(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
従来から、完成モデルの車両を室内に置き、さまざまな自然環境・気象条件を設定し、車両への負荷をデータとして収集し、分析するための環境試験室が用いられている。
その一例として、環境試験室内で人工雪により吹雪を模擬して、吹雪を車両に向かって吹き出し、エンジンルーム内への雪の混入による不具合問題、足回り部品の凍結等の着氷問題に対処することが行われている。
【0003】
このため、環境試験室は、車両が配置され、吹雪を車両に向かって吹き出すのに十分なスペースの風洞と、吹雪発生装置とを有する。
吹雪発生装置は、フレーク状の氷片を製造する製氷機と、製造されたフレーク状の氷片を所定粒径の氷粒に砕氷する砕氷機と、砕氷された所定粒径の氷粒により模擬された人工雪を風洞内に搬送する配管と、配管の先端に設置され、車両の前部に向かって吹き出す吹き出しノズルとを有する。
このような環境試験室によれば、吹雪発生装置を利用して、風洞内において、吹雪を車両に向かって吹き出すことにより、自然環境・気象条件を模擬した環境試験を行うことが可能である。
【0004】
このとき、適正かつ有効な環境試験を行うには、自然状態の吹雪を模擬する必要があり、特に、吹雪の車両への付着性を再現する観点から、吹雪を構成する雪の温度および粒径、さらには試験に必要な雪の量の確保とともに、雪質として、水分含有率を調整することにより、所望の湿雪を生成することが重要である。
その一方で、車両を配置する風洞内において、車両と気流の吹き出し口との距離が短い(1ないし2メートル程度)という制約があり、この短い距離の間で自然状態の吹雪を模擬して、車両に吹き付ける必要がある。
【0005】
この点、従来の吹雪発生装置は、特許文献1に開示されているように、吹雪を車両に向かって吹き出すまでに人工雪が装置内部に付着するのを防止する観点から、ドライ状の乾雪を吹き出し、車両に達するまでに装置外部で湿雪化していた。
より詳細には、
図8に示すように、風洞内の送風口120の前方に設置する吹き出し口122と、車両との間に、水を噴射する水噴射ノズル124を設け、吹き出し口122から吹き出され、送風口120からの低温気流121により模擬されるドライ状態の吹雪123に対して、水噴射ノズル124から水を噴射して、湿雪化していた。
【0006】
しかしながら、このような湿雪化技術には、以下のような技術的問題点が存する。
第1に、吹雪全体の水分含有率は、自然状態の湿雪と同等であるとしても、吹雪を構成する乾雪の中には、濡れ過ぎのもの、濡れ不足のもの様々であり、個々の乾雪自体が湿雪化されているわけでない。
第2に、吹雪を構成する乾雪は、その表面が噴射された水により濡れるだけであり、自然状態の湿雪とは、その性質が異なる。
以上から、従来の湿雪化技術では、自然状態の湿雪を模擬できないので、湿雪状吹雪による車両への付着性を評価する場合等に、適正かつ精確な環境試験を行うのは困難である。
【0007】
この点、特許文献2は、湿雪化技術として、流路内で所定速度以上の搬送気流に乗せて乾雪を流出開口に向けて搬送する段階と、流出開口の上流側で、流路の外周面のまわりから、流路内に所定温度以上のホットエアを供給する段階と、流路内で、搬送気流および乾雪と、ホットエアとを均一に混合することにより、流路内に乾雪を溶かすに十分な均一温度の雰囲気を形成する段階と、それにより、乾雪それぞれを搬送気流に乗せて搬送しつつ、溶かして湿雪化して、湿雪を流出開口から吹き出す点を開示している。
【0008】
このような湿雪化技術によれば、流路内で雪自体を溶かすことから、特許文献1に比して、上記第1および第2の問題点をある程度解消することは可能である。
しかしながら、搬送気流および乾雪と、ホットエアとを均一に混合してから、流出開口から吹き出すまでに、搬送気流および乾雪と、ホットエアとの間で熱交換を行って、乾雪を湿雪化するまでの熱交換領域あるいは熱交換時間、総じて熱交換のための熟成エリア(エージングスペース)が確保されていない。
搬送気流の搬送速度が高い場合には、乾雪が流路の内面に付着しにくくなる反面、熱交換時間を確保することが困難となり、乾雪の湿雪化が不十分となる一方、 搬送気流の搬送速度が低い場合には、熱交換時間の十分な確保により、乾雪の湿雪化が確保可能である反面、乾雪が流路の内面に付着しやすくなって、場合により、流路が閉塞されて、雪の搬送自体が困難となる。
