(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0022】
(第一実施形態)
以下、本発明の第一実施形態の膜モジュール1を有する水処理システム10について図面を参照して詳細に説明する。
図1に示すように、本実施形態の水処理システム10は、被処理水W1(し尿、浄化槽汚泥を含む有機性廃水)に含まれる有機物を処理する生物処理水槽11と、生物処理水槽11から排出される被処理水W2が収容される原水槽12と、原水槽12から供給される被処理水W3(原水)を透過水PWと濃縮水W4とに分離する膜分離装置13と、を備えている。
【0023】
生物処理水槽11は、例えば、硝化菌と脱窒菌の作用により液中のBOD、窒素化合物等を分解除去する装置である。生物処理水槽11には、第一配管15を介して被処理水W1が供給される。生物処理水槽11と原水槽12とは第二配管16によって接続されている。
【0024】
膜分離装置13は、複数の膜モジュール1を備えている。複数の膜モジュール1は、並列に配列されている。
図2に示すように、複数の膜モジュール1は、膜分離装置13の筐体14内に、横向きで配置されている。即ち、膜モジュール1の円筒形状のケーシング2の軸線A(
図3参照)は、水平方向に延在している。
図3に示すように、膜モジュール1は、ケーシング2と、ケーシング2の内部に配置された複数の管状濾過膜3とを有している。膜分離装置13は、管状濾過膜3の内側に被処理水W3を循環させながら濾過する方式を用い、被処理水W3から透過水PWを取り出す装置である。
【0025】
原水槽12と膜分離装置13とは原水供給配管17を介して接続されている。原水供給配管17には、循環ポンプ21が設けられている。原水槽12に貯留された被処理水W2は、循環ポンプ21によって加圧されながら、膜分離装置13に供給される。
膜分離装置13から分離される透過水PWは、透過水配管18に導入される。透過水配管18は、貯留槽20に接続されている。即ち、膜モジュール1の透過水排出口9(
図3参照)は、透過水配管18に接続されている。透過水配管18には、吸引ポンプ22が設けられている。
【0026】
透過水PWが分離されて膜分離装置13から排出される濃縮水W4は、余剰汚泥を除く全量が、返送配管19(返送ライン)を介して生物処理水槽11に返送される。即ち、膜モジュール1の濃縮水排出口8(
図3参照)は、返送配管19に接続され、濃縮水W4は、原水槽12へ返送しなくてよい。
生物処理水槽11から排出された被処理水W2は、原水槽12、膜分離装置13を介して、生物処理水槽11に戻る。即ち、被処理水は、水処理システム10の配管を循環する。
【0027】
上述したように、複数の膜モジュール1は、並列に配列されている。具体的には、原水供給配管17、透過水配管18、及び返送配管19は、各々の膜モジュール1に接続されている。
【0028】
図3に示すように、膜モジュール1は、円筒形状のケーシング2と、複数の管状濾過膜3と、管状濾過膜3を補強する補強部材34と、を備えている。
ケーシング2は、円筒形状をなすケーシング本体4と、ケーシング本体4の一端を閉鎖する第一側壁5と、ケーシング本体4の他端を閉鎖する第二側壁6と、ケーシング本体4に形成された被処理水導入口7と、ケーシング本体4に形成された濃縮水排出口8と、ケーシング本体4に形成された透過水排出口9と、を有している。
【0029】
膜モジュール1は、ケーシング2の内部を3つの空間に分割する、第一隔壁30と第二隔壁31と、を備えている。第一隔壁30と第二隔壁31とには、複数の挿通孔32が形成されている。挿通孔32は、第一隔壁30及び第二隔壁31の板厚方向に貫通する孔である。挿通孔32の内径は、管状濾過膜3の外径よりもやや大きい。
【0030】
第一隔壁30は、板形状をなす部材であり、ケーシング2の内部の一端側(第一側壁5の側)に固定されている。ケーシング本体4と、第一隔壁30と、第一側壁5とによって囲まれる空間は、第一ヘッダ空間S1である。
第二隔壁31は、板形状をなす部材であり、ケーシング2の内部の他端側(第二側壁6の側)に固定されている。ケーシング本体4と、第二隔壁31と、第二側壁6とによって囲まれる空間は、第二ヘッダ空間S2である。
