【実施例】
【0060】
実施例1.基本のマイクロチャネルデバイスの構築
バイオ分子または細胞を分離するためのマイクロチャネルデバイスの1つの態様を、
図1に示す。デバイスは、デバイスの第1の端で入口または注入口として機能する開口部またはウェル15およびを通って試料液体が供給されるマイクロチャネル13、およびデバイスの第2の端で排出口として機能する開口部19を含む、流路により形成される基板または支持体11を含む。収集領域17の横断面は、注入口開口部15から通じる注入口部分18の横断面より大きい。注入口部分は、収集領域17に入るための領域18の端に広がっている場所のすぐ上流に、1つまたは複数組の軸方向に並んだ仕切り/支持体21を含む。これら中心の仕切りは、流れを2つまたはそれより多い進路に分け、かつ液体の流れが収集領域17の入口端に送られる際にそれをより均等に分散させるよう機能する。収集領域は、液体流路に対して横方向に配列され、かつフローチャネルの収集領域部分の幅全体にわたって不規則で概してランダムなパターンで配置される複数の直立ポスト23を含む。ポストのパターンは、収集領域を通る直線の流れが存在しえず、かつ流線型の流れが乱されているようになっていて、流路に沿って流れる液体とポストの表面との間に好適な接触が存在することを確実にする。ポストは、収集領域17の平面基部と一体であり、かつ基部から垂直に伸び、基板11のフローチャネルを通って流れる液体の水平面の進路に対して垂直となる表面を提示す。別のフロー仕切り/支持体21aは、収集領域からの出口に位置する。
【0061】
基板は、PDMSから形成され、フローチャネルを閉鎖するために平面ガラスプレートに接合される。収集領域の全体にわたって内部表面は、3-アミノプロピルトリエトキシシランスの3%溶液で30分間室温でインキュベートする工程により、アミン基で誘導体化される(発明者ら:アミン基がPDMSに対して特異的であるか、または誘導体化されうる他の活性基、例えばSH-が存在しうるか。発明者は、細胞または正電荷のタンパク質を付着させるためにポリリジンで支持体をコートできることを念頭においている)。エタノールで洗浄する工程の後に、チャネル上のアミン基は、一方の端にNHSエステルおよびもう一方の端にマレイミド基を含む二官能基性PEGリンカー分子により30分間誘導体化される。この反応において、NHS基は、チャネル上のアミン基と反応する。PBSでチャネルを洗浄した後、チャネルに付着させたPEGリンカーのもう一方の端でマレイミド基と反応する、0.5 mg/mLチオール化ストレプトアビジンの溶液を加えた。チオール化ストレプトアビジンは、当技術分野において一般的に公知であるTraut試薬によるストレプトアビジンの処理により調製される。60分間のインキュベーションの後、過剰なチオール化ストレプトアビジンを、PBS/1%BSAを用いてマイクロチャネルから洗浄し、将来使用するために保管した。
【0062】
典型的な例において、10 mLの血液を入手し、バフィーコートを当技術分野において通常公知である密度勾配遠心沈降により単離する。バフィーコートは、血液の有核白血球分画を含み、さらに血液中に存在する上皮細胞または他の有核細胞も含む。遠心管中におよそ0.5 mLの量で含まれるバフィーコートを、本発明の第1の結合要素と共に30分間インキュベートし、次いで管をおよそ30倍量の過剰なPBS/BSAで満たし、遠心分離し、バフィーコート細胞をペレット状にする。試料をおよそ200 μLに再懸濁し、マイクロチャネルデバイスを約50 μLの細胞懸濁液で満たしたシリンジポンプ由来の排出口管に接続することにより、アビジンでコーティングしたマイクロチャネルを通過させる。