基板の保護
(51)【国際特許分類】
   H01L 21/312 20060101AFI20181220BHJP
   H01L 21/3065 20060101ALI20181220BHJP
【FI】
   H01L21/312 Z
   H01L21/302 104Z
【請求項の数】15
【外国語出願】
【全頁数】21
(21)【出願番号】特願2014-130604(P2014-130604)
(22)【出願日】2014年6月25日
(65)【公開番号】特開2015-61073(P2015-61073A)
(43)【公開日】2015年3月30日
【審査請求日】2017年2月20日
(31)【優先権主張番号】13184718.8
(32)【優先日】2013年9月17日
(33)【優先権主張国】EP
(73)【特許権者】
【識別番号】514156563
【氏名又は名称】アイメック・ヴェーゼットウェー
【氏名又は名称原語表記】IMEC VZW
(74)【代理人】
【識別番号】100101454
【弁理士】
【氏名又は名称】山田 卓二
(74)【代理人】
【識別番号】100081422
【弁理士】
【氏名又は名称】田中 光雄
(74)【代理人】
【識別番号】100100479
【弁理士】
【氏名又は名称】竹内 三喜夫
(72)【発明者】
【氏名】ミハイル・バクラノフ
【審査官】 桑原 清
(56)【参考文献】
【文献】 欧州特許出願公開第02595182(EP,A1)
【文献】 特開2013−140980(JP,A)
【文献】 特開2010−004049(JP,A)
【文献】 Liping Zhang,Low Damage Cryogenic Etching of Porous Organosilicate Low-k Materials Using SF6/O2/SiF4,ECS Journal of Solid State Science and Technology,The Electrochemical Society,2013年 4月 5日,vol 2 no 6,N131-N139
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/312
H01L 21/3065
(57)【特許請求の範囲】
【請求項1】
多孔質材料3の表面5をある環境内で処理する方法であって、
I)最初に、圧力P1および温度T1を有する環境内で多孔質材料3を有機ガス11gと接触させるステップであって、
前記有機ガス11gは、前記圧力P1および前記温度T1で、前記多孔質材料3の外部にあるときガス状態であり、前記多孔質材料3と接触したとき有機液体11lとして凝縮し、これにより前記多孔質材料3の孔12を前記有機液体11lで充填するようにしたステップと、
II)ステップIの後、前記有機液体11lが前記孔12の中で凝固するように、前記多孔質材料3を温度T2に冷却するステップであって、これにより前記孔12を有機固体11sで封止して、保護された多孔質材料4を提供するようにしたステップと、
III)ステップIIの後、前記表面5上で処理7を行うステップと、を含み、
前記多孔質材料3の温度は、ステップIの実施時に、T1と等しいか、またはT1より低く、有機液体11lの融点より高い、方法。
【請求項2】
ステップIIIの後、前記有機固体11sを除去するステップIVをさらに含む請求項1記載の方法。
【請求項3】
前記除去は、前記有機固体11sを、前記有機液体11lと混和する補助液体と接触させることを含む請求項2記載の方法。
【請求項4】
前記除去は、前記有機固体11sを気化させるように、前記保護された多孔質材料4の温度を値T3に上昇させることを含む請求項2記載の方法。
【請求項5】
前記圧力P1は、温度T1の前記有機ガス11gの平衡蒸気圧P0より低く、温度T1での臨界圧力Pcと等しいか、れより高い(但し、臨界圧力Pcとは、有機ガス11gの液相および気相が前記多孔質材料3内で平衡状態となる圧力)請求項1〜4のいずれかに記載の方法。
【請求項6】
前記多孔質材料3の温度は、ステップIの実施時T1と等しい請求項1〜5のいずれかに記載の方法。
【請求項7】
前記処理7は、エッチング7である請求項1〜6のいずれかに記載の方法。
【請求項8】
前記処理7は、凹部6を形成するためのものであり、
前記方法は、
V)前記凹部6を金属で少なくとも部分的に充填するステップ、を含み、
ステップVは、ステップIIIの後で、ステップIVの前または後に実施される請求項7記載の方法。
【請求項9】
前記処理7は、プラズマ処理7ある請求項1〜8のいずれかに記載の方法。
【請求項10】
ステップIIは、全てのアクセス可能な孔が前記有機液体で全体に充填されるまで遅延させる請求項1〜9のいずれかに記載の方法。
【請求項11】
前記多孔質材料3は、ナノ多孔質材料3である請求項1〜10のいずれかに記載の方法。
【請求項12】
前記多孔質材料3は、シリコン含有多孔質材料である請求項1〜11のいずれかに記載の方法。
【請求項13】
T3は、250℃より低いか、これと等し請求項4〜12のいずれかに記載の方法。
【請求項14】
T2は、−130℃より高請求項1〜13のいずれかに記載の方法。
【請求項15】
ステップIの前に、
VI)レジスト層1を載せた表面を有する多孔質材料を用意するステップと、
VII)前記レジスト層1をパターン化して、前記多孔質材料3の表面を露出させるステップと、をさらに含み、
これにより前記多孔質材料3の前記表面5を用意し、
前記表面5の処理7は、前記表面5のエッチング7であり、これにより前記保護された多孔質材料4に凹部6を形成するようにした請求項1〜14のいずれかに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エッチングまたは表面の改質(modification)の際、損傷から多孔質材料を保護する方法に関する。特に本発明は、半導体デバイスの分野およびプラズマ誘起損傷からの低誘電率(low-k)誘電体の保護に関する。
【背景技術】
【0002】
多孔質基板をエッチングまたは表面の改質によって処理する必要がある場合、基板の損傷がしばしば生ずる。これは、プラズマ介在の処理において特に現実的である。これは、推定するには、多孔質基板の中に深く侵入して、それと反応する活性プラズマラジカルによって引き起こされ、これによりその組成およびその多孔性を変化させている。酸化プラズマおよび還元プラズマの両方ともこうした悪影響を有する。これらの問題は、例えば、低誘電率(low-k)誘電体の集積の際、マイクロエレクトロニクス分野で生ずる。
【0003】
低誘電率(low-k)誘電体(SiOの誘電率、即ち、4.0より低い誘電率を有する材料)は、高密度集積回路の近隣の導電部の間の静電容量を減少させ、これにより速度の損失およびクロストークを回避するために必要になる。低誘電率(low-k)誘電体の誘電率を可能な限り減少させるには、低誘電率(low-k)誘電体を多孔質にする。これにより誘電率は、約2.0またはそれ未満に低下できる。誘電体上での集積回路製造プロセスが、プラズマエッチングを含み、誘電体を上述した損傷に曝してしまう。
【0004】
米国公開第2005/0148202号は、半導体製造で用いられる多孔質材料を封止または保護する方法を記載している。それは、ポリマー化合物および有機溶剤の混合物を塗布することによって、多孔質材料の孔を封止することを記載している。こうして形成された封止層はさらに乾燥され、有機溶剤および揮発性成分の蒸発、および封止材料としての表面上でのポリマー化合物の固定を生じさせる。しかしながら、こうした封止方法は、幾つかの不具合がある。高温の溶剤と基板との間の長い接触時間は、基板の溶解または損傷を可能にする。