ケーシング本体4と、第一隔壁30と、第二隔壁31とによって囲まれる空間は、透過水空間S3である。複数の管状濾過膜3から取り出された透過水PWは、透過水空間S3に排出された後、透過水排出口9を介して透過水配管18(
図1参照)に導入される。
【0031】
被処理水導入口7は、ケーシング2の外部と第一ヘッダ空間S1とを連通させる開口である。被処理水導入口7は、ケーシング本体4に形成されている。被処理水導入口7は、ケーシング2の軸線A方向における、第一隔壁30と、第一側壁5との間に設けられている。
濃縮水排出口8は、ケーシング2の外部と第二ヘッダ空間S2とを連通させる開口である。濃縮水排出口8は、ケーシング本体4に形成されている。濃縮水排出口8は、ケーシング2の軸線A方向における、第二隔壁31と、第二側壁6との間に設けられている。
透過水排出口9は、ケーシング2の外部と透過水空間S3とを連通させる開口である。透過水排出口9は、ケーシング本体4に形成されている。透過水排出口9は、ケーシング2の軸線A方向における、第一隔壁30と、第二隔壁31との間に設けられている。
【0032】
各々の管状濾過膜3の一端は、第一隔壁30の挿通孔32に挿通された上で、挿通孔32の内周面に固定されている。挿通孔32の内周面と管状濾過膜3の外周面との間は、シール材(図示せず)によってシールされている。シール材としては、エポキシ樹脂やウレタン樹脂など、初期に粘性を持ち、経時的に硬化する材料が好ましい。
各々の管状濾過膜3の他端は、管状濾過膜3の一端と同様の方法で第二隔壁31の挿通孔32に固定されている。
【0033】
管状濾過膜3は、円筒形状をなし、単一主要構成素材に親水性モノマーが共重合された単層構造の高分子濾過膜によって形成されている。
即ち、管状濾過膜3は、主要材料が1種類の素材によって形成されている。主要材料が1種類の素材によって形成されているということは、管状濾過膜3を形成する素材(例えば、樹脂)において、1種類樹脂が50質量%以上を占めていることを意味する。
また、主要材料が1種類の素材によって形成されているということは、その1種類の素材の性質が構成素材の性質を支配していることを意味する。具体的には、1種類の樹脂が50質量%−99質量%を有する素材を意味する。
【0034】
管状濾過膜3を構成する主要材料としては、塩化ビニル系樹脂、ポリスルホン(PS)系、ポリビニリデンフルオライド(PVDF)系、ポリエチレン(PE)などのポリオレフィン系、ポリアクリロニトリル(PAN)系、ポリエーテルスルフォン系、ポリビニルアルコール(PVA)系、ポリイミド(PI)系などの高分子材料を用いることができる。
【0035】
管状濾過膜3を構成する主要材料としては、特に塩化ビニル系樹脂が好ましい。塩化ビニル系樹脂としては、塩化ビニル単独重合体(塩化ビニルホモポリマー)、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体、これらの塩化ビニルモノマー単位が塩素化されたものからなる(共)重合体などが挙げられる。
【0036】
親水性モノマーとしては、例えば、
(1)アミノ基、アンモニウム基、ピリジル基、イミノ基、ベタイン構造などのカチオン性基含有ビニルモノマー及び/又はその塩、
(2)水酸基、アミド基、エステル構造、エーテル構造などの親水性の非イオン性基含有ビニルモノマー、
(3)カルボキシル基、スルホン酸基、リン酸基などのアニオン性基含有ビニルモノマー及び/又はその塩、
(4)その他のモノマー等が挙げられる。
【0037】
本実施形態の膜モジュール1は、各々の管状濾過膜3を補強する補強部材34を備えている。補強部材34は、各々の管状濾過膜3を外周側から覆っている筒状の部材である。管状濾過膜3は、補強部材34の内周側に挿通されている。補強部材34は、補強部材34の内周面と管状濾過膜3の外周面とが略全周に亘って接触するように形成されている。
【0038】
図4に示すように、補強部材34は、管状濾過膜3の外周側に配置される筒状本体部35と、筒状本体部35の内周面35aに設けられた複数の支持部36と、筒状本体部35に形成された複数の貫通孔37と、を有している。