シリンジポンプを操作し、室温で約10 μL/分の速度でマイクロチャネルデバイスを通過する試料液体の緩やかな連続した流れを生じさせる。この期間に、ランダムパターンの横方向のポストが配置される収集領域中の表面に付着したアビジンが、試料中の対象の標的細胞を捕捉する。全試料がシリンジポンプにより送達された後に、PBS/1%BSA水性バッファーにより緩やかなフラッシングが行われる。約100 μLのこの水性バッファーを、約10分にわたってデバイスに流し、デバイス中のフローチャネルから全ての非特異的結合バイオ物質を効果的に取り除く。次いで、それぞれ約100 μLのPBS/1%BSAを用いて約10分間にわたって、2回のさらなる洗浄を行う。
【0063】
この時点で、デバイスは光学的に透明な材料で作られているため、捕捉の効果の顕微鏡検査は、顕微鏡撮影を用いて行われうる。捕捉細胞は、追加の抗体および蛍光プローブでさらに処理されてもよく、蛍光顕微鏡法により解析されてもよい。
【0064】
実施例2.前標識マイクロチャネルと前標識細胞との細胞捕捉率の比較
2005年1月18日に出願したU.S. Published Application No. 2006/0160243およびほか(Nagrath et al. (2007) Nature, Vol. 450(7173): 1235-9)に記載の通り、対象の細胞を捕捉するための以前のデバイスは、対象の細胞上の抗原に特異的である抗体で誘導体化されたマイクロチャネルを含んだ。次いで、対象の希少細胞を含む懸濁液をチャネルに通過させ、細胞を細胞特異的抗体により捕捉した(
図2)。
【0065】
抗原発現のレベルを培養細胞中および腫瘍などの臨床組織試料上で決定することができる一方で、循環腫瘍細胞(CTC)の表面の利用可能な抗原の正確な数は不明である。腫瘍は高度に不均質であること、および腫瘍から血液内に脱離した細胞はその抗原の発現レベルを変えることができることが公知である。したがって恐らくは、CTCは、任意の特定の試料中で非常に低い水準から非常に高い水準まで様々な特異的抗原レベルを有する高度に不均質な集団であると思われる。試料からCTCの最大の捕捉を得るために、最低の抗原発現レベルを有する細胞を捕捉するようにシステムを最適化することが、最善である。
【0066】
本発明のデバイスは、実施例1に記載の細胞特異的抗体に結合することができる一般抗体またはタンパク質で誘導体化されたマイクロチャネルを含む。細胞特異的抗体は、試料をマイクロチャネルに通す前に、対象の細胞を含む試料に加えられ、よって細胞を前標識する。次いで、対象の細胞は、チャネルをコーティングする一般抗体または他のタンパク質が対象の細胞に結合している細胞特異的抗体に結合する場合に、捕捉される(
図3)。
【0067】
以下の一連の実験は、抗原特異的抗体でコーティングされたマイクロチャネルデバイスと比較して、抗原特異的抗体によるCTCを含む試料の前標識が、マイクロチャネルデバイス上でより優れた捕捉率をもたらすか否かを決定するために行われた。CTCを捕捉するために用いられる通常の抗原は、EpCAM、上皮細胞表面接着分子である。これらの実験では、低レベルのEpCAMを発現することが公知である、膀胱細胞株、T24が用いられる。
【0068】
典型的なデバイスでは、マイクロチャネルは、ストレプトアビジンで誘導体化され、次いでEpCAMに対するビオチン化抗体が、チャネル(EpCAMチャネル)上に前添加される。EpCAM抗体は、T24細胞の表面のEpCAM抗原に結合することができ、よってマイクロチャネル中で細胞を捕捉できた。本発明のデバイスでは、マイクロチャネルは、ストレプトアビジンで誘導体化され(Strepチャネル)、EpCAMに対するビオチン化抗体は、ストレプトアビジンコーティングチャネル上の細胞の通過の前に、およそ1 μg/mLのT24細胞の試料と共に30〜60分間インキュベートされた。ストレプトアビジンは、T24細胞の表面に結合しているビオチン化EpCAM抗体に結合し、よってマイクロチャネル中に細胞を捕捉する。したがって、2つのデバイスの試薬構成要素は、異なる順番でデバイスに適用されることを除いては同一である。