以上のように、乾雪の十分な湿雪化を確保しつつ、湿雪の管路の内面への付着を防止することが重要な課題である。
【特許文献1】特開2000−65690号
【特許文献2】特開昭63−217172号
【発明を実施するための最良の形態】
【0015】
まず、雪環境試験システムについて説明すれば、
図1に示すように、雪環境試験システム10は、氷粒からなる人工雪を利用し、人工雪をその背後からの気流に乗せて吹雪を模擬して、試験供試体である車両Vに向かって吹き付けるように構成され、そのために、吹雪供給システム12と、気流供給システム14とを有する。
【0016】
特に、氷粒の粒径および水分含有率が主な影響因子である所定の雪質を具備する吹雪を必要量用いて、車両Vに向かって連続的に吹き付ける際、車両Vの高さ全体に拡散し、場合により車両Vの高さ方向に所望の吹雪濃度分布を実現できるようにするために、所定の温度および湿度管理のもとで、人工雪として利用する氷粒群を試験直前に製造して迅速に供給することが要求される。
【0017】
より具体的には、雪環境試験システム10は、試験対象である車両Vを配置する風洞16と、風洞16の上部に配置された低温室18、および低温室18の上部に配置された製氷室20とを有し、製氷室20内には、製氷機22が配置され、低温室18内には、氷温安定化コンベア24、砕氷機26、ブロアー28、冷却器30、および人工雪の分配装置34が配置され、風洞16内には、湿雪装置32、人工雪の吹き出しノズル36、および吹雪捕集装置38が配置され、概略的には、製氷室20で製氷された氷片を低温室18で砕氷して、氷粒化することにより人工雪を製造し、人工雪を風洞16に向けて圧送して、風洞16内において、湿雪化した人工雪を分配して、低温気流に乗せて吹雪化して、車両Vに向けて吹き付けるように構成している。
【0018】
風洞16は、開放タイプの回流型であり、測定対象である車両を設置する(開放型)測定室300と、第1〜第4の4つの屈曲胴302、304、306、308(屈曲部)とを備えて平面視略長方形に形成されている。送風機25で発生した気流は、第2拡散胴310、第3屈曲胴306、第4屈曲胴308、整流胴312(
図2参照)、縮流胴314(
図2参照)を経て、測定室300に開口する吹出し口316(
図2参照)から測定室300に流入し、第1屈曲胴302、第2屈曲胴304の順に流れるようになっている。
【0019】
送風機25によって送風された気流は、いったん気流全体としての風速(動圧)を低下させて中間胴部における圧力(静圧)を上昇させた後、縮流胴314を通過させることで、測定するのに必要十分な風量(風速)の気流を吹出し口316から測定室300に吹き出すことができるようにしている。
【0020】
これにより、後に説明するように、製氷工程、砕氷工程、分離工程、湿雪工程を経て空気搬送される氷粒が、測定室300内において、その背後からの気流に乗って車両に向かって吹雪として吹き付けられ、送風機25により気流の風速を調整することにより、静止車両でありながら走行車両を模擬できるようにしている。
また、吹雪試験用の回流型風洞16の場合、試験後の雪を分離回収するために、車両Vの下流に、別途雪補修装置38を設けているが、いずれにせよ、雪の重力落下あるいは慣性効果により雪を分離させるのに、車両Vの下流に、敢えて気流を整流させない領域を設けている。
【0021】
吹雪供給システム12は、3系統設けられ、各系統において、砕氷機26と吹き出しノズル36とを接続する雪供給管40、および風洞16内の吸引口42と砕氷機26とを接続する空気ダクト44が設けられ、雪供給管40においては、砕氷機26と吹き出しノズル36との間に、人工雪の分配装置34および湿雪装置32がこの順に接続され、一方空気ダクト44においては、風洞16内の吸引口42と砕氷機26との間に、ブロワ28、冷却器30が接続される。
人工雪の分配装置34を湿雪装置32の上流側に設置するのは、人工雪の分配装置34を下流側に設置すると、湿雪化した雪が分配装置34に送られて、分配装置34内に付着して、詰まりを生じることがあり、それを防止するためである。
【0022】