筒状本体部35は、円筒状をなしている。
図5に示すように、筒状本体部35の内径(内周面35aの直径)は、管状濾過膜3の外径より大きい。筒状本体部35の内周面35aと管状濾過膜3の外周面との間には、隙間Gが形成されている。管状濾過膜3の外径を、例えば、5mmとすると、筒状本体部35の内径は、例えば、7mmとすることができる。この場合、筒状本体部35の内周面35aと管状濾過膜3の外周面との間の隙間Gは1mmである。筒状本体部35は、管状濾過膜3との間の隙間Gが一定となるように形成されている。
【0039】
筒状本体部35の長さは、第一隔壁30と第二隔壁31との間の間隔と同じである。即ち、筒状本体部35の長さは、透過水空間S3に露出している管状濾過膜3の長さと同じである。
筒状本体部35は、例えば、チタンやアルミニウムなどの軽量の金属や、ポリアセタール樹脂などのプラスチックによって形成することができる。筒状本体部35の板厚は、補強部材34の強度を損なわない範囲で、可能な限り薄くすることが好ましい。
【0040】
支持部36は、筒状本体部35の軸線方向(延在方向)に延在する突起である。支持部36は、筒状本体部35の周方向に、間隔をあけて複数(本実施形態では8つ)形成されている。各々の支持部36の高さは、筒状本体部35の内周面35aと管状濾過膜3の外周面との間の隙間Gの幅と、略同一である。
【0041】
なお、本実施形態の補強部材34は、8つの支持部36を有しているが、管状濾過膜3を支持することができればこれに限ることはない。筒状本体部35と管状濾過膜3との間の空間、即ち、透過水PWが排出される空間をより広く確保するためには、少ないことが好ましい。
また、上記実施形態では、支持部36が筒状本体部35の軸線方向に連続して形成されているが、これに限ることはない。支持部36は、筒状本体部35と管状濾過膜3との間の空間を埋めることなく、この空間を可能な限り確保しながら、管状濾過膜3を支持できればよい。例えば、支持部36は、軸線方向に断続的に形成されてもよい。また、管状濾過膜3を互いに離間する複数の支持突起により点支持する構成としてもよい。
【0042】
貫通孔37は、筒状本体部35の外周側と筒状本体部35の内周側とを連通させる開口である。複数の貫通孔37は、筒状本体部35の外面の全面に規則的に(均等に)配置されている。貫通孔37は、補強部材34の強度を損なわない範囲で、可能な限り多く形成することが好ましい。筒状本体部35の周方向における貫通孔37の位置は、支持部36と異なっていることが好ましい。
【0043】
次に、本実施形態の膜モジュール1の製造方法について説明する。
図6に示すように、本実施形態の膜モジュール1の製造方法M1は、被処理水W3(原水)に含まれる粗繊維量の割合を測定する粗繊維量測定工程S11と、被処理水Wの粗繊維量に基づいて管状濾過膜3の内径を選定する膜内径選定工程S12と、膜内径選定工程S12において選定された内径を有する管状濾過膜3、ケーシング2などの製造部材を準備する製造部材準備工程S13と、製造部材を組み立てる組立工程S14と、を含む。
【0044】
粗繊維量測定工程S11は、膜分離装置13に導入される被処理水W3の粗繊維量(mg/リットル)を測定する工程である。粗繊維とは、有機性廃水である被処理水Wに含まれる髪の毛などの繊維分である。
【0045】
粗繊維量測定工程S11は、被処理水W3の一部を取り出し、例えば、重量法によって測定することができる。具体的には、1リットルの被処理水W3を取り出した後、水分を取り除いて乾燥させ、残った粗繊維量を測定することにより算出することができる。粗繊維量の測定は、例えば下水試験方法における粗浮遊物分析方法による。
【0046】
膜内径選定工程S12は、粗繊維量測定工程S11において測定された粗繊維量に基づいて、管状濾過膜3の内径を選定する工程である。
発明者らは、実験及び検討の結果、粗繊維量に応じて管状濾過膜3の内径を変更することによって、粗繊維分による閉塞を抑制できることを見出した。具体的には、以下の表1に示すように、管状濾過膜3の内径を選定することによって、粗繊維分による管状濾過膜3の閉塞を抑制することができる。
【0048】
