【特許文献】
【0003】
【特許文献1】特開平10−213361号公報
【0004】
上記特許文献1に記載の補助冷却装置は、空調室外機の凝縮器の放熱フィンに、スプレーノズルにより細かい粒状または霧状の水をほぼ均一に散布するものであり、この散布した水の蒸発潜熱によって放熱フィンを冷却するものである。
【0005】
しかしながら、この特許文献1は、夏場の高温時に凝縮器の放熱フィンにノズルにより直接水道水を散水し、冷却効率を向上させるものの、運転を長期にわたって続ける間に放熱フィンの表面に水垢・スケール等が付着するために、空冷運転時の熱交換効率の低下や放熱フィンの腐食などが発生するという問題がある。特に、放熱フィンの腐食、経年劣化が著しく、5〜6年で放熱フィンあるいは凝縮器自体を交換する必要が生じ、結果として高価になるという問題があった。
【0006】
この問題を補う空冷式凝縮器の補助冷却装置としては、例えば、下記に示す特許文献2が挙げられる。
【0007】
【特許文献2】特開2004−3806号公報
【0008】
この特許文献2示す補助冷却装置は、凝縮器の放熱フィンの近傍にクーリングマットを放熱フィンから一定距離を離して設置し、このクーリングマットに冷却水を流下させて凝縮器の吸い込み空気を冷却させるようにしたものである。
しかしながら、この特許文献2に用いられているクーリングマットは、繊維状のものを用いているために、構造上冷却効率が低く、さらに目詰まりによる圧力損失が増大していく等の不具合がある。
【0009】
この特許文献2の不具合を解決するようにしたものとして、例えば、下記に示す特許文献3が挙げられる。
【0010】
【特許文献3】特開2009−236370号公報
【0011】
この特許文献3に記載されている補助冷却装置は、
図21に示すように、空冷式凝縮器100の吸い込み空気の上流側に充填材101が配置されたものであり、この充填材101は、吸い込み空気の方向に所定の厚みを有している。そして、充填材101に上方から水を流し、充填材101の下部から流れ出る水を回収容器102で回収している。
【0012】
この回収容器102に回収された水は、ポンプ103により給水管104を介して充填材101の上方まで汲み上げられ、この汲み上げられた水は、水供給容器105が備える複数の排水口を通って、充填材101の上方から内部に一様に流すようにしている。充填材101内で水を流下させて、凝縮器100の吸気によって充填材101内の水を蒸発させることで、気化熱の作用で吸気冷却を行なっている。
【0013】
また、本出願人が出願したものとして、下記の特許文献4が挙げられる。
【0014】
【特許文献4】実用新案登録第3178038号公報(発行日:平成24年8月30日)
【0015】
上記特許文献1は
図22〜
図29に示すような構成となっている。
図22は室外機1の吸い込み空気の上流側に補助冷却装置10を設置した場合の凝縮器の空気冷却装置の概略構成を示しており、また、
図23は
図22のA方向から見た概略正面図を示している。
室外機1は、周知の構成であるため、詳細な説明は省略するが、室外機1のケース2の一方には凝縮器3が配置され、ケース2の上部には冷却ファン4が設けられている。なお、図示例では冷却ファン4をケース2の上部に設けているが、凝縮器3に対向した位置に冷却ファン4が設けられている場合もある。
【0016】
補助冷却装置10は、気化式空気冷却装置11と、この気化式空気冷却装置11から排水管12を介して排水される水を回収する水回収装置13と、この水回収装置13に貯溜している水をポンプ14を介して前記気化式空気冷却装置11側に送る給水管15と、この給水管15からの水を気化式空気冷却装置11の上面に給水する給水装置16等で構成されている。
【0017】
なお、
図22では給水管15を室外機1より右方に描いているが、実際の施工は室外機1の左方で、気化式空気冷却装置11の側面に配管されるようになっている。しかし、補助冷却装置10の気化式空気冷却装置11は、凝縮器3の吸い込み空気の上流側に該室外機1に近接して配置されるが、他の水回収装置13や給水管15は任意の箇所に配置、施工される。
【0018】
気化式空気冷却装置11は、
図23に示すように、凝縮器3の大きさとほぼ同じか、若干大きめの大きさとしており、気化式空気冷却装置11にて凝縮器3の空気の吸い込み面を覆う大きさである。
【0019】
図24は、周知な冷凍サイクルを示し、冷凍サイクルは、凝縮器3、圧縮器5、室内に設置される室内機内の蒸発器6、膨張弁7等で構成されており、それぞれ冷媒管8にて接続されている。
冷房運転時では、圧縮器5で冷媒管8内の冷媒が圧縮されて、冷媒は高温ガスになり、凝縮器3内を冷却ファン4にて気化する際の水の潜熱にて一定の温度に下げられ冷媒ガスは液化する。膨張弁7にて冷媒の圧力は急激に下げられ、冷媒ガスの潜熱で冷たくなり、蒸発器6で部屋の温度を熱交換を行ない、室内機から冷風が部屋内に送られて冷房が行なわれる。
【0020】
ここでは、水回収装置13内の水をポンプ14、給水管15を介して気化式空気冷却装置11へ循環させ、気化式空気冷却装置11内では水が気化する際の潜熱を利用して気化式空気冷却装置11内で吸気された空気の温度を低下させ、この低下させた空気にて凝縮器3を冷却させるものである。