製氷機22は、フレーク状の氷片を製造するいわゆるリーマ式の製氷機22であり、雪環境試験に用いる人工雪の全体必要量に応じて、クラック状氷片を製造する複数の製氷機22のうちから任意台数を選択して、環境試験に用いる人工雪の必要量の変化に応じて、選択した製氷機22により製氷することにより、製氷量を粗調整するとともに、環境試験に用いる人工雪の必要量の変化に対して、人工雪の必要量と粗調整された製氷量との差分に応じて、選択した製氷機22それぞれにおいて、蒸発温度および/または水温および/またはリーマの回転数を調整することにより、製氷量を微調整する制御装置(図示せず)とを有する。
【0023】
砕氷機26は、主に、上部に配置されたロータリーフィーダー(図示せず)と、下部に配置された一対の破砕ドラム(図示せず)とからなり、氷温安定化コンベア24により供給された氷片をロータリーフィーダーにより分量化して一対の破砕ドラムに供給し、一対の破砕ドラムにより破砕して、所定粒径の氷粒として雪供給管40に供給するようにしている。
【0024】
人工雪の分配装置34は、雪供給管40により搬送される人工雪を複数の分岐管(図示せず)に分配するのに用いられ、より具体的には、同じレベルの吹き出しノズル36が車両Vの幅方向に複数設けられるように、各系統における雪供給管40は、車両Vの幅方向に複数の分岐管に分岐され、各分岐管ごとに湿雪装置32が設けられ、各分岐管の先端に、吹き出しノズル36が設けられる。
【0025】
図9に示すように、人工雪の分配装置34は、上流側端面105および下流側端面107それぞれが雪供給管40の下流側端面106および複数の分岐管58それぞれの上流側端面104と平行に配置された回転体110と、回転体110をその軸線方向を中心に所定回転速度で回転させる回転駆動部(図示せず)とを有し、回転体110はその内部に、回転体110を軸線方向に貫通する圧送流路114を有し、圧送流路114は、上流側端面に、雪供給管40の下流側端面106に設けられる流出開口116に近接対向して非接触式に配置される取り入れ口118を備え、下流側端面に、複数の分岐管58それぞれの上流側端面に設けられる流入開口120に近接対向して非接触式に配置される排出口122とを備え、排出口122は、回転体110の回転による排出口122の通過軌跡上に複数の分岐管58それぞれの流入開口120が位置するように設けられる。
以上のように、雪供給管40内を圧送される雪は、人工雪の分配装置34の回転体110を介して、複数の分岐管58に分配されるようにしている。
【0026】
湿雪装置32は、分岐管58に連通するホットエア供給管50を有し、ホットエア供給管50は、その下流側端部に、分岐管58の延び方向の所定長さに亘って分岐管58の外周面全体を覆う環状スペースを形成するホットエア流入部54を有し、環状スペースに覆われる分岐管58の外周面には、ホットエアの流入開口56が均等に複数設けられ、それにより、分岐管58のホットエア流入部54が付設される部位の下流側において、分岐管58内にエージングスペース116(熱交換熟成領域)が形成され、そこにおいて湿雪化されるようにしている。
【0027】
気流供給システム14について、風洞16は、循環スペースの一部に形成され、車両Vの前方から後方に向かって一方向に車両Vの車高に亘って吹雪を吹き付けるように構成される。具体的には、循環スペース内に設置された送風機25により車両Vの前方から後方に向かって一方向に所定風速の気流を発生し、車両Vを通過して気流は冷却器30により所定温度に冷却されて、送風機25に戻され、再度気流を発生し、これを繰り返すようにしている。
【0028】
吹雪の発生装置に関し、吹き出しノズル36について、車両Vの前方所定距離の位置に、車両Vの車高に亘って高さ方向に所定間隔を隔てて、3機の吹雪の吹き出しノズル36が配置され、各吹き出しノズル36ごとに、供給する吹雪の濃度を調整可能にしている。車両Vの後方所定距離の位置には、雪捕集装置38が配置され、雪捕集装置38を通過した吹雪は、風洞16内の吸引口42を介して低温室18内に配置されたブロアー28により引かれ、冷却器30により冷却され、砕氷機26に戻され、製氷機22により製氷され氷温安定化コンベア24により砕氷機26に供給され砕氷される氷粒と混合され、再び分岐管58を介して吹き出しノズル36から吹雪を吹き出すのに利用されるようにしている。吹き出しノズル36は、気流の進行方向に沿って配置され、送風機25から吹き出される気流の帯域内に吹き出し口102が設置される。
【0029】