即ち、粗繊維量αが200mg/リットル以下の場合は、管状濾過膜3の内径を5mmとする。粗繊維量αが200mg/リットルより大きく500mg/リットルより小さい場合は、管状濾過膜3の内径を5mm−10mmとする。粗繊維量αが500mg/リットル以上の場合は、管状濾過膜3の内径を10mm以上とする。
【0049】
製造部材準備工程S13は、膜モジュール1を構成するケーシング2、第一隔壁30、第二隔壁31、管状濾過膜3、補強部材34、等を準備する工程である。管状濾過膜3は、膜内径選定工程S12において選定された内径を有するものを準備する。
組立工程S14は、製造部材を組み立てる工程である。
【0050】
次に、本実施形態の水処理システム10の作用について説明する。
まず、被処理水W1が生物処理水槽11において処理される。具体的には被処理水W1に含まれる有機性物質が微生物によって分解される。
次いで、生物処理水槽11から排出された被処理水W2は、原水槽12に貯留される。原水槽12から排出された被処理水W3は、循環ポンプ21を介して膜分離装置13に供給されると、膜モジュール1の管状濾過膜3内に送り込まれる。一方、膜モジュール1のケーシング2内における透過水空間S3は吸引ポンプ22の作動により、負圧となる。吸引ポンプ22は、透過水排出口9を通して管状濾過膜3を流れる被処理水W3の流れに対して略直交する方向に吸引する。管状濾過膜3から透過された透過水PWは、透過水排出口9及び透過水配管18を介して貯留槽20に貯留される。
【0051】
膜分離装置13から排出される濃縮水W4は、余剰汚泥を除く全量が返送配管19を介して生物処理水槽11に返送されて、再度、処理が行われる。
【0052】
上記実施形態によれば、膜モジュール1を横置き、即ち、ケーシング2が水平方向に延在するように配置することによって、膜モジュール1を複数配置する場合においても、膜モジュール1の交換を容易とすることができる。これにより、複数の膜モジュール1からなる膜分離装置13のメンテナンスを容易とすることができる。
【0053】
また、複数の管状濾過膜3が補強部材34によって補強されていることによって、管状濾過膜3が水平方向に延在する配置とした場合においても、管状濾過膜3が撓むことを防止することができる。
また、補強部材34の支持部36によって補強部材34の内周面と管状濾過膜3の外周面との間に隙間Gが形成されることによって、管状濾過膜3から透過される透過水PWの流れを阻害することなく、管状濾過膜3を撓まないように支持することができる。
【0054】
また、膜モジュール1を縦置きする場合は、管状濾過膜3の一端と他端のヘッド差(抵抗)が大きくなる。膜モジュール1を横置きすることによって、膜モジュール1を縦置きする場合と比較して、ヘッド差が小さくなり、FLUX(流出量)分布を小さくすることができる。
【0055】
また、膜モジュール1を横置きすることによって、複数の膜モジュール1同士を直列的に接続することが容易となる。膜分離装置13を構成する複数の膜モジュール1の配列方法を直列にする場合においても対応が容易となる。
また、原水の粗繊維量に応じて、管状濾過膜3の内径を選定することによって、管状濾過膜3が粗繊維分によって閉塞されることを抑制できる。
【0056】
また、管状濾過膜3を親水性を有する材料で形成することによって、被処理水W3の膜面流速を低くすることができる。膜面流速は、例えば、0.15m/s−0.30m/sとすることができる。
【0057】
管状濾過膜3が疎水性である場合、膜面流速を高くする必要がある(例えば、2.5m/s)。このため、循環流量が多くなり、膜分離装置13から排出される濃縮水W4を、原水槽12及び生物処理水槽11に返送する必要が生じる。原水槽12及び生物処理水槽11に返送するためには、濃縮水W4を原水槽12と生物処理水槽11とに分配する分配タンクや、濃縮水W4を原水槽12に返送する配管が必要となる。
【0058】
本実施形態の水処理システム10は、膜面流速を低くすることができるため、濃縮水W4の循環流量を少なくすることができる。これにより、循環ポンプ21の動力を低減することができる。また、濃縮水W4を原水槽12と生物処理水槽11とに分配する分配タンクや、濃縮水W4を原水槽12に返送する配管が不要となる。