【0005】
さらに、該方法は、かなり複雑かつ面倒で、労働集約的である。それは、明確に定義された末端基を有する特定のポリマーを合成すること、特定のポリマー溶液を準備すること、それを基板上に均一に塗布すること(これは、良好な濡れ性および精緻な塗布技術を意味する)、そして、溶液を加熱して、溶剤を蒸発させ及び/又はポリマーを乾燥させることを含むためである。さらに、ポリマー堆積は、典型的には多孔質基板に応力を発生する。また、ポリマーが最終製品で孔に残留していると、誘電体の性質に影響を与える可能性があり、これらを制御するのがより難しくなる。また、ポリマーと多孔質材料との間で熱膨張係数の不整合がある場合、機械的安定性の問題を生じさせる。最後に、大事なことであるが、ポリマーは、孔を完全に充填すること、及び/又は最小の孔に入ることの困難さを有する傾向があり、その結果、最適な密度でない充填になる(図7の(P)を参照)。
【0006】
文献(Dubois et al, adv. Mater. 2011, 23, 25, 2828-2832)は、多孔質の低誘電率(low-k)誘電体を有機ポリマーで封止する類似の方法を開示する。ポリマーは、いったんエッチングおよび他の処理工程が行われると、熱処理によって劣化する。これは、推定するには、最終構造でのパターン化した誘電体が初期の同等品に匹敵する性質を有することを可能にする。しかしながら、ポリマーを熱手段で除去することは、それを劣化させ、孔の中にポリマー残渣を残す可能性を意味する。また、それはエネルギー集約的である。さらに、ポリマーの使用に特有の他の不具合が、米国公開第2005/0148202号について上述したように残っている。
【0007】
欧州公開第2595182号は、多孔質材料の表面をある環境内で処理する方法を開示する。前記方法は、下記ステップを含む。
I)前記表面の温度を値T2に設定し、前記環境の圧力を値P1に設定するステップ。
II)前記値T2を上回る前記圧力値P1での凝固温度を有し、80℃を下回る前記圧力値P1での気化温度を有する流体を前記表面に接触させ、これにより前記流体を前記材料の孔の中で凝固させ、前記孔を封止するステップ。
III)前記表面を処理するステップ。前記処理は、好ましくはエッチングまたは前記表面の改質である。
IV)前記流体を気化させるように、前記表面の温度を値T3に設定し、前記環境の圧力を値P2に設定するステップ。
【0008】
この方法は、多孔質基板に対する多くの損傷を防止するのに有効であるが、幾つかの損傷が未だに生ずる。
【発明の概要】
【発明が解決しようとする課題】
【0009】
従って、前記基板の処理(例えば、エッチングまたは表面改質による)の際、多孔質基板に対する損傷を防止する手法について当該分野でのニーズがあり、これは上記の不具合を回避する。
【0010】
本発明の目的は、多孔質材料表面の処理を可能にしつつ、過剰な損傷から保護する方法を提供することである。
【課題を解決するための手段】
【0011】
本発明の実施形態の利点は、前記処理後に多孔質材料のクリーニングを容易にすることである。
【0012】
本発明の実施形態の利点は、多孔質材料の特別に良好な保護が得られることである。
【0013】
本発明の実施形態の利点は、極めて小さい寸法の孔(例えば、マイクロ細孔(micropores))を充填し保護できることである。
【0014】
本発明の実施形態の利点は、多孔質材料内でのプラズマ誘起フッ素拡散が回避または制限できることである。
【0015】
本発明の実施形態の利点は、該方法は、VUV(真空紫外)誘起損傷に対して多孔質材料を保護できることである。
【0016】
本発明の実施形態の利点は、非極低温の温度(例えば、−50℃またはそれ以上)での処理(例えば、プラズマ処理)を可能にすることであり、これによりコストを削減する。
【0017】
本発明の実施形態の利点は、処理後に適度な脱保護(deprotecting)温度を含むことであり、これによりコストを削減し、温度感受性の基板との適合性を増加させる。
【0018】
本発明の実施形態の利点は、多孔質材料と接触するために用いられるのが有機ガスであることであり、これにより、多孔質基板が容易に配送され、プラズマエッチングが実施可能である真空チャンバ内で接触を生じさせる。
【0019】
上記目的は、本発明に係る方法によって達成される。
【0020】
第1態様において、本発明は、多孔質材料の表面をある環境内で処理する方法に関し、該方法は下記ステップを含む。
I)圧力P1および温度T1を有する環境内で多孔質材料を有機ガスと接触させるステップ。前記有機ガスは、前記圧力P1および前記温度T1で前記多孔質材料の外部にあるときガス状態であり、前記多孔質材料と接触したとき、有機液体として凝縮し、これにより前記多孔質材料の孔を前記有機液体で充填する。
II)前記有機液体が前記孔の中で凝固するように、前記充填された多孔質材料を温度T2に冷却するステップ。これにより前記孔を有機固体で封止する。
III)前記表面上で処理を行うステップ。
【0021】
この方法は、孔(例えば、マイクロ細孔を含む)の特別に有効な充填を可能とする。有機ガスは、多孔質材料内(マイクロ細孔でも)で容易に拡散し、そして多孔質材料との接触時に液化し、毛管現象によってある程度まで拡散するからである。これは、液体(より多くの困難を伴うマイクロ細孔に入る)による直接の毛管充填、または、多孔質材料との接触時に凝固するガスを用いた充填に都合よく匹敵する孔の充填を可能とする。
【0022】
第2態様において、本発明は、第1態様の何れの実施形態に係る方法によって得られる処理された多孔質材料を備えたデバイスに関する。
【0023】
本発明の特定かつ好ましい態様が、添付した独立および従属の請求項に記述されている。従属請求項からの特徴は、独立請求項の特徴および他の従属請求項と適切に組み合わせてもよく、請求項に明記されたものだけに限らない。
【0024】
本発明の上記および他の特性、特徴および利点が、一例として本発明の原理を説明する添付図面と関連して、下記の詳細な説明から明らかになるであろう。この説明は、例示の目的に過ぎず、本発明の範囲を限定しない。下記の参照図面は添付図面を参照する。
【図面の簡単な説明】
【0025】
図1】本発明の一実施形態に係るプロセスの説明図である。
図2】本発明の他の実施形態に係るプロセスの説明図である。
図3】本発明のさらに他の実施形態に係るプロセスの説明図である。
図4】本発明のさらに他の実施形態に係るプロセスの説明図である。
図5】本発明のさらに他の実施形態に係るプロセスの説明図である。
図6】本発明のさらに他の実施形態に係るプロセスの説明図である。
図7】先行技術の一実施形態(P)と本発明の一実施形態(E)とを比較する説明図である。
【0026】
異なる図面において、同じ参照符号は同じまたは類似の要素を参照する。
【発明を実施するための形態】
【0027】
本発明は、特定の実施形態に関して一定の図面を参照して説明するが、本発明はこれに限定されず、請求項によってのみ限定される。記載した図面は、概略的かつ非限定的なものである。図面において、幾つかの要素のサイズは、説明目的のために誇張したり、縮尺どおり描写していないことがある。寸法および相対寸法は、本発明の実際の具体化に対応していない。