【0069】
図4に示すように、ビオチン化EpCAM抗体と共にプレインキュベートした細胞によるストレプトアビジンコーティングチャネルの使用は予想外に、EpCAMチャネルおよび未標識細胞により得られたものより約2倍高い捕捉率を生じた。捕捉率の増加は、複数の流速下で細胞をチャネルに通過させた場合に、約2〜3倍高い。
【0070】
次の一連の実験では、1.2 μg/mLのビオチン化EpCAM抗体を細胞と共に30分間プレインキュベートした。この濃度の抗体は、T24細胞上に存在する全抗原に対して約100〜1000倍モル過剰であり、そのため各懸濁液において有意に過剰な抗体が残った。30分インキュベーションの後、過剰な抗体を、チャネルに適用するためにおよそ200細胞への細胞の希釈により、0.05 μg/mL未満に希釈した。この細胞の試料は、対照試料となり、250 μL PBS/BSAでチャネルに直接適用された(
図5中の試料A)。試料B〜Dでは、示した濃度での過剰抗体が、チャネル上を流れる前に、もとの250 μL細胞懸濁液に添加された。
図5に示すように、遊離の抗体は、チャネル上のストレプトアビジンへの結合を妨げず、予想したようには細胞捕捉を低下させず、実際には細胞捕捉を増加させた。
【0071】
同様の実験において、チャネルに適用する最初の細胞懸濁液の量を250 μlから2 mL増加させた。添加した追加の抗体の1 mLあたりのμgは
図5と同じであったため、およそ200細胞を有する試料中の絶対抗体の合計μgは、
図5よりほぼ10倍高かった。
図6に示すように、添加した追加の抗体は、
図5に示す結果で観察された抗体の濃度と比べて同様の細胞回収の増加を示す。この結果は、より高い回収の観察は、細胞懸濁液中の追加の抗体の濃度に関連し、細胞懸濁液中の全抗体の絶対μgに関連しないということを示す。
【0072】
この一連の実験の結果は、細胞を抗体で前標識する場合の、マイクロチャネルフローデバイスにおける対象の細胞の収集の予想し得ない利点を示す。
図4に見られるように、抗原特異的細胞と共に細胞をプレインキュベートする工程は、抗原特異的抗体でコーティングしたマイクロチャネルでの捕捉と比べて、マイクロチャネルデバイスでの捕捉を有意に改善する。加えて、実施している間の細胞試料中の追加の抗体の存在は、この方法論を限定するものではないが、実際にはチャネル上のストレプトアビジンマトリクスへの細胞抗原の結合の増加を媒介し、それにより捕捉を促進することができる。
【0073】
実施例3.複数の抗体の使用は、標的細胞の捕捉率を増加させる
従来、チャネルの上への抗体の前添加が最も効率的であると考えられていた。しかしながら、複数の抗体をチャネルに添加することの細胞捕捉に対する負の効果を、以前は考慮されていなかった。抗原特異的抗体の一般的な結合パートナー(例えば、抗体またはタンパク質)でコーティングされたマイクロチャネルを用いることの利点は、複数の抗体を、任意の単一抗体の有効性を減ずることなく、細胞懸濁液に加え、細胞を前標識することができるとことである。細胞上の複数の抗原部位は相互排他的であるため、細胞懸濁液に複数の抗体を添加する場合、チャネル上の捕捉効率は任意の単一抗体について低減しない。