この点、吹雪は、ブロアー28による圧送空気により各吹き出しノズル36から吹き出される雪が、送風機25から吹き出される気流に乗って車両Vに向かって吹き付けられるところ、圧送空気の圧送速度は、雪供給管40および分岐管58内での雪の詰まりを生じない限り、なるべく低速であるのが好ましく、吹雪の速度は、送風機25から吹き出される気流により模擬するのが好ましい。
より詳細には、吹雪が拡散プレート74(後に説明)により拡散されて車両Vに向かって吹き付けられる際、圧送空気の圧送速度が高いと、吹き出しノズル36の部分の吹雪のみ吹雪の速度が高くなり、自然の吹雪から逸脱する一方、送風機25から吹き出される気流の速度を変えることにより、拡散される吹雪全体の速度を一様に変動させることが可能であり、特に静止車両Vにより、走行車両を模擬する場合に、送風機25から吹き出される気流の速度を変動させるのが有利である。
【0030】
各吹き出しノズル36の前方には、拡散プレート74が設けられ、吹き出しノズル36から送風機からの低温気流に乗って車両Vに向かって吹き出される吹雪は、
図3に示すように、拡散プレート74に当って四方外方に拡散し、3機の吹雪の吹き出しノズル36が互いに協働して、車両Vの前部において、車両Vの高さ方向に亘って、吹雪が分布するようにしている。
この点で、風洞16は、いわゆる空力風洞16でなく、簡易的な風洞16とすることから、吹き出しノズル36と車両Vの前部との距離は、約1メートルないし3メートルであるところ、この短い距離の間で、吹き出しノズル36より吹き出す吹雪が、車両Vの前部において高さ全体に亘って拡散するようにしている。
【0031】
図2に示すように、各系統において、湿雪装置32は、それぞれの分岐管58において、分配装置34の下流側に設けられるが、それぞれの湿雪装置32は、同一構造であるので、その1つを説明する。
湿雪装置32には、分岐管58のまわりにホットエア流入部54が設けられ、分岐管58は、ホットエア流入部54の下流側に吹き出しノズル36まで延び、ホットエア流入部54において湿雪化された氷粒Pを分岐管58内の気流により圧送して、吹き出しノズル36から吹き出すようにしている。
より詳細には、
図3に示すように、湿雪装置32は、分配装置34の下流側において、分岐管58に連通するホットエア供給管50を有し、ホットエア供給管50は、その下流側端部に、分岐管58の延び方向の所定長さに亘って分岐管58の外周面全体を覆う環状スペース52を形成するホットエア流入部54を有する。
【0032】
ホットエア供給管50は、既知の加熱手段(図示せず)により所定温度に加熱したホットエアを、たとえば、ブロワによりホットエア流入部54に向けて搬送するようにしてもよく、分岐管58内を流れる低温気流による自然吸引を利用して、ホットエア流入部54に供給してもよい。
ホットエア流入部54は、分岐管58と同心状の円筒状であり、その外周面53にホットエア供給管50が接続され、ホットエア供給管50からホットエア流入部54内に流入するホットエアは、環状スペース52を介して分岐管58の外周面に亘って一様に分岐管58内に流入するようにしてある。
【0033】
分岐管58において、ホットエア流入部54を形成する分配装置34の下流側の位置は、適宜定めればよい。環状スペース52の分岐管58の延び方向の所定長さLは、ホットエア供給管50を通じ流入させるホットエアの温度、流量、および分岐管58内の気流の温度、流量に応じて、氷粒Pそれぞれを溶かすに十分な均一温度の雰囲気を分岐管58内に形成するように、適宜決定すればよい。
ホットエアの湿度、温度および/または流量、および搬送気流の温度および/または流量を調整することにより、分岐管58内の雰囲気温度の調整を通じて湿雪の水分含有率を調整する。湿雪の水分含有率は、たとえば、車両を供試体とする雪環境試験の場合、1%ないし30%である。
【0034】
この場合、分岐管58内を湿雪化された氷粒Pが気流により圧送される間に、分岐管58の内表面55に付着して、圧送される氷粒Pの流量の経時変動を引き起こしたり、あるいは場合により分岐管58の閉塞による氷粒Pの圧送不能を確実に防止するために、搬送気流の所定速度は、毎秒15メートル以上であるのが好ましい。より好ましくは、毎秒20メートル以上である。湿雪の水分含有率が高いほど、分岐管58の内表面55への付着性が高まる傾向にあるので、その分搬送気流の速度を上げる必要がある。
