【課題を解決するための手段】
【0008】
そこで、本発明者らは、検出対象とすべきは、癌が発症しやすい又は発症しているときに血液中で増加する癌関連物質、例えば癌細胞由来の遊離DNAを、受容体を介することなく、直接検出するのが最善であると考え、鋭意研究を行った。
【0009】
ここで、検出すべき対象の遊離DNAは糸巻きに相当するヒストンというタンパク質に巻き付いており、ひと巻きされた単位構造(1セット)はヌクレオソームと呼び、ヌクレオソームが集まりひも状になった構造をクロマチン(線維)と呼ぶ。そして、細胞ががん化して分裂を繰り返すとき、がんが増えるのに都合の悪い遺伝子(がん抑制遺伝子)が出てこないようしっかりヒストンに巻きついて蓋をし、ヒストンへの巻き方をさらにきつくして、DNAが簡単にはほどけないようにして、メチル化という修飾が起こっているが、通常ヒストンは(+)、DNAは(−)にチャージされていて、2つは磁石のようにくっつきあい、しかもメチル化して解けないようになっており、ヒストンに巻き付いたDNAは(+)に帯電している(
図11(a)参照)。他方、アセチル化は(−)にチャージするため、通常は(+)のヒストンがアセチル化されれば、(−)同士となってDNAと反発する。すると、DNAという‘糸’がヒストンからほどけて遺伝子が発現するメカニズムとなっている(
図11(b)参照)。したがって、癌細胞由来の遊離DNAを選択的に吸着させるには、ヒストンに巻き付いたDNAは(+)に帯電しているので、吸着させる基板は(−)に帯電しているのが好ましいと考えられる。
【0010】
ところで、本発明者らは金属錯体水溶液を錯体を形成する金属より卑なる電極電位(イオン化傾向の大きい)金属基板上で電極電位差により化学還元して量子結晶(ナノサイズの金属錯体結晶)を凝集させている。銀錯体の場合、チオ硫酸銀水溶液を銀より卑なる電極電位(イオン化傾向の大きい)の銅または銅合金上で凝集させることにより銀錯体の量子結晶を化学還元法を採用して形成している。
詳しくは、金属錯体の水溶液中の濃度は主として形成する量子結晶のサイズを考慮して決定すべきであり、分散剤を使用するときはその濃度をも考慮するのがよく、通常、100ppmから5000ppmの範囲で使用できるが、配位子の機能にも依存してナノクラスタというべきナノサイズを調製するには500から2000ppmの濃度が好ましい。量子結晶を形成する金属錯体は担持金属の電極電位Eと相関する式(I)で示される錯体安定度定数(logβ)以上を有するように選択される。
式(I):E゜= (RT/|Z|F)ln(β
i)
(ここでE゜は、標準電極電位、Rは、気体定数、Tは、絶対温度、Zは、イオン価、Fは、ファラデー定数を表す。)
ここで、金属錯体が、Au、Ag、PtまたはPdから選ばれるプラズモン金属の錯体である場合は、ラマン光に対して局在表面プラズモン共鳴増強効果を有する。特に、金属錯体が銀錯体であるときは、安定度定数(生成定数)(log β
i)が8以上の銀錯化剤とハロゲン化銀との反応により形成されるのがよく、ハロゲン化銀としては塩化銀が好ましく、錯化剤としてはチオ硫酸塩、チオシアン酸塩、亜硫酸塩、チオ尿素、ヨウ化カリ、チオサリチル酸塩、チオシアヌル酸塩から選ばれる1種であるのが好ましい。銀錯体は平均直径が5〜20nmであるナノクラスタからなる量子ドットを有し、量子結晶のサイズが100〜200nmとなる。
【0011】
かかる銀錯体をハロゲンイオンの存在下にアルカリ処理(次亜塩素酸で処理)すると、以下の反応により銀ハロゲン化物を核として過酸化銀を含み、銀酸化物の複合物の針状ナノ結晶群が形成され(
図9)、しかも水中で(−)荷電を帯びる一方、ヒストンに巻き付いてDNAが(+)荷電を帯びるため(