例として、チャネルが100の抗体部位に適応し、かつ5種類の異なる抗体の混合物を添加しチャネルをコーティングした場合、各抗体はチャネル空間の約20%を占める。よって、各個別の抗体に対する可能性のある結合効率は、チャネル全体を覆う場合の結合効率のわずか20%である。細胞上の抗原の数にかかわらず、チャネルは本質的に、その個別の抗体の細胞捕捉効率をわずか20%とする。細胞の標的抗原の数が少ない場合、これらの抗原低発現細胞を捕捉する効率は、マイクロチャネルデバイスの基板または支持体に結合させる前に、細胞懸濁液中に他の標的抗原に特異的な抗体の添加により増幅されうる。例えば、同じ5種類の抗体を細胞懸濁液に添加した場合、各抗体は、細胞上の異なるエピトープに結合する他の抗体の存在による緩衝や減少なしに、全ての同種の細胞表面抗原に独立して最大限に結合することができる。一般的な捕捉タグ(例えばビオチン)で5種類の異なる抗体のそれぞれを誘導体化することにより、捕捉タグの結合パートナー(例えばストレプトアビジン)でコーティングしたチャネルは、5種類の抗体全てをそれらの細胞上の各抗原に同時に結合させ、よって細胞捕捉に相加作用を生じることができる。
【0074】
図7は、抗体が最初にマイクロチャネルデバイスの基板/支持体上にコーティングした際にチャネル上のEpCAM抗体とマウスIgGの比が低下した場合のT24細胞の捕捉の減少を示す。追加のビオチン化抗体の存在下でのEpCAM捕捉の効果を決定するために、ビオチン化EpCAM抗体を無関係のビオチン化マウスIgGで希釈し、結果として生じる混合物を、抗体でチャネルをコーティングするかまたはチャネルを通過させる前に細胞懸濁液に添加するかいずれかで用いた。
図7(試料A)は、ビオチン化EpCAM抗体のみで細胞を前標識した場合に、T24細胞捕捉比率が約2倍の高さとなることを示す。この観察は、
図4に見られる結果と一致する。しかしながら、EpCAM抗体を無関係の抗体で1:1比で希釈し、細胞を直接標識するかまたはチャネルをコーティングするかいずれかで用いた場合、前標識細胞の回収は影響を受けないが、チャネルの回収は24%から7%に低下した(
図7、試料B)。EpCAMを1:4に希釈した場合、最初に抗体混合物をチャネル上にコーティングした際の回収は1%まで低下したが、マイクロチャネルデバイスの基板または支持体に結合させる前に細胞を抗体混合物で標識した場合の回収は変化しなかった(
図7、試料C)。これらの結果は、追加の抗体によるEpCAM抗体の希釈は、細胞を可溶性抗体で前標識した場合、細胞へのEpCAM抗体の最大結合を干渉しないが、希釈したEpCAM抗体によるチャネルの前コーティングは、EpCAM低発現T24細胞の捕捉の有意な減少を示す。したがって、EpCAM抗体が、チャネルでの結合のために2または3または4種類の異なる抗体と混合されている場合、たとえ他の抗体が細胞上の表面抗原に関連していたとしても、EpCAM抗体自身は、その結合有効性について比例して減少される。したがって、チャネルに複数の抗体を付加する場合、各抗体の効果は、相加的なものになることが期待されない。細胞捕捉に対する全体的な効果は、循環腫瘍細胞(CTC)の抗原レベルが様々であるため、この構成は予測できない。明らかに、CTC上の最高レベルの抗原に対して作られた可能性がある混合物中の抗体は、CTC上のより低レベルの抗原に対する抗体の付加により減少すると考えられる。混合物中の1種類の抗体のみが特定のCTC上のドミナントエピトープを認識する場合、チャネル上での複数の他の抗体による希釈は、捕捉を促進するよりはむしろ悪影響を与えると考えられる。対照的に、チャネルを通過する前に細胞に付加される可溶性抗体の混合物は、相加的である。
【0075】