【0028】
さらに、用語「第1」「第2」「第3」などは、類似の要素を区別するために使用しており、必ずしも時間的、空間的、ランキングまたは他の手法での順番を記述するためではない。ここで使用した用語は、適切な状況下で交換可能であり、ここで説明した本発明の実施形態は、ここで説明したり図示したものとは別の順番で動作可能であると理解すべきである。
【0029】
さらに、説明および請求項での用語「上(top)」、「下(bottom)」、「の上に(over)」、「の下に(under)」等は、説明目的で使用しており、必ずしも相対的な位置を記述するためのものでない。こうして用いた用語は、適切な状況下で交換可能であって、ここで説明した本発明の実施形態がここで説明または図示した以外の他の向きで動作可能であると理解すべきである。
【0030】
用語「備える、含む(comprising)」は、それ以降に列挙された手段に限定されるものと解釈すべきでなく、他の要素またはステップを除外していないことに留意する。記述した特徴、整数、ステップまたは構成要素の存在を、参照したように特定するように解釈する必要があるが、1つ又はそれ以上の他の特徴、整数、ステップまたは構成要素、あるいはこれらのグループの存在または追加を除外していない。こうして表現「手段A,Bを備えるデバイス」の範囲は、構成要素A,Bのみから成るデバイスに限定すべきでない。本発明に関して、デバイスの関連した構成要素だけがAとBであることを意味する。
【0031】
本明細書を通じて「一実施形態」または「実施形態」への参照は、実施形態との関連で記載した特定の特徴、構造または特性が本発明の少なくとも1つの実施形態に含まれることを意味する。本明細書を通じていろいろな場所での「一実施形態」または「実施形態」の語句の出現は、必ずしも全て同じ実施形態を参照していないが、そうこともある。さらに、1つ又はそれ以上の実施形態において、本発明から当業者にとって明らかなように、特定の特徴、構造または特性は、いずれか適切な方法で組み合わせてもよい。
【0032】
同様に、本発明の例示の実施形態の説明において、本開示を合理化し、本発明の1つ又はそれ以上の種々の態様の理解を支援する目的で、単一の実施形態、図面、または説明において、本発明のいろいろな特徴が一緒にグループ化していることがあると理解すべきである。しかしながら、この開示の方法は、請求項の発明が、各請求項で明示的に記載したものより多くの特徴を必要とするという意図を反映していると解釈すべきでない。むしろ下記の請求項が反映しているように、発明の態様は、単一の前述した実施形態の全ての特徴より少ない場合がある。こうして詳細な説明に追従する請求項は、この詳細な説明の中に明示的に組み込まれており、各請求項は、本発明の別々の実施形態として自立している。
【0033】
さらに、ここで説明した幾つかの実施形態が、他の実施形態に含まれる幾つかの他でない特徴を含むとともに、当業者によって理解されるように、異なる実施形態の特徴の組合せが本発明の範囲内にあって、異なる実施形態を構成することを意味する。例えば、下記の請求項において、請求した実施形態の何れも、何れの組合せで使用可能である。
【0034】
ここで提供した説明では、多数の具体的な詳細を説明している。しかしながら、本発明の実施形態は、これらの具体的な詳細なしで実施してもよいことは理解されよう。別の例では、本説明の理解を曖昧にしないために、周知の方法、構造、および技法は詳細には示していない。
【0035】
本説明において「有機化合物」を参照する。
本発明の文脈において、有機化合物とは炭素原子を含む任意の化合物である。これは、有機金属化合物を含む。しかしながら、幾つかの実施形態が有機金属化合物を除外している。本発明において、有機化合物は、多孔質材料と気相で接触する化合物であり、これらは固相に凝固する前に液相へ遷移する。従って、特定の文脈の機能において、用語の有機化合物は、時にはより正確な用語で置換されており、化合物の相を明示している(有機ガス、有機液体または有機固体)。しかしながら、これらのより詳細な用語の各々は、常に同じ有機化合物を参照しており、用語「気相の有機化合物」「液相の有機化合物」または「固相の有機化合物」で置換できる。
【0036】
第1態様において、本発明は、多孔質材料の表面をある環境内で処理する方法に関し、前記方法は下記ステップを含む。
I)圧力P1および温度T1を有する環境内で多孔質材料を有機ガスと接触させるステップ。前記有機ガスは、前記圧力P1および前記温度T1で、前記多孔質材料の外部にあるときガス状態であり、前記多孔質材料と接触したとき有機液体として凝縮し、これにより前記多孔質材料の孔を前記有機液体で充填する。
II)前記有機液体が前記孔の中で凝固するように、前記多孔質材料を温度T2に冷却するステップ。これにより前記孔を有機固体で封止して、保護された多孔質材料を提供する。
III)前記表面上で処理を行うステップ。
【0037】
一実施形態において、該方法は、ステップIIIの後、前記有機固体を除去するステップIVをさらに含んでもよい。
【0038】
一実施形態において、前記除去は、前記有機固体を、前記有機液体と混和する補助液体と接触させることを含んでもよい。これは、処理(例えば、エッチング)されたサンプルがこうした補助液体と接触した場合、有機固体(例えば、内部に廃棄物が取り込まれたり、上部に廃棄物が存在することがある)は、前記補助液体に溶解することができ、廃棄物は、簡単な洗浄プロセスによって有機固体とともに除去できることから好都合である。これは、他のタイプの廃棄物よりも除去するのが困難で、半導体デバイスの性能にとってより有害な金属廃棄物から基板を清掃するのに特に有用である。基板を補助液体と接触させることは、例えば、基板を前記補助液体中に浸漬することによって実施できる。必要ならば、基板及び/又は補助液体の温度は、補助液体中での有機固体の溶解を可能にするのに充分に上昇できる。例えば、温度は、関与した圧力条件(例えば、大気圧)で有機固体の融点を上回る温度に上昇できる。
【0039】
代替の実施形態において、前記除去は、前記有機固体を気化させるように、前記保護された多孔質材料4の温度を値T3に上昇させることを含んでもよい。この実施形態は、補助液体を必要とせず、補助液体を含む実施形態より単純明快である。この実施形態は、基板の孔内または表面上の廃棄物のレベルが低く、あるいは金属廃棄物を含まない場合、特に好都合である。
【0040】
一実施形態において、前記多孔質材料の温度は、ステップIの実施時T1と等しくてもよい。他の実施形態において、ステップIの実施時に、T1より低いが、有機液体の融点より高くてもよい。
【0041】
一実施形態において、ステップIIは、前記多孔質材料および前記有機化合物が平衡状態になるまで、遅延させてもよい。これにより、典型的には、前記有機液体で全体に充填される全てのアクセス可能な孔が得られる。正確な条件は、例えば、その場(in situ)エリプソメトリーを用いて最適化できる。
【0042】
一実施形態において、T3は、250℃より低いか、これと等しくてもよく、好ましくは10〜40℃である。
【0043】
一実施形態において、T2は、−130℃より高くてもよく、好ましくは−50〜−10℃である。
【0044】
一実施形態において、T1は、250℃より低いか、これと等しくてもよく、好ましくは10〜40℃である。最も好ましくは、T1は、18〜25℃である。
【0045】