また、流量が少なくなることにより、配管を小径化することができる。また、流量が少なくなることにより、流量計などの機器の削減が可能となる。
【0059】
なお、上記実施形態では、膜モジュール1として、管状濾過膜3を並列に配列した膜モジュール1を採用したがこれに限ることはない。例えば、
図7に示すように、複数の管状濾過膜3を直列に接続してもよい。即ち、複数の管状濾過膜3の一端同士、及び管状濾過膜3の他端同士、を複数の管状濾過膜3が直列的に接続されるように接続する複数のU字状の接続部材46を有する構成としてもよい。
【0060】
このとき、直列に接続された複数の管状濾過膜3に、被処理水導入口7、及び濃縮水排出口8を、接続部材53、及び接続部材54を介して直接的に接続して被処理水W3を導入し、濃縮水W4を排出してもよい。この場合、下部ヘッダS1及び上部ヘッダ空間S2は無くてもよいので、第一側壁5と第二側壁6をなくすなど、ケーシングの構成を変更してもよい。
【0061】
また、補強部材34の長さを第一隔壁30と第二隔壁31との間の間隔よりも長くして、補強部材34を第一隔壁30及び第二隔壁31の挿通孔32に挿通してもよい。このような形態とすることによって、管状濾過膜3にかかる負担をより軽減することができる。
【0062】
(第二実施形態)
以下、本発明の第二実施形態の膜モジュールに使用される補強部材を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
図8に示すように、本実施形態の補強部材は、筒状をなし、管状濾過膜3の外周側に管状濾過膜3と接するように配置されたメッシュ状の網状構造体39である。網状構造体39は、複数の線状のプラスチックを互いに格子状に組み合わせることによって形成されているプラスチック管である。複数の線状のプラスチックを格子状に組み合わせることによって、網状構造体39は、第一実施形態の補強部材34の貫通孔37に相当する複数の網目40が形成される。
【0063】
線状のプラスチックの代替として、例えば、ステンレス鋼などの金属で形成されたワイヤを採用することもできる。また、ビニール等で被覆されたワイヤを採用してもよい。
また、複数の線状のプラスチックの組み合わせ方は、格子状に限ることはなく、複数の線状のプラスチックを六角形に編んでもよい。
また、
図9に示すように、円筒形状のプラスチック管を網目状に加工した網状構造体41を採用してもよい。即ち、円筒形状の筒本体部42と、筒本体部42に規則的に形成された複数の透過水排出孔43を形成した構成としてもよい。透過水排出孔43の形状は、
図9に示した四角形状に限らず、六角形状や、透過水PWが十分排出することができれば、円形としてもよい。
【0064】
上記実施形態によれば、第一実施形態の補強部材34と比較して、より簡素な構造で管状濾過膜3を補強することができる。また、管状濾過膜3を透過した透過水PWを網目40や透過水排出孔43から排出することができる。
【0065】
なお、上記実施形態では、管状濾過膜3の外周側に補強部材34となる網状構造体39を配置する構成としたが、これに限ることはない。例えば、
図10及び
図11に示すように、管状濾過膜自体を金属製のワイヤ44で補強してワイヤ入り管状濾過膜3Bとしてもよい。ワイヤ44は、管状濾過膜3の厚さ方向の中央近傍に埋め込まれている。ワイヤ44は、管状濾過膜3の延在方向に、螺旋状に延在している。
ワイヤ44の埋め込み方法は、ワイヤ44によって管状濾過膜3が補強されれば、上記方法に限ることはない。例えば、複数のワイヤ44を管状濾過膜3に格子状に埋め込んでもよい。
【0066】
(第三実施形態)
以下、本発明の第三実施形態の膜モジュールに使用される補強部材を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
図12に示すように、本実施形態の補強部材34Cは、円形板状をなす板状本体部48と、板状本体部48に形成された複数の膜挿通孔49と、を有している。複数の膜挿通孔49には、それぞれ管状濾過膜3が挿通される。補強部材34は、ケーシング2の軸線方向に間隔をあけて3つ設けられている。