チャネル通過前に前標識した細胞に対する複数の抗体の相加効果を明らかにするために、2種類の異なる細胞表面接着抗原、Trop-1およびTrop-2に対する2種類の異なる抗体を、T24膀胱細胞またはSKOV卵巣細胞いずれかの細胞懸濁液に加えた。それぞれの抗体をビオチン化し、細胞を、ストレプトアビジンでコーティングしたマイクロチャネルデバイスを用いて捕捉した。Trop-1抗体をT24細胞に前添加するために用いた場合、29%の細胞が捕捉される(
図8)。Trop-1抗体と異なる抗原に結合するTrop-2抗体をTrop-1抗体と組み合わせて加えた場合、94%の細胞が捕捉される。同様の結果が、SKOV細胞で得られる。74%の細胞の捕捉が、Trop-1抗体単独での前標識により観察された。しかしながら、89%の細胞の捕捉が、Trop-1抗体およびTrop-2抗体の両方を同時に加えた場合に観察される(
図8)。結果は、1種類より多くの細胞の表面上の標的部位に対する1種類より多くの抗体の添加は、標的細胞に付着するチャネルで検出可能な分子の有効数を増加させ、細胞捕捉に対する相加効果を生じる。
【0076】
図9において、異なる細胞株と異なる抗体混合物を用いて、同様の相加効果が観察される。この場合では、EpCAMを低発現する乳癌細胞株、MDA-MB-231を試験した。
図9では、EpCAM抗体単独による%捕捉は低かったが、抗原に特異的な6種類の抗体:EpCAM、Trop-2、EGFR、MUC-1、CD318およびHER-2の混合物を加えることにより、本質的に100%まで捕捉を改善した。MDA-MB-231のFACS解析は、この細胞株がEpCAM、Trop-2、Her-2、およびMUC-1を超低発現するが、EGFRおよびCD318を高発現することを示した。したがって、高発現抗原に対する抗体を、低発現抗原に対する抗体で3倍に希釈した。希釈抗体は、このEpCAM低発現細胞株の捕捉において依然として高い有効性を示す。この結果は、抗体が細胞を前標識するために用いられた
図7に示す結果と一致する。
【0077】
実施例4.標識細胞の二次抗体標識は、マイクロチャネルデバイス中での捕捉をもたらす
いくつかの場合では、非誘導体化一次抗体が、対象の抗原により効率的に結合する可能性があるか、またはより利用しやすい可能性がある。いくつかの抗体では、それらの活性は、それらの表面アミノ酸を修飾する誘導体化法により悪影響を受ける。細胞抗原への結合に非誘導体化一次抗体を使用することを望む場合、誘導体化された二次抗体を細胞懸濁液に加え、細胞標的抗原に結合した一次抗体と複合体を形成させてもよい。よって、一次抗体混合物、半精製ハイブリドーマ上清または非クローン化ハイブリドーマ上清を細胞懸濁液に加えることができ、細胞上の抗原に付着する任意の抗体を誘導体化(例えばビオチン化)二次抗体の添加により標識することができる。細胞に結合しない抗体は、簡単に洗い流される。
【0078】
このアプローチを説明するために、培養卵巣SKOV細胞株を、ビオチン化Trop-1抗体(
図10試料A)または3倍モル量を超えるビオチン化抗マウス二次抗体を加えた非ビオチン化Trop-1のいずれかで前標識した。一次抗体(Trop-1)濃度は、1 μg/mLであり、細胞は、マイクロチャネルデバイスによる細胞捕捉と精製の前に、3 μg/mL二次抗体と共にまたは無しのいずれかで、30分間インキュベートされた。試料Bと試料Dとの間の差は、試料Dでは二次抗体に対してより長いビオチンリンカーが用いられていることであった。試料Cでは、細胞をPBS/BSAで洗浄し、細胞をチャネルに適用する前に過剰な一次抗体および二次抗体を取り除いた。全ての試料において、チャネルへの適用のために、およそ200細胞を250 μLのPBS/BSA中に懸濁した。