一実施形態において、前記方法は、ステップIの前に、下記ステップをさらに含んでもよい。
VI)レジスト層を載せた表面を有する多孔質材料を用意するステップ。
VII)前記レジスト層をパターン化して、前記多孔質材料の表面を露出させるステップ。
これにより前記多孔質材料の前記表面を用意し、
前記表面の処理は、前記表面のエッチングであり、これにより前記多孔質材料に凹部を形成する。
【0046】
多孔質材料は、任意の多孔質材料でもよい。材料は、例えば、基板上に支持された層の形態をとってもよく、あるいは自立してもよい。
【0047】
多孔質材料は、例えば、ナノ多孔質材料、即ち、孔が平均で0.2〜1000nmの直径を有する材料、あるいは、平均で1μmと等しいか、これより大きい直径を有する材料でもよい。好ましくは、多孔質材料は、ナノ多孔質材料である。
【0048】
ナノ多孔質材料は、3つのカテゴリー、即ち、メソ多孔質材料、マクロ多孔質材料およびマイクロ多孔質材料に細分化できる。
【0049】
マクロ多孔性は、直径で50nmより大きいか、これと等しく、かつ、1000nmより小さい孔を参照する。
【0050】
メソ多孔性は、直径で2nmより大きいか、これと等しく、かつ、50nmより小さい孔を参照する。
【0051】
マイクロ多孔性は、直径で0.2nmより大きく、かつ、2nmより小さい孔を参照する。
【0052】
本発明は、これら3つのカテゴリーの何れに属するナノ多孔質材料を用いて使用できる。しかしながら、本発明の実施形態に係る方法が特に有用である重要な材料ファミリーが、メソ多孔質材料であり、特にメソ多孔質低誘電率(low-k)材料、特に2〜10nmの孔サイズを持つものである。
【0053】
これらの材料は、プラズマ誘起損傷に悩まされることが繰り返し論証されており、これらのエッチングが、本発明の実施形態が達成するのに役立つ継続的な挑戦になる。
【0054】
多孔質材料は、好ましくは多孔質低誘電率(low-k)材料である。
第1態様の実施形態において、前記材料は、3.9より低い誘電率、好ましくは3.5より低く、より好ましくは3.0より低く、最も好ましくは2.4より低い誘電率を有してもよい。本発明の実施形態に係る方法は、こうした低誘電率(low-k)材料に好都合に適用され、特にプラズマ処理(例えば、エッチング)の前である。こうした低誘電率(low-k)材料へのプラズマエッチングの使用は、損傷および廃棄物を生じさせることが示されており、本発明の実施形態はこうした損傷を防止し、こうした廃棄物を清掃するのに役立つ。
【0055】
第1態様の実施形態において、前記多孔質材料の多孔性は、相互接続されてもよい(少なくとも部分的に相互接続され、好ましくは完全に相互接続される)。多孔質材料が相互接続されている場合、本発明の方法は、表面または材料の全ての孔を極めて効率的に充填することが可能になり、これにより、例えば、材料での空洞のエッチングの際、空洞の全ての壁が固化した液体で封止されることを確保する。
【0056】
完全に相互接続された多孔性を有する材料が好都合である。理由は、本発明の何れかの実施形態で定義されたような有機化合物が、その上面と接触することによって(上面がフリーである場合、即ち、ハードマスク、レジスト等がその上に存在しない場合)、2分間またはそれ以下で全ての孔を1μm厚の材料膜で充填できるからである。
【0057】
本発明の実施形態において、多孔質材料は、10%以上の空隙率、好ましくは20%以上、より好ましくは30%以上、最も好ましくは40%以上の空隙率を有してもよい。本発明の実施形態において、多孔質材料は、80%以下の空隙率を有してもよい。10%の空隙率とは、孔が多孔質材料の体積の10%に達することを意味する。より大きな空隙率が好都合であり、多孔質材料での有機化合物の拡散速度を増加させるからである。従って、それは、方法の接触ステップを短縮化し、その効率を増加させる。
【0058】
本発明の実施形態において、多孔質材料の厚さは、600nm以下、好ましくは400nm以下、最も好ましくは300nm以下である。本発明の実施形態は、孔を200nmの層でほんの数秒で充填するのを可能にする。
【0059】
本発明の実施形態において、材料は、多孔質シリコン含有材料でもよい。
【0060】
多孔質シリコン含有材料は、例えば、多孔質シリカ材料(例えば、炭素原子を含有しないか、1重量%未満の炭素原子を含有する)と、多孔質有機シリケート材料(例えば、1重量%より多い炭素原子を含有する)とを含む。多孔質シリカ材料の例は、シリカエアロゲル(aerogel)、シリカキセロゲル(xerogel)、ヒドリソシルセスキオキサン(HSQ)などのシルセスキオキサン、シリカライトベースの膜、デンドライトベースの多孔質ガラス、メソ多孔質シリカ、などである。
【0061】
多孔質有機シリケートの例は、多孔質炭素ドープ二酸化シリコン、アルキルシルセスキオキサン(例えば、メチルシルセスキオキサン(MSSQ))などのシルセスキオキサン、などである。好ましくは、多孔質シリコン含有材料は、多孔質有機シリケートガラスである。
【0062】
本発明の好ましい実施形態において、多孔質材料(例えば、低誘電率(low-k)材料)は、ステップIを実施する前に、下記のように準備してもよい。
・多孔質材料の表面は、必要に応じて、前記表面を覆うハードマスク(例えば、TaN,TiN,SiNまたはアモルファスカーボン)が設けられる。
・ハードマスク(存在する場合)または多孔質材料の表面(ハードマスクが存在しない場合)は、前記ハードマスク(存在する場合)または多孔質材料の前記表面(ハードマスクが存在しない場合)を覆うレジストが設けられる。
・前記レジストにおいて穴開けが行われる。
・ハードマスクが存在する場合、レジストにおける開口を通じたエッチングにより、前記ハードマスクにおいて穴開けが行われる。プラズマは、例えば、F(フッ素)含有プラズマとすることができる。実施形態において、プラズマエッチングは、前記温度T2および圧力P1で実施できる。結果は、露出した表面を有する多孔質材料である。この好ましい実施形態において、表面の処理は、好ましくはプラズマエッチング処理である。図1図5およびこれらの対応する説明が、こうした実施形態を例示する。
【0063】
環境は、何れの環境でもよいが、典型的には、チャンバ(例えば、前記多孔質材料のための支持部(bearing)を備える)である。好ましくは、それは、温度が室温未満に設定できるチャンバである。好ましくは、それは、圧力が1気圧未満に設定できるチャンバである。プラズマ処理用の低温チャンバが典型的な例である。チャンバ全体を温度T2に冷却する代わりに、このチャンバ内の支持部を前記温度T2に冷却することができる。
【0064】
本発明の実施形態において、多孔質材料は、前記環境において支持部の上に戴置してもよい。半導体プロセスの分野において、支持部は、典型的にはチャックである。ステップIの際、前記多孔質材料は、前記表面が前記支持部から離れるようにして、前記支持部と熱的な接触状態で戴置してもよい。ステップIの際、前記支持部の温度は、T1に設定してもよい。ステップIIの際、支持部は、温度T2に冷却できる。これは、支持部の温度を制御することは、全体環境(例えば、チャンバ)の温度を制御することより、多孔質材料表面の温度を制御するためにより効率的であるため、好都合である。
【0065】