ホットエアの温度は、0℃ないし50℃であるのが好ましく、0℃以下であれば、氷粒Pを溶解することができない一方、50℃を超えると、氷粒Pを溶解することは可能であるが、空気は熱伝達率が低く、ホットエアの温度が高くても、氷粒Pあるいは圧送用気流との間で熱交換がそれに応じて即座に促進されるわけではなく、一方において一部の氷粒Pだけ急激に溶解が進行することもあり得ることから、このような範囲に設定するものである。
【0035】
環状スペース52に覆われる分岐管58の外周面53には、ホットエアの流入開口56が均等に複数設けられ、それにより、分岐管58のホットエア流入部54が付設される部位の下流側において、分岐管58内にエージングスペース116が形成されるようにしている。ここに、エージングスペース116とは、分岐管58内で圧送される氷粒Pそれぞれが、均一な温度雰囲気中で徐々に一様に溶ける熟成領域を意味するものとして用いる。
流入開口56は、たとえば、筒状のパンチングメタル材の通孔として設けてもよく、流入開口56の設置数および開口面積は、ホットエア流入部54における分岐管58の外周面53に亘って均一に設けることにより、分岐管58内に均一な温度の雰囲気が形成することができる限りにおいて、適宜に定めればよい。
環状スペース52に覆われる供給管40の部分は、難着雪性のフッ素樹脂製で形成されるのが好ましい。
【0036】
分岐管58のエージングスペース116は、外管(図示せず)による二重管構成とされ、分岐管58内と外管との間の環状スペース(図示せず)に温度制御した気流を流す気流供給手段(図示せず)が設けられる。これにより、環状スペース内に冷風を流すことによりエージングスペース116内の氷粒Pの氷温を維持し、一方、環状スペース内に温風を流すことによりエージングスペース116内の詰まりを氷解させることが可能である。
ホットエアが高温で流量が大きく、搬送気流速度が遅い場合には、必要な熱交換時間は短く、その分エージングスペースの長さも短くて済み、ホットエアが低温で流量が小さく、搬送気流速度が速い場合には、必要な熱交換時間は長く、その分エージングスペースの長さも長くなる。
【0037】
この点において、乾雪あるいは湿雪が分岐管58内の内面に付着しないようにしつつ、熱交換段階において、乾雪を湿雪化するに十分な熱交換時間を確保することが可能なように、搬送気流の速度、および/または搬送気流および乾雪とホットエアとの混合領域から流出開口までのエージングスペースの長さを選定するのがよい。たとえば、エージングスペースの長さは、3メートル以上である。
【0038】
以上の構成を有する湿雪装置32について、その作用を環境試験方法を説明しながら、以下に説明する。
まず、各系統において、製氷機22により製氷された氷片は、砕氷機26により所定粒径の氷粒Pに破砕され、氷粒Pを、分岐管58により所定速度以上の搬送気流に乗せて吹き出しノズル36に向けて圧送する。
次いで、氷粒Pが分配装置34により、雪供給管40から対応する分岐管58へ分配され、流出開口102の上流側で、分岐管分岐管58のホットエア流入部54において、外周面53のまわりから流入開口56を通じて分岐管58内に所定温度および所定湿度のホットエアを供給する。この場合、氷粒Pに対して設定した所望の水分含有率に基づいて、ホットエアの湿度、温度および/または流量、および搬送気流の温度および/または流量を調整しておく。
【0039】
より詳細には、ホットエアは、ホットエア流入部54において、分岐管58のまわりの環状スペース52を介して分岐管58のホットエア流入部54の外周面53に亘って均等に設けられた複数の流入開口56を通じて分岐管58内に流入する。
次いで、ホットエア流入部54の分岐管58内において、搬送気流および氷粒Pと、ホットエアとが均一に混合することにより、分岐管58内に氷粒Pを溶かすに十分な均一温度の雰囲気が形成され、それにより、氷粒Pそれぞれを搬送気流に乗せて搬送しつつ、溶かして湿雪化して、湿雪を流出開口102から吹き出す。
【0040】
この点、
図4および
図5に示すように、圧送気流の空気温度が摂氏零℃以下のマイナス域から摂氏零℃方向へ徐々に上昇する。
より詳細には、ホットエア流入部54より下流側の分岐管58のエージングスぺース116において、均一な温度の雰囲気中において、搬送気流および氷粒Pそれぞれと、ホットエアとの間で徐々に熱交換が行われ、それにより搬送気流温度は上昇するとともに、氷粒Pそれぞれは、ホットエアに接する外表面から溶け始め、湿雪化し、所望の水分含有率の氷粒Pである人工雪を形成する。