図11(a))、この遊離DNAに代表される正電荷を帯びた癌関連物質を選択的に吸着することを見出した。しかも過酸化銀を含む銀酸化物の針状ナノ結晶群はレーザー光の照射により還元され、金属銀を析出するため、レーザー光照射により表面プラズモン増強効果を示し、吸着された遊離DNAに代表される癌関連物質を検出する表面増強ラマン散乱(SERS)が得られることを見出した。
Na
2S
2O
3+4NaClO+H
2O →Na
2SO
4+H
2SO
4+4NaCl
Ag+ + NaCl → AgCl + Na+
Ag+ + 3NaOCl → 2AgCl + NaClO
3 + 2Na+
Ag+ + OH- → AgOH
2Ag++ 2OH → Ag
2O +H
2O (米国特許第4478943号参照)
【0012】
本発明は上記知見に基づいて、なされたもので、銀ハロゲン化物又はハロゲンを含む銀酸化物の複合針状ナノ結晶群を含み、水中で負電荷を示し、正電荷の癌関連物質を吸着して電荷移動錯体を形成可能であるとともに光照射により銀粒子を析出可能で、レーザー照射により表面プラズモン増強効果が得られる領域を有することを特徴とする癌関連物質測定用バイオチップを要旨とするものである。
【発明の効果】
【0013】
本発明の銀酸化物の複合針状ナノ結晶群は、過酸化銀を含む銀酸化物が自己組織化してニューロン状の三次元超構造体(メソ結晶という)を形成するもので(
図12及び13)、銀イオン水溶液をAg/AgCl電極を用いて定電位電析を行って形成することができるが、銀錯体量子結晶、例えばチオ硫酸銀量子結晶をハロゲンイオンの存在下でアルカリ処理(次亜塩素酸ナトリウム水溶液で処理)することによって容易に形成することができる。
【0014】
また、本発明のバイオチップを用いることにより、ラマン分析により、血中に含む生体試料中の、癌関連物質、例えば癌細胞由来の遊離DNAを以下の方法で定量することができる。すなわち、銀ハロゲン化物又はハロゲンを含む銀酸化物の複合針状ナノ結晶群、すなわち過酸化銀を含む銀酸化物のメソ結晶領域(
図12及び13)を有するバイオチップを用意し、該バイオチップの針状ナノ結晶群領域に血清又は生体試料液を滴下し、試料中の正電荷を有する癌関連物質を選択的に吸着し、吸着した癌関連物質に対しレーザー照射してそこからのラマン散乱光を検知する工程により、表面増強ラマン散乱(SERS)の強度により癌疾病を判断することができる。
【0015】
血清中の癌関連物質としては、癌細胞由来のヒストンにDNAが巻きついてなるDNA(ここで遊離DNAという)、そのひと巻きされた単位構造(1セット)のヌクレオソームが集まりひも状になった構造のクロマチン(線維)を含む。また、正電荷を帯びるグロブリンを含むが、その増加は他の癌関連物質に比べて最大2倍以下であるので、本発明で検知される物質のがん進行に伴う増加が100倍以上に達するのでグロブリン以外の増加(がん細胞由来遊離DNA)が検知されていることを物語っている。また、正常細胞から出るDNA、アセチル化してヒストンが解離したDNA、そしてアルブミンは血清中の約60%を占めるが、負荷電を帯びるため、本発明では吸着されない。したがって、癌関連物質の定量検査には好都合である。
【0016】
また、本発明の針状ナノ結晶(過酸化銀を含む銀酸化物のメソ結晶)は、過酸化銀を含む銀酸化物が水溶液中で負電荷を帯びやすく、試料(ターゲット分子)と接触して電荷移動錯体を形成すると思われる。さらに、銀酸化物は光エネルギーを受けて還元され、金属銀を析出するので、規則的に配列する金属ナノ粒子の持つ表面プラズモン共鳴増強効果を有することになる。したがって、本発明の針状ナノ結晶(メソ結晶)は非金属であるが金属性質とイオン化性質を兼ね備えるため、表面増強ラマン散乱(SERS)測定用に好適なバイオチップを提供できる。