【0079】
図10に示す通り、全ての試料は同様に回収される。これらの結果は、ビオチン化二次抗体が、マイクロチャネルデバイスでの効果的な捕捉のために細胞を前標識するのに未標識一次抗体と組み合わせて用いられうることを明らかにする。いくらかの余剰のビオチン化二次抗体の存在は、1 μgのビオチン化Trop-1による直接的前標識と比べて、捕捉率に悪影響を与えなかった。二次抗体は、完全なIgG抗体、またはFab'2、Fab'、Fabなどの抗体断片、または一本鎖Fabもしくは一本鎖可変断片などの改変抗体断片を含んでもよい。
【0080】
実施例5.チャネル表面での捕捉細胞の安定化
マイクロチャネルデバイスで細胞を捕捉する工程は、液体中に懸濁された細胞のフローを伴う。したがって、細胞は、捕捉された後にチャネルから細胞を取り除く可能性もある液体フロー由来の剪断力を受ける。細胞と抗体によりチャネル表面に結合した特異的細胞表面抗原との間に付着点は比較的少ないことから、この作用は、より低レベルの表面抗原を有する細胞でより顕著である。したがって、チャネルへの細胞の付着をより安定化するために、架橋試薬の手段によりチャネル表面へ追加で細胞を外部付着させることは、有利である。チャネルは典型的には、結合タンパク質(例えばストレプトアビジンまたは抗体)でコーティングされるため、細胞をチャネルにさらに固定するための容易な手段は、タンパク質架橋試薬を介する。
【0081】
この目的のために当技術分野において公知の試薬は、ホモ二官能性NHSエステルであり、タンパク質上のアミノ基を架橋することができる。架橋の別の方法は、マレイミドおよびNHSエステルを有するヘテロ二官能性分子などのチオール反応試薬によるタンパク質上のチオール基またはジスルフィド基を介する。加えて、EDCなどの試薬が、カルボキシル基とアミノ基を架橋するために用いられうる。これらの架橋剤の長さは、典型的にはポリマーエチレングリコールまたは単一の炭素鎖などの化学リンカーの形をとるが、糖、アミノ酸もしくはペプチド、またはオリゴヌクレオチドも含みうる、2つの反応基間のポリマー領域の使用により多様となりうる。5から50 nmのポリマー鎖の長さは、この目的に典型的なものであるが、必要に応じて短くすることも長くすることもできる。これらのタンパク質架橋試薬全ての共通の性質は、複数の共有結合付着点によりチャネルの表面に細胞を固定するために、細胞タンパク質を共有結合的に結合させることである。
【0082】
外部から加えられた架橋試薬がコーティングされたマイクロチャネル上の捕捉細胞の保持を高めるか否かを試験するために、細胞をコーティングしたマイクロチャネル上に捕捉し、かつタンパク質架橋剤の有無で高流速に供した。ストレプトアビジンでコーティングしたマイクロチャネルの表面を準備した。表面EpCAMを低発現することが公知である、培養T24細胞株を、モデル細胞株として用いた。1 μg/mLビオチン化抗EpCAM抗体を細胞と共に30分間4℃でインキュベートし、およそ325細胞を250 μLのPBS/BSAバッファー中に懸濁し、コーティングマイクロチャネルを12 μL/分で三重に通過させた。チャネルに適用した細胞の正確な数を、二重のアリコート中の細胞を計数することにより顕微鏡で決定した。細胞懸濁液をチャネルに通過させた後、結合細胞を含むチャネルを1回PBS/BSAで洗い、次いでホモ二官能性NHSエステル(ビスN-サクシニミジル-[ペンタエチレングリコール]エステル)の2 mM溶液を、チャネルに通過させ、20分間インキュベートさせた。NHSエステルなしの対照チャネルは、PBS/BSA溶液のみを受けた。次いで細胞を、5%PEG PBS溶液で2分間様々な流速で洗った。5%PEG/PBS溶液は、溶液粘性を増大させ、高速流と共に、この比較の目的のために、細胞に対してより強い剪断力(more sheer force)を与える。次いで、チャネルで捕捉した細胞を核染色色素、DAPIで染色し、計数した。