本発明の実施形態において、支持部は、格納可能なピンを有してもよく、支持部は、例えば、温度T2にしてもよい。これは好都合であり、多孔質基板を、1)T2に冷却することなく、前記ピンの上に温度T1の環境で戴置することが可能となり、2)前記基板の表面にT1およびP1の有機ガスを接触させ(これは、有機液体を用いた多孔質材料の毛管現象によって良好な充填を可能にする。)、そして、3)ピンを格納することによって基板を支持部に降下し、これにより温度T2の支持部と基板との間の良好な熱的接触を達成し、表面の温度を温度T2に低下させるからである。
【0066】
本発明の実施形態において、温度T1は、能動的または受動的に設定できる。温度T1を受動的に設定することは、単に環境の温度(典型的には室温)を用いることであり、それを目標温度に増減させることはなく、それを維持するための特定の行為を行うことはない。典型的には、温度を受動的に設定することは、所望の温度を有する環境を選択することによって実施されることになる。温度を能動的に設定することは、環境の温度を目標値または目標範囲に増減させ、温度をこの値またはこの範囲内に維持することを意味する。
【0067】
両タイプの設定は、本発明とともに使用できる。
【0068】
第1態様の実施形態において、前記値T2は、20℃未満、好ましくは15℃未満、好ましくは10℃未満、より好ましくは0℃未満、さらにより好ましくは−5℃未満、さらにより好ましくは−10℃未満でもよい。
【0069】
T2について理論的な下限は存在しないが、経済的な理由のために、通常、−130℃より低いT2温度を用いる必要はない。好ましくは、T2は−100℃より高い。好ましくは、T2は−50℃より高い。
【0070】
一実施形態において、前記圧力P1は、温度T1の前記有機ガスの平衡蒸気圧より低くてもよいが、温度T1での臨界圧力Pcと等しいか、好ましくはこれより高くてもよい。但し、臨界圧力Pcとは、有機ガスの液相および気相が前記多孔質材料内で平衡状態となる圧力である。
【0071】
理論に拘束されないが、臨界圧力Pcは、下記の式を介して前記有機ガスの平衡蒸気圧Pと関連している。
【0072】
【数1】
【0073】
ここで、fはcosθと等しい比例定数であり、θは、多孔質材料での有機液体の接触角を測定することによって実験的に決定される。γは、有機液体の表面張力である。Vは、有機液体のモル体積である。rは、孔の平均半径である。Rは、気体定数である。Tは、前記多孔質材料の温度である(典型的にはT1)。
【0074】
P1は、典型的には1気圧より低い。
【0075】
多孔質材料の表面と有機ガスとの間の接触は、典型的には、ガスそれ自体を多孔質材料が存在する環境に直接に導入することによって実施される。
【0076】
本発明の一実施形態において、処理ステップがエッチング工程である場合、多孔質材料の表面と有機ガスとの間の接触ステップは、多孔質材料との接触の際にガス液化を生じさせ、エッチング工程の際、前記材料にエッチングされる凹部の深さと少なくとも等しい深さに至るまで多孔質材料内での拡散を生じさせる。この垂直拡散は、好都合である。多孔質材料が、前記深さに至るまで充填された孔を有することが可能になるためである。多孔質材料の表面および有機化合物の接触は、通常、任意に存在するマスク(レジストまたはハードマスク)の下で横方向拡散をもたらす。この垂直及び/又は横方向拡散は、エッチングプロセス全体での凹部壁の孔を保護する。これは、多孔質材料内に浸透しないコーティングを用いて基板の表面を単に封止することと比べて明確な利点を有する。実際、簡単な非浸透コーティングによって供与される保護は、生成される凹部の壁まで延びていない。
【0077】
材料の孔内での有機液体の凝固は、好ましくは、前記多孔質材料との接触時に形成され、前記孔を少なくとも部分的に充填する液体は、前記孔内で凝固し、これにより前記孔を封止するといったプロセスの結果である。
【0078】
本発明の実施形態において、有機化合物は、温度T2および圧力P1で固体でもよく、あるいは温度T2および圧力P1で凝固してもよい。有機液体の蒸発温度は、表面と有機ガスとの間の接触ステップが行われる圧力P1で、好ましくは250℃未満、好ましくは200℃未満、より好ましくは150℃未満、さらにより好ましくは80℃未満、最も好ましくは40℃未満である。これは、処理後に有機化合物を気化させ、従って、材料の多孔性を比較的低いエネルギー収支で回復させることが可能になるため、好都合である。
【0079】
第1態様の実施形態において、前記有機液体は、1気圧で250℃未満、より好ましくは1気圧で235℃未満、さらにより好ましくは1気圧で220℃未満、最も好ましくは1気圧で205℃未満の蒸発温度を有してもよい。
【0080】
一実施形態において、前記有機化合物は、P1で、25℃未満、好ましくは15℃未満、好ましくは10℃未満の融点を有してもよい。
【0081】
特に適切な有機化合物は、P1で、5℃未満、より好ましくは0℃未満、最も好ましくは−5℃未満の融点を有する。これらの流体の融点は、P1で、好ましくは−130℃より高く、より好ましくは−100℃より高い。
【0082】
第1態様の実施形態において、前記有機化合物は、P1で、−50℃より高いか、これと等しい融点を有してもよい。一実施形態において、前記液体は、1気圧で25℃未満、好ましくは15℃未満、好ましくは10℃未満の融点を有してもよい。
【0083】
特に適切な液体は、1気圧で、200℃未満、より好ましくは100℃未満、最も好ましくは50℃未満の融点を有する。これらの流体の融点は、1気圧で、好ましくは−50℃より高く、より好ましくは−30℃より高い。
【0084】
第1態様の実施形態において、前記液体は、1気圧で−50℃より高いか、これと等しい融点を有してもよい。
【0085】
一実施形態において、前記有機化合物は、炭化水素、フルオロカーボン、ハイドロフルオロカーボン、アルコール、アルデヒド、ケトン、有機シリコン化合物、およびこれらの混合物から選択してもよい。
【0086】
一実施形態において、前記有機化合物は、炭化水素、フルオロカーボン、ハイドロフルオロカーボン、アルコール、アルデヒド、ケトン、およびこれらの混合物から選択してもよい。
【0087】
適切な炭化水素は、例えば、C6−12炭化水素でもよい。これらの炭化水素は、直線状、分岐状または環状(例えば、シクロオクタン、シクロデカン)でもよい。これらの炭化水素は、飽和していても(例えば、ノナン、デカン)、または不飽和でもよい(例えば、1−デセン)。これらは、プラズマ処理の際、真空UV(VUV)に対する保護を供与するため、好都合である。この目的のため、より長い炭化水素がより良好である。
【0088】
適切なフルオロカーボンは、例えば、C4−10フルオロカーボン(例えば、C,C18)でもよい。これらのフルオロカーボンは、直線状、分岐状または環状でもよい。これらのフルオロカーボンは、飽和していても、または不飽和でもよい。
【0089】
適切なハイドロフルオロカーボンは、例えば、C4−10ハイドロフルオロカーボンでもよい。これらのハイドロフルオロカーボンは、直線状、分岐状または環状でもよい。これらのハイドロフルオロカーボンは、飽和していても、または不飽和でもよい。
【0090】
適切な有機シリコン化合物は、例えば、シロキサン、例えば、テトラメチルシクロテトラシロキサンなどである。こうした化合物は、損傷から保護するのに加えて、多孔質基板を修理するのに役立つことがある。
【0091】