【0041】
この場合、熱伝達率の低い空気の性質を利用して、エージングスぺース116内において、分岐管58内の均一な温度の雰囲気中で、圧送される氷粒Pそれぞれが全体として、徐々に加熱されて溶けることが可能であり、たとえば、一部の氷粒Pだけが溶けたり、一部の氷粒Pだけが急激に溶けるようなことがないようにしている。
次いで、湿雪化する分岐管58の部位の下流側において、分岐管58の内表面55の温度を零度に維持し、氷粒Pそれぞれが、吹き出しノズル36から吹き出されるまでに、これ以上溶けて水分含有率が増大することのないようにする。
【0042】
次いで、各系統において、それぞれの分岐管58の先端の吹き出しノズル36から分配された湿雪が吹き出され、吹き出しノズル36の背後からの送風に乗せて車両に向かって吹雪として吹き付けられる。
この場合、自然状態の湿雪を模擬することにより、湿雪状吹雪による車両への付着性を評価する場合等に、湿雪化した雪を分岐管58の内表面55に付着させることなく、適正かつ精確な環境試験を行うことが可能である。
なお、試験経過とともに、エージングスペース内の氷粒Pの氷温が上昇したり、あるいは逆に氷粒Pが氷結することによりエージングスペース116内に詰まりを生じる場合には、分岐管58内と外管との間の環状スペース内に冷風を流すことによりエージングスペース内の氷粒Pの氷温を維持し、一方、環状スペース内に温風を流すことによりエージングスペース116内の詰まりを氷解させてもよい。
【0043】
以上の構成を有する湿雪の生成方法によれば、流路内で所定速度以上の搬送気流に乗せて乾雪を流出開口102に向けて搬送する際、流出開口102の上流側で、流路の外周面110のまわりから、流路内に所定温度および所定湿度のホットエアを供給して、流路内で、搬送気流および乾雪と、ホットエアとを均一に混合し、流路内に乾雪を溶かすに十分な均一温度の雰囲気を形成し、形成された雰囲気内で、流出開口に至るまで、搬送気流および乾雪と、ホットエアとの間で熱交換を行うことにより、搬送気流および乾雪と、ホットエアとの間で熱交換が行われる結果、流路内に乾雪を溶かすに十分な均一温度の雰囲気を形成することで、乾雪それぞれを溶かして湿雪化しつつ、湿雪化した雪を流路の内面に付着させることなく、効率的に流出開口102より吹き出すことが可能である。
【0044】
変形例として、
図6に示すように、エージングスペース116が形成される分岐管58の部分は、柔軟性を有する管体で形成してもよく、これにより、たとえば、分岐管58の内面に付着した雪が、乾雪の搬送による分岐管58の微振動により、あるいは分岐管58に曲げあるいはねじり等の変形を加えることにより、内面から剥がれやすいようにしたり、ビニールホースを渦巻状に巻いてしまえば場所を取らずに所望距離のエージングスペースを設けることができる。
さらに、変形例として、
図7に示すように、吹雪供給システム12を3系統設けずに、単一系統として、それに応じて、湿雪装置を1機設けるのでもよい。
【0045】
以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態において、湿雪化の対象として、氷片を破砕することにより形成される人工雪であるものとして説明したが、それに限定されることなく、所定湿度および所定温度の冷風を利用して生成される人工結晶雪であってもよく、あるいは水分含有率の低い自然雪でもよい。
【0046】
また、本実施形態において、分岐管58により氷粒Pを気流により圧送し始めてから、ホットエア供給管50を通じてホットエアをホットエア流入部54に向けて供給するものとして説明したが、それに限定されることなく、圧送される氷粒Pそれぞれを均一温度の雰囲気中で溶かして湿雪化可能である限り、気流による氷粒Pの圧送より前にホットエアを供給していてもよいし、氷粒Pの圧送と、ホットエアの供給とを併行して行ってもよい。
さらに、本実施形態において、氷粒Pの水分含有率の調整方法として、ホットエアの湿度、温度および/または流量、および搬送気流の温度および/または流量を調整するものとして説明したが、それに限定されることなく、氷粒Pの所望の水分含有率を調整可能である限り、ホットエアの温度および/または流量のみの調整、または搬送気流の温度および/または流量のみの調整でもよい。