気化式空気冷却装置11内を流下した水は排水管12を介して水回収装置13に回収される。
【0021】
図22に示すように、水回収装置13へは、水道水等の補給水が補給水管20から供給されるようになっており、補給水管20にはフロート弁21が介装されている。このフロート弁21は、液面に浮かぶフロート22が液面の高さに応じて上下方向に移動することにより開閉する弁である。
水回収装置13の液面が所定の高さ以下になると、フロート22が下降してフロート弁21が開いて補給水管20から水が供給される。また、補給水が供給されていって液面が所定の高さ以上になると、フロート22が上昇してフロート弁21が閉じられ、補給水管20からの水の供給が停止される。
【0022】
気化式空気冷却装置11へ水回収装置13からの水を循環させて給水する給水装置16は、気化式空気冷却装置11の幅方向と略同じ長さとし、例えばパイプに複数の穴を穿孔しておき、これらの穴から水を気化式空気冷却装置11の上面に滴下ないし散水するものである。
【0023】
なお、
図23に示すように気化式空気冷却装置11の下部には排水樋25が設けられており、この排水樋25の端部に排水管12が接続されて、気化式空気冷却装置11から流下した水は水回収装置13へ回収されるようになっている。
【0024】
次に、気化式空気冷却装置11の構成について説明する。気化式空気冷却装置11は、
図22に示すように、外気が矢印に示すように吸い込まれて吐出される保水材30にて構成されている。なお、この保水材30は、一般に通称クーリングパッド( Cooling Pad )と呼ばれ、木材のチップを加工した紙質と、ポリエチレンと、ガラス繊維で構成され従来より市販されている。
また、このクーリングパッドは、主に畜舎並びに園芸用施設の温度を下げるために用いられるものであり、日本では、無窓畜舎、施設園芸用温室で広く使用されているものである。
【0025】
図25〜
図28は保水材30の作り方を示しており、保水材30の構造を理解し易いように、この保水材30の構造について説明する。
図25において、波形形状をした波板材51を多層に積層して形成するものであり、それぞれの波板材51は、強固に加工された紙で出来ている。なお、波板材51の波形形状で形成されて連続して形成される溝52が、空気の流通路となる。
上下の波板材51を吸気方向に対して互い違いに任意の角度、例えば、30°前後に組み合わせ、上の波板材51の波の下側の頂点と、下の波板材51の波の上側の頂点とが交差する点、つまり、
図26に示す黒丸(●)の部分を接着剤にて接着し、上下の波板材51を接着固定する。
【0026】
このようにして波板材51を多数積層したのが
図27に示す保水材本体55であり、この保水材本体55を図中矢印のα方向にカッター等にて切断することで、任意の厚みの保水材片56を得る。そして、
図28に示すように、縦方向、横方向の矢印β、γハに示すようにカッター等にて切断することで、任意の大きさの保水材30を形成することができる。
【0027】
なお、保水材30は、任意の厚みや大きさを容易に製作することができ、また、波板材51を上下に積層する際に、波板材51を任意の角度で傾斜して積層することで、外気の吸気方向に対する波板材51の各溝52の傾斜角度も任意に形成することができる。また、
図25に示すように、溝52の幅寸法Lや高さ寸法Hを任意に製作することができる。
【0028】
図29は上記のようにして製作された保水材30の要部拡大断面図を示し、保水材30の右方に凝縮器3が位置し、左方から矢印に示すように空気が保水材30の溝52(以後、この溝を「空気流通路」と称する。)を通過する。
この実線で示している空気流通路52は例えば、30°の傾きで上昇し、この実線で示されている空気流通路52と幅方向で隣接し、破線で示している空気流通路52は、例えば、30°の傾きで下降している構成となっている。これらの空気流通路52が保水材30の上下方向及び左右方向に連続して形成されている。
【0029】
この保水材30に給水装置16からの水が滴下され、保水材30自体に水が吸水されて湿潤状態となり、同時に保水材30の表面、つまり各空気流通路52の表裏の面を水が流下していき、保水材30に吸収されなかった水は保水材30の表面を伝って水回収装置13へと流れて回収される。
【0030】
特に、保水材30の材料として上述したように、木材のチップを加工した紙質と、ポリエチレンと、ガラス繊維で構成しているので、保水材30自体に水が吸収されて湿潤状態となり、保水材30から気化する際の潜熱にて保水材30側に吸気された空気の温度を低下させることができる。これにより、凝縮器3を効率良く冷却することができる。
つまり、気化式空気冷却装置11に水を循環させることにより、気化式空気冷却装置11を通過する室外機1の吸い込み温度が気化潜熱で外気温度よりも下がり、且つ加湿効果により冷房能力の向上を図ることができる。
【0031】
このように従来では、室外機1の凝縮器3の空気の吸い込み側に配設した気化式空気冷却装置11に水を循環させることにより、補給水は蒸発した水の分だけとなり、水道代の上昇を抑えるようにしている。
また、凝縮器3を冷却させることで、空気調和機全体の消費電力を抑えることができるので、水を循環させるためのポンプ14の電気代は、微々たるものであり、全体としての消費電力を抑えている。