一実施形態において、前記有機化合物は、アルコール、アルデヒド、ケトン、およびこれらの混合物から選択してもよい。こうした有機化合物は、種々の理由で好都合である。最初に、これらの気相では、低誘電率(low-k)誘電体(例えば、有機シリケートガラス)として用いられる典型的な基板を特に充分に濡らす。これらの良好な濡れ性は、有機液体が多孔質材料の孔を効率的に(例えば、完全に)充填し、これにより凝固の際、前記孔を効率的に(例えば、完全に)封止するのを可能にする。第2に、こうした有機液体は、処理した多孔質材料を、前記処理の際に発生した廃棄物から清掃するのに役立つ。
【0092】
多孔質表面の清掃は、必ずしも容易ではない。廃棄物は、孔内に捕捉された状態に留まる傾向があるためである。一実施形態において、前記処理および、その結果として前記表面および前記表面から下方の孔内での廃棄物の生成の後、こうした有機液体(アルコール、アルデヒド、ケトン)の蒸発は、前記廃棄物を、前記孔から前記表面に向けて追い出すことができる。いったん表面に存在すると、例えば、補助液体を用いて清掃することによって、これらはより容易に除去される。代替として、他の実施形態において、有機液体を蒸発させる代わりに、多孔質表面は、孔を充填するために使用される有機化合物と混和する補助液体と直接に接触できる。
【0093】
使用する清掃方法とは独立して、本出願人は、アルコール、アルデヒド、ケトンの有機化合物が前記表面およびその直下にある前記孔を清掃するのに特に有効であることに気付いた。基板についてのこれらの親和性は、これらの有機化合物に、基板表面の処理の際に生成される廃棄物について良好な親和性を提供する。これは、前記有機化合物が、前記廃棄物に付着して、蒸発工程または補助液体接触工程の際に前記廃棄物を表面に向けて輸送することを可能にする。
【0094】
実施形態において、有機化合物は、単一のヒドロキシル基またはカルボニル基を有し、6〜12個の炭素原子を有するか、あるいは、ヒドロキシル機能およびカルボニル機能から選択された2つの機能および2〜5個の炭素原子を有する、アルコール、アルデヒド、ケトンから選択してもよい。
【0095】
実施形態において、前記アルコールは、一価アルコールおよびジオールから選択してもよい。
【0096】
適切なアルコールの実例は、C6−11直線状飽和一価アルコール(例えば、これに限定されないが、1−ヘキサノール、1−オクタノールまたは1−デカノール)、C7−11分岐飽和一価アルコール(例えば、これに限定されないが、2,2−ジメチル−3−ペンタノールまたは2−デカノール)、C6−8芳香族一価アルコール(例えば、これに限定されないが、ベンジルアルコール)、C2−5直線状ジオール(例えば、これに限定されないが、エチレングリコールまたは1,4−ブタンジオール)、C5−6環状飽和一価アルコール(例えば、これに限定されないが、シクロペンタノールまたはシクロヘキサノール)、および直線状または分岐の不飽和一価アルコール(例えば、これに限定されないが、ゲラニオール)である。
【0097】
適切なアルデヒドの実例は、C7−11直線状飽和アルデヒド(例えば、これに限定されないが、オクタナールまたはノナナール)、C9−11分岐状飽和アルデヒド、C7−9芳香族アルデヒド(例えば、これに限定されないが、ベンズアルデヒド、フェニルアセトアルデヒド)である。
【0098】
適切なケトンの実例は、一般式RCORを有することができ、RおよびRは、六員環または七員環を形成したり、あるいはフェニルおよびC1−10アルキル鎖から独立に選択される。好ましくは、ケトン内の炭素の合計数は6〜12である。
【0099】
適切なケトンの実例は、シクロヘキサノン、4−ヘプタノン、2−デカノン、およびフェニルプロピルケトンである。
【0100】
より長いアルキル鎖を有するアルコール、アルデヒド、ケトンが、VUVに対する保護を供与するという利点を有する。
【0101】
第1態様の実施形態において、前記処理は、前記多孔質材料を損傷する影響を受けやすい何れの処理でもよい。第1態様の実施形態において、前記処理は、前記多孔質材料を損傷する影響を受けやすい何れの処理でもよく、前記多孔質材料の表面または前記多孔質材料の孔内に廃棄物を生成してもよい。
【0102】
表面の処理は、表面のエッチングでもよく、表面の改質(modification)でもよく、または両方の組合せでもよい。それはまた、前記表面上に存在する構造(例えば、レジスト層)のエッチングまたは改質でもよい。
【0103】
処理は表面上で行うが、それは材料のバルクに影響を有してもよい。例えば、表面のエッチングは、バルク内部に延びる溝を生成してもよい。
【0104】
表面のエッチングは、任意の種類のエッチングでもよい。例えば、それは、等方性エッチング、異方性エッチング、または両方の組合せでもよい。それは、化学的エッチング、物理的エッチング、または両方の組合せでもよい。
【0105】
本発明の一実施形態において、前記表面の改質は、前記表面のコーティングでもよい。例えば、それは、多孔質材料の上に第2材料層を生成することを含むこと、あるいは、前記表面をプラズマ処理して、その性質を変化させることを含むことでもよい。例えば、それは、表面の親水性を変化させること、前記表面をクリーニングすること、または、前記表面に官能基を形成することでもよい。例えば、低誘電率(low-k)多孔質材料を金属、例えば、金(gold)などでコーティングすることは、幾つかの場合、プラズマを用いた低誘電率(low-k)多孔質材料基板の処理によって促進される。このプロセスは、例えば、プラズモン共鳴測定のための基板の準備で使用される。
【0106】
本発明の好ましい実施形態において、処理は、プラズマ処理、例えば、プラズマエッチング、プラズマ表面改質、プラズマ増強堆積などである。前記表面に存在する構造を対象としたプラズマ処理が前記プラズマと前記表面との間の接触をも生じさせることは、注目すべきことである。これはまた、表面のエッチングまたは改質として包含される。
【0107】
第1態様の実施形態において、前記処理は、プラズマ処理、好ましくはプラズマエッチングでもよい。本発明の実施形態は、好都合にはプラズマ誘起損傷を防止する。本発明の実施形態の利点は、孔内の有機液体の拡散に起因して、前記処理を目的とした孔の保護が多孔質材料の表面下方に特定深さまで延長していることである。これにより、前記多孔質材料でのエッチングを介して凹部を生成するとともに、全体のエッチングプロセスの際、凝固した有機化合物の保護効果から利益を得ることが可能になる。
【0108】
第1態様の実施形態において、前記処理は、凹部(例えば、溝)を形成するための前記表面のエッチングでもよい。実施形態において、前記方法は、下記ステップをさらに含む。
V)前記凹部を金属で少なくとも部分的に充填するステップ。ステップVは、ステップIIIの後で、ステップIVの前または後に実施される。これは、凹部壁の封止した孔が前記孔内での前記金属の侵入を防止するため、好都合である。
【0109】
実施形態において、必要に応じて、前記凹部を形成する前に、ハードマスクを使用しない。
【0110】
第1態様の実施形態において、上記実施形態の何れの方法は、ステップIの前に、下記ステップをさらに含んでもよい。
VI)レジスト層を載せた表面を有する多孔質材料を用意するステップ。
VII)前記レジスト層をパターン化して、前記多孔質材料の表面を露出させるステップ。
これにより前記多孔質材料の前記表面を用意し、
前記表面の処理は、前記表面のエッチングであり、これにより前記多孔質材料に凹部を形成する。
【0111】