【0083】
図11は、タンパク質架橋剤の非存在下で種々の流速に供した捕捉細胞の顕微鏡写真を示す。20 μL/分の流速でほぼ50%の細胞が失われ、100 μL/分の流速で全ての細胞が失われた。
【0084】
図12は、NHSタンパク質架橋剤への曝露後に、種々の流速に供した捕捉細胞の顕微鏡写真を示す。50 μL/分までの流速で全ての細胞がチャネル上に保持され、100 μL/分の流速では、1つの細胞のみが失われた。
【0085】
タンパク質架橋による細胞安定化を伴う捕捉と伴わない捕捉の量的比較を
図13に示す。以前の実験の通り、およそ200のT24細胞をマイクロチャネルに適用し、捕捉後に細胞を5%PEGのPBSで洗った。
図13は、架橋試薬で処理されない細胞は、架橋剤で処理されたチャネルに回収された細胞の比率と比べて、50%より少ない細胞が回収されることを示す。よって、タンパク質架橋試薬を加えることは、マイクロチャネルへの細胞付着を有意に安定化させる。架橋剤は、細胞が捕捉された後にマイクロチャネル上の細胞を安定化させるため、抗体を細胞上に前添加するかまたはチャネル上に前添加するかにかかわらず、この結果はマイクロチャネル上で細胞を捕捉する方法とは独立していることに留意されたい。
【0086】
上記に類似する第2の実験を、チャネル上の細胞安定性を試験するために使用した。上記のようなタンパク質架橋剤による細胞の処理の後に、チャネル上のSKOV細胞を抗サイトケラチン(上皮細胞を可視化するために)およびDAPI(核を有する細胞を可視化するために)で引き続き染色した。この実験での違いは、排出口に連結させた管を切断すること、マイクロチャネルから細胞を剪断しかつ取り除くことができる一過性だが突発の圧力パルスを生じることができる工程である。
【0087】
表1は、細胞がチャネルに架橋されず、排出口管を取り除いたことの結果として外的な機械力に供される場合に、失われる細胞数が増加することを示す。管連結部を取り除く前に細胞をメタノール処理でチャネルに固定した場合、架橋剤を使用するか否かにかかわらず、細胞回収に有意な差は存在しなかった(データは示さず)。しかしながら、メタノール固定化(または任意のアルコールまたはアセトン固定化)は、いくつかのその後の細胞解析の目的に対して複数の望ましくない副作用を有する。メタノールで固定された細胞は、細胞膜の崩壊により透過性を有しており、したがって細胞表面の試験は、細胞内部反応と区別することができない。加えて、エタノールで固定した細胞は、チャネルマトリクスと融合し、細胞の除去を難しく非効率的なものにする。そのような細胞は、細胞除去を助けるために広範囲にわたるタンパク質分解に供されうるが、細胞消化は、いくつかの種類のその後の細胞解析に対して複数の望ましくない副作用を有する。チャネルに細胞を架橋する方法は、高速流、高粘性バッファーおよびチャネル連結部の除去を含む、通常のチャネル操作および手技の間、チャネル上の安定化細胞をアルコール固定化なしに保持することができる。
【0088】
(表1)
【0089】
実施例6.抗体混合物(抗体カクテル)は、上皮様癌細胞および間葉系様癌細胞の捕捉を高める
尿路上皮癌(UC)細胞株は、より浸潤性の高い腫瘍モデルにおいてEpCAMを低発現する。循環中のそのような細胞は、EpCAMに基づくCTC捕捉の利用を制限することが予測される。5種類のUC細胞株(UMUC3、UMUC5、UMUC9、T24、およびKU7)のコホートは、より上皮性かより間葉系様かいずれかであるとして、遺伝子発現ヒートマップ解析に基づき選択された。後者の場合、これらの細胞は、間葉系の発現および形態学的特徴を伴う上皮細胞をもたらす上皮間葉移行(EMT)を受けている。このEMTは、上皮細胞が腫瘍から解離し、循環中でより遊走性かつ浸潤性になることができるメカニズムとして提案されている。