【0017】
量子結晶を形成する金属錯体は担持金属の電極電位Eと相関する式(I)で示される錯体安定度定数(logβ)以上を有するように選択される。
式(I):E゜ = (RT/|Z|F)ln(β
i)
(ここでE゜は、標準電極電位、Rは、気体定数、Tは、絶対温度、Zは、イオン価、Fは、ファラデー定数を表す。)
本発明において、金属錯体が、Au、Ag、PtまたはPdから選ばれるプラズモン金属の錯体である場合は、ラマン光に対して表面プラズモン共鳴増強効果を有する。
【0018】
金属錯体が銀錯体であるときは、安定度定数(生成定数)(log β
i)が8以上の銀錯化剤とハロゲン化銀との反応により形成されるのがよい。
【0019】
ハロゲン化銀としては塩化銀が好ましく、錯化剤としてはチオ硫酸塩、チオシアン酸塩、亜硫酸塩、チオ尿素、ヨウ化カリ、チオサリチル酸塩、チオシアヌル酸塩から選ばれる1種であるのが好ましい。
【0020】
銀錯体は平均直径が5〜20nmであるナノクラスタからなる量子ドットを有し、量子結晶のサイズが100〜200nmとなる。
【0021】
金属錯体の水溶液中の濃度は主として形成する量子結晶のサイズを考慮して決定すべきであり、分散剤を使用するときはその濃度をも考慮するのがよい。通常、100ppmから5000ppmの範囲で使用できるが、配位子の機能にも依存してナノクラスタというべきナノサイズを調製するには500から2000ppmの濃度が好ましい。
【0022】
金属基板又は金属粒子上に形成された量子結晶は金属錯体結晶として水溶液中では正極性を持ちやすいものと思われ、生体試料中のタンパク質を吸着固定するためには、ハロゲンイオンの存在下でアルカリ処理、例えばpH11以上の次亜塩素酸ソーダ水溶液を滴下して極性を調整するのが好ましい。量子結晶は再結晶して水溶液中で負極性となるだけでなく、銀酸化物の複合針状ナノ結晶は過酸化物を形成するので、試料中癌関連物質が正電荷を持つ癌細胞由来の遊離DNAの固定化を促進することができる。
【0023】
生体試料中の総タンパク濃度の定量は、特定波長のレーザー光を照射してラマンスペクトルを得ることにより知ることができる。
図3は大腸ガン患者の血清試料であり、それを10倍、100倍、500倍、1000倍および一万倍に純水で希釈して633nmのレーザー(30mW)で測定したラマンスペクトルであり、濃度とともにピーク上昇値(PSV)およびピーク積分値が変化する。よって、血清中の総タンパク質の定量分析を行うことができることがわかる。特に炭素特有のG(1300〜1400cm
−1付近)及びDバンド(1550〜1600cm
−1付近)にピークが見られ、メチル基に特有の2900cm
−1付近にもピークが観測できることがわかった。これはガン関連物質としてヒストンにDNAが巻きついたメチル化状態で検出されていることを物語るものであると推測される。
【0024】
したがって、得られたラマンスペクトルのピーク高さ、ピーク積分値、ピーク発現時間などの情報から癌の同定および進行状態を解析することができる。
図1はラマン波形のピーク算出法を示し、ヒト血清サンプルの633nmレーザーによるラマン散乱のスペクトルは1350cm
−1近辺と1550cm
−1近辺に散乱強度のピークを形成することが確認される。よって、800cm
−1(a)と2000cm
−1(b)の散乱強度の平均値(m)を基準とした最大上昇値(p−m)をピーク上昇値(Shifting Peak Value:PSV)として定義した。また、ピーク全体の面積をピーク積分値として定義した。これらのピーク上昇値およびピーク積分値はヒト血清中の癌関連物質を見る上で重要であり、ピーク発現時間とともに、ガンの同定および進行度を示す指標とすることができる。