実施形態において、温度T3は、10℃またはこれより高く、好ましくは15℃またはこれより高くてもよい。実施形態において、T3は、250℃またはこれより低く、好ましくは200℃またはこれより低く、より好ましくは150℃またはこれより低く、さらにより好ましくは80℃またはこれより低く、さらにより好ましくは40℃またはこれより低くてもよい。実施形態において、前記値T3は、10℃〜250℃の範囲、好ましくは10℃〜200℃、より好ましくは10℃〜150℃、さらにより好ましくは10℃〜80℃、さらにより好ましくは10℃〜40℃の範囲でもよい。好ましくは、T3は、室温、即ち、典型的には20〜25℃の範囲の温度である。
【0112】
実施形態において、T3は、前記圧力値P1で前記流体の蒸発温度と少なくとも等しくてもよい。実際、T3は、T1より少し高くてもよく、例えば、5℃〜50℃高くてもよい。ステップIVのとき、環境圧力をP1未満に減少させることも可能である。これにより、より低い温度T3を使用することが可能になる。
【0113】
本発明の一実施形態において、ステップIは、ステップIIより先行してもよく、ステップIIは、ステップIIIより先行してもよく、ステップIIIは、ステップIVより先行してもよい。
【0114】
第2態様において、本発明は、第1態様の何れの実施形態に係る方法によって得られる処理済の多孔質材料を含むデバイスに関する。
【0115】
実施形態において、第1態様の方法によって得られるデバイスは、その表面に溝を備えてもよく、多孔質材料は、2.5より低い、好ましくは2.3より低い誘電率(k-value)を有する。
【0116】
一実施形態において、前記誘電率(k-value)は、前記溝のレベルに存在する。
【0117】
以下、本発明について、本発明の幾つかの実施形態の詳細な説明によって説明する。本発明の他の実施形態は、本発明の技術的教示から逸脱することなく、当業者の知識に従って構成できることは明らかであり、本発明は、添付の請求項の用語によってのみ限定される。
【0118】
図1を参照して、図1は、一実施形態を示すもので、多孔質基板の表面を処理(ここではエッチング)する前に、多孔質基板の孔が充填され、これにより封止される。
【0119】
ステップ(Ia)において、多孔質低誘電率(low-k)材料3を含む多層構造が用意される。ハードマスク2が、前記多孔質低誘電率(low-k)材料3の上に設けられ、レジスト層1が、標準のリソグラフ技法によって前記ハードマスク2の上に設けられる。ハードマスク2は、例えば、TaN,TiN,SiNまたはアモルファスカーボンで製作できる。
【0120】
ステップ(Ib)において、標準のリソグラフ技法(例えば、フッ化炭素を含む)によってレジスト層1において孔開けが行われ、これにより前記ハードマスク2の表面がアクセス可能になる。
【0121】
ステップ(Ic)において、開口した多層構造は、減少した圧力P1および温度T1のチャンバへ移送される。ここで、選択した有機ガス11gでは、P1は、P0より低く、T1でのPcより高い。そして、ハードマスク2は、フッ素含有プラズマによってエッチングされ、これにより前記多孔質材料3の表面がアクセス可能になる。
【0122】
ステップ(II)において、多孔質材料3は、前記選択した有機ガス11gと接触し、ガスは多孔質材料3の孔12(不図示)に侵入し、内部で液化する。これにより少なくとも部分的に充填された多孔質材料を提供する。そして、温度は、T2、即ち、P1で有機液体11lの凝固温度未満に低下し、これにより保護された多孔質材料4を提供する。
【0123】
ステップ(III)において、保護された材料4は、フッ素含有プラズマ7を用いて適当な深さに至るまでエッチングされる。エッチングは、保護された材料4の表面5に廃棄物10を生成する。
【0124】
ステップ(IV)において、プラズマ処理7を停止し、温度は、前記有機固体を気化(結局は液相への遷移を介して)させるのに充分な温度T3まで増加させることが可能である。この温度T3は、例えば、T1を超えてもよく、P1はT3でPc未満となるようにしてもよい。この例示の実施形態の結果は、損傷を受けておらず、その廃棄物10の少なくとも幾つかからクリーニングされているパターン化した多孔質低誘電率(low-k)材料3である。
【0125】
図2を参照して、図2は、図1と類似した一実施形態を示すもので、多孔質材料3の孔12(不図示)は、充填、封止され、これにより、保護された材料4の表面5の処理7(ここではレジスト1を除去してエッチング)を行う前に、保護された材料4を提供する。しかしながら、本実施形態では、レジスト層1は、材料3の孔12を有機化合物11で封止した後、ステップ(IIb)の際、その場(in situ)で剥離される。剥離ステップは、酸素または水素のプラズマを使用し、これは、エッチングの際、材料3との反応に起因して、多孔質材料3の損傷の元であり、廃棄物10の間接的な発生源である。従って、材料3の孔12が封止された後に剥離ステップを行うことは、レジスト1除去ステップの際、多孔質材料3の損傷を回避するという利点を有する。
【0126】
図3を参照して、図3は、図2と類似した一実施形態を示すもので、保護された多孔質材料4の表面5の処理(ここではエッチング7)の前に、多孔質材料3の孔12(不図示)は、充填、封止される。しかしながら、本実施形態では、レジスト層1は、材料3の孔12が充填された後、ステップ(IIIb)の際、その場(in situ)で剥離され、そして、保護された多孔質材料4は、フッ素含有プラズマ7を用いて適当な深さに至るまでエッチングされる。その利点は、図2の実施形態と同じであり、即ち、レジスト1除去ステップの際、多孔質材料3の損傷を回避することである。
【0127】
図4を参照して、図4は、図1図3の実施形態に適用可能な変形例を示す。図4において、ステップ(Ia)と(Ib)は、図1で説明したステップと同じである。
【0128】
ステップ(Ia)において、多孔質低誘電率(low-k)材料3を含む多層構造が用意される。ハードマスク2が、前記多孔質低誘電率(low-k)材料3の上に設けられ、レジスト層1が、標準のリソグラフ技法によって前記ハードマスク2の上に設けられる。ハードマスク2は、例えば、TaN,TiN,SiNまたはアモルファスカーボンで製作できる。
【0129】
ステップ(Ib)において、標準のリソグラフ技法によってレジスト層1において孔開けが行われ、これにより前記ハードマスク2の表面がアクセス可能になる。
【0130】
ステップ(Ic)において、開口した多層構造は、減少した圧力P1および温度T1のチャンバへ移送される。ここで、選択した有機化合物11では、P1は、P0より低く、T1でのPcより高い。そして、多層構造は、P1での有機化合物11の凝固温度未満の温度T2を有する支持部9(塊(chunk))の格納可能なピン8の上に位置決めされる。そして、ハードマスク2は、フッ素含有プラズマによってエッチングされる。ピン8の存在に起因して、材料3と冷却した支持部9との間に所定の距離が存在し、材料3の温度がT2を超えて、前記液体11lがP1で凝固する温度を超えて留まるのを確保している。
【0131】
ステップ(Id)において、前記材料3は、気相の前記有機化合物11gと接触し、多孔質材料3の孔12(不図示)に侵入し、内部で液化する。
【0132】