【0067】
補強部材34の板状本体部48の外周面48aは、ケーシング2の内周面に当接している。補強部材34は、補強部材34の下部がケーシング2の内周面に当接することで支持される。補強部材34の下部の外周面48aは、補強部材34を支持する補強部材支持部として機能する。また、透過水PWが透過水空間S3内で流通するように、例えば補強部材34の一部に、切欠55が存在することが望ましい。
【0068】
上記実施形態によれば、補強部材34Cによって複数の管状濾過膜3が機械的に連結される。これにより、管状濾過膜3が水平方向に延在する配置とした場合においても、管状濾過膜3が撓むことを防止することができる。
また、本実施形態の補強部材34Cは、管状濾過膜3を延在方向の3点のみで支持するため、第一実施形態の補強部材34と比較して、透過水PWをより透過させることができる。
【0069】
なお、上記実施形態の補強部材34Cは、補強部材34Cの外周面48aがケーシング2の内周面に当接しているがこれに限ることはない。即ち、補強部材34Cがケーシング2の内周面によって支持されていれば、補強部材34Cの上部がケーシング2の内周面に当接していなくてよい。また、例えば多角形状など、外周の一部がケーシングに当接する形状でもよい。
また、補強部材34Cの数は3つに限ることはなく、管状濾過膜3の強度に応じて、適宜増減させてよい。
【0070】
(第四実施形態)
以下、本発明の第四実施形態の水処理システム10の設計方法を図面に基づいて説明する。
本実施形態の水処理システム10は、被処理水W3の粗繊維量に応じて設計される。即ち、本実施形態の水処理システムの設計方法は、被処理水W3の粗繊維量に応じて、粗繊維を除去する装置の配置を変更する。
【0071】
図13に示すように、本実施形態の水処理システムの設計方法M2は、被処理水W3(原水)の粗繊維量を測定する粗繊維量測定工程S21と、被処理水W3の粗繊維量に基づいて繊維除去装置を選定する繊維除去装置選定工程S22と、を含む。
【0072】
粗繊維量測定工程S21は、膜分離装置13に導入される被処理水W3の粗繊維量(mg/リットル)を測定する工程である。
【0073】
繊維除去装置選定工程S22は、粗繊維量測定工程S21において測定された粗繊維量に基づいて、水処理システム10に設置する繊維除去装置を選定する工程である。
発明者らは、実験及び検討の結果、粗繊維量に応じて繊維除去装置を選定することによって、膜分離装置13への粗繊維分の流入を抑制することができることを見出した。具体的には、以下の表2に示すように、繊維除去装置を選定することによって、膜分離装置13への粗繊維分の流入を抑制することができる。
【0075】
粗繊維量αが2,000mg/リットル以上の場合は、
図14に示すように、生物処理水槽11と原水槽12との間の第二配管16に遠心分離機50を設ける。
粗繊維量αが500mg/リットルより大きく2,000mg/リットルより小さい場合は、
図14に示すように、第二配管16にトロンメル51を設ける。トロンメル51は、通水性周面からなる回転ドラムであり、駆動装置によって低速で回転する。トロンメル51の一端から供給された有機性汚泥は、傾斜配置されたトロンメル51の内部を移動する過程で有機性廃水中の水分が通気性周面から分離水として排出され、他端から濃縮された有機性汚泥が排出される。
【0076】
粗繊維量αが500mg/リットル以下の場合は、
図15に示すように、原水供給配管17の循環ポンプ21の下流側にスクリーンメッシュ52を設ける。スクリーンメッシュ52の代替として、オートストレーナ、又は複式ストレーナを設けてもよい。
【0077】
上記実施形態によれば、膜分離装置13への粗繊維分の流入を抑制することができる。また、原水の粗繊維量に応じた繊維除去装置を設置することによって、水処理システム10の最適化を図ることができる。
【0078】
以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、種々の変更を加えることが可能である。
例えば、管状濾過膜3の本数に関して、
図3などには5本の管状濾過膜3を示したが、管状濾過膜3の本数はこれに限ることはない。