ステップ(II)において、有機液体11lで少なくとも部分的に充填された多孔質材料3は、冷却した支持部9に対して降下し、これにより多孔質材料3と冷却した支持部9との間の熱接触を確立し、これにより前記材料4の孔12の内部で液体11lの凝固を可能にする。ステップ(III)において、今、保護されている材料4は、フッ素含有プラズマ7を用いて適当な深さに至るまでエッチングされる。エッチングは、多孔質材料3の表面に廃棄物10を生成する。
【0133】
ステップ(IV)において、プラズマ処理7を停止し、温度は、前記有機固体を気化(結局は液相への遷移を介して)させるのに充分な温度T3まで増加させることが可能である。この温度T3は、例えば、T1を超えてもよく、P1はT3でPc未満となるようにしてもよい。温度の上昇は、保護された材料4を支持部9から持ち上げることによって、より迅速になる。この例示の実施形態の結果は、損傷を受けておらず、その廃棄物10の少なくとも幾つかからクリーニングされているパターン化した多孔質低誘電率(low-k)材料3である。格納可能なピン8を使用する利点は、チャンバがT1に維持されながら、塊(chunk)だけを温度T2にする必要があることである。
【0134】
図5を参照して、図5は、本発明の特に有利な実施形態を示す。それは、保護された材料4の表面5の処理7(ここではエッチング)の前に、多孔質基板3の孔12が充填され、これにより封止される図3と類似している。しかしながら、本実施形態では、ハードマスク2を使用していない。ハードマスク2が、典型的には、OおよびHプラズマ中のレジスト1の剥離の際、低誘電率(low-k)損傷を回避するために用いられる。図5の実施形態において、低誘電率(low-k)材料3を損傷することなくレジスト1を剥離する能力のため、ハードマスク2を必要としない。これは、通常、ハードマスク2は、小さな寸法で作業する場合にライン振れ(wiggling)の理由の1つである応力を発生するため、大きな利点である。
【0135】
ステップ(Ia)において、多孔質低誘電率(low-k)材料3を含む多層構造が用意される。前記多孔質低誘電率(low-k)材料3の上にハードマスク2が設けられず、レジスト層1が、標準のリソグラフ技法によって前記低誘電率(low-k)材料3の上に直接に設けられる。
【0136】
ステップ(Ib)において、標準のリソグラフ技法(例えば、フッ化炭素を含む)によってレジスト層1において孔開けが行われ、これにより前記低誘電率(low-k)材料3の表面がアクセス可能になる。
【0137】
ステップ(II)において、開口した多層構造は、減少した圧力P1および温度T1のチャンバへ移送される。ここで、選択した有機ガス11gでは、P1は、P0より低く、T1でのPcより高い。そして、多孔質材料3は、前記選択した有機ガス11gと接触し、ガスは多孔質材料3の孔12(不図示)に侵入し、内部で液化する。これにより前記有機液体11lで少なくとも部分的に充填された多孔質材料3を提供する。温度は、T2、即ち、P1で有機液体11lの凝固温度未満に低下する。
【0138】
ステップ(IIIa)において、今、保護されている基板4は、フッ素含有プラズマ7を用いて適当な深さに至るまでエッチングされる。レジスト層は、ステップ(IIIb)の際、OおよびHプラズマ中で、その場(in situ)で剥離される。その利点は、図4の実施形態と同じであり、即ち、レジスト1除去ステップの際、多孔質材料3の損傷を回避することであり、この利点はハードマスク2の使用なしで達成される。エッチングは、保護された材料4の表面に廃棄物10を生成する。
【0139】
ステップ(IV)において、プラズマ処理7を停止し、温度は、前記有機固体を気化(結局は液相への遷移を介して)させるのに充分な温度T3まで増加させることが可能である。この温度T3は、例えば、T1を超えてもよく、P1はT3でPc未満となるようにしてもよい。この例示の実施形態の結果は、損傷を受けておらず、その廃棄物10の少なくとも幾つかからクリーニングされているパターン化した多孔質低誘電率(low-k)材料3である。
【0140】
図1図5の実施形態において、有機化合物11は、処理7によって発生した廃棄物10に対するクリーニング効果を有するように常に選択される。しかしながら、これらは、好ましい実施形態だけである。有機化合物11がクリーニング効果を殆ど有しないか、皆無である実施形態(例えば、それ以外は図1図5の実施形態と同一)は、同様に本発明の一部である。
【0141】
図6を参照して、図6は、一実施形態を示すもので、多孔質基板3の表面5の処理(ここではエッチング7)の前に、多孔質基板3の孔12は、充填、封止される。
【0142】
ステップ(Ia)において、表面5を有する多孔質低誘電率(low-k)材料3が、圧力P1および温度T1を有する環境に設けられる。有機ガス11gが前記環境内に供給される。有機ガス11gは、前記圧力P1および前記温度T1で、それは、前記多孔質材料3の外側にある場合にガスの状態であり、前記多孔質材料3と接触した場合、有機液体11lとして凝縮するものである。
【0143】
ステップ(Ib)は、多孔質材料3と有機ガス11gとの接触の結果を示す。有機ガス11gは、多孔質材料3の孔12の内部で凝縮し、前記孔12を液体11lで充填した。
【0144】
ステップ(II)において、圧力は、P1に維持されるが、温度はT2、即ち、P1で有機液体11lの凝固温度未満に低下する。
【0145】
ステップ(III)において、保護された材料4は、フッ素含有プラズマ7を用いて適当な深さに至るまでエッチングされる。エッチングは、溝6を形成する。
【0146】
ステップ(IV)において、プラズマ処理7を停止し、温度は、前記有機固体を気化(典型的には液相への遷移を介して)させるのに充分な温度T3まで増加させることが可能である。この温度T3は、例えば、T1を超えてもよく、P1はT3でPc未満となるようにしてもよい。この例示の実施形態の結果は、損傷を受けていないパターン化した多孔質低誘電率(low-k)材料3である。
【0147】
図7(P)は、先行技術の一実施形態を概略的に示す。それは、孔12を含む多孔質材料3の拡大した部分を描く。材料3は、Si原子とCH基を含むように示している。1つのこうしたCH基は、孔12の内部に描かれ、材料3のSi原子と結合している。ポリマー13が、孔12の内部に描かれる。孔12がポリマー13で完全に充填されず、例えば、後続の処理の際にCH基が切り離されて(二重矢印)、元の多孔質材料3の構造の変性を引き起こすことがあり得ることが判る。
【0148】
図7(E)は、本発明の一実施形態を概略的に示す。それは、孔12を含む多孔質材料3の拡大した部分を描く。材料3は、Si原子とCH基を含むように示している。1つのこうしたCH基は、孔12の内部に描かれ、材料3のSi原子と結合している。有機固体11sが孔12の内部に描かれる。孔12が有機固体13sで完全に充填され、例えば、後続の処理の際にCH基が切り離されるのを防止し、元の多孔質材料3の構造の維持をもたらすことが判る。
【0149】
ここでは、好ましい実施形態、特定の構造および構成、材料を本発明に係るデバイスについて議論したが、本発明の範囲および精神から逸脱することなく、形態および詳細について種々の変化または変更が可能であることは理解すべきである。例えば、上述した何れの式は、使用できる手順の代表に過ぎない。機能性をブロック図に追加またはブロック図から削除してもよく、動作は機能ブロック間で交換してもよい。本発明の範囲内に記載した方法にステップを追加または削除してもよい。
図1
図2
図3
図4
図5
図6
図7