【0090】
これらのEMT細胞は、様々な細胞表面抗原についてFACSによりさらに試験される。これらの細胞株の発現の違いを同定した後、全てのUC細胞型の細胞捕捉を改良するようにEpCAMおよび5種類の追加の抗体の混合物を選択した。発明者らはその後、EpCAM単独と比較した抗体混合物によるマイクロ流体チャネルを用いる細胞捕捉率を比較した。細胞はまた、上皮性または間葉系様の発現特性をそれぞれ有する細胞をさらに識別するのを助けるために、サイトケラチン抗体およびビメンチン抗体で免疫染色された。
【0091】
図14は、ビメンチンおよびサイトケラチンによる5種類のUC細胞株の染色を示す。5種類のUC細胞株のうち2種類(UC3およびKU7)は、ビメンチンで染色され、EpCAM発現がごくわずかであるか発現しなかった。これらの細胞株はある程度のサイトケラチン染色を保持したが、1つの細胞株はビメンチンのみで染色された(
図14)。残りの3種類の細胞株(UC5、UC9およびT24)はサイトケラチンのみで染色され、有意なEpCAM発現を有した。EpCAM発現を伴わない細胞株(UC3およびKU7)は、捕捉抗体としてEpCAM単独で使用した場合、細胞回収されなかった。しかしながら、6b5、CD318、EGFR、MOV18、Trop-2およびEpCam)を含む抗体混合物が用いられた場合、5種類の細胞株全てでほぼ100%の細胞捕捉率を達成した。この細胞型群のうち最も間葉系様であるKU7の場合、葉酸結合受容体(MOV18)が、独特であり、他の細胞株では発現されなかった。
【0092】
結果は、抗体の混合物の使用は、膀胱上皮細胞とEMTを受けている膀胱上皮細胞との両方の捕捉を可能にすることを示す。試験は、抗体混合物の使用は、EpCAM単独など単一の抗体の使用と比べて、細胞収集に対して劇的な改善をもたらすことを示す。循環中で予想される腫瘍細胞型の不均一性のため、そのようなアプローチは、患者試料からのCTCの捕捉および単離を有意に改善することが予想される。
【0093】
実施例7.マイクロチャネルデバイスでの抗原低発現細胞の捕捉は、抗体混合物または抗体カクテルにより増加する
抗体のカクテルを複数の異なる癌細胞型に同時に結合させるよう用いる場合、共通の検出方法が必要とされる。サイトケラチン染色は上皮細胞に対してよく機能するが、いくつかの上皮細胞は、実施例6に記載の様にサイトケラチン発現を喪失している。幹細胞など他の細胞型ついては、チャネルに非特異的に結合する可能性がある他の血液細胞型に対して有意な交差反応性を有さないこれらの細胞を染色するための特定の方法は存在しない。しかしながら、細胞の表面上の高レベルのビオチン化一次抗体または二次抗体は、マイクロチャネル上のアビジンにより特異的に捕捉される全ての細胞に共通である。ビオチン結合抗体のカクテルを用いる利点は、標的細胞上の表面ビオチンを増加させるという相加効果にある。すなわち、腫瘍患者で見られる細胞集団など不均一な細胞集団中の抗原低発現細胞、または様々なレベルで1つもしくは複数の抗原を発現する細胞の捕捉を増強するのに有用である。
図8、9、および13参照。
【0094】
カクテル中に複数の抗体を使用することの予想外のさらなる有利な点は、これが様々なレベルの抗原を発現する細胞の不均一集団のために、共通の検出方法を提供することである。この例を
図15に示す。
【0095】
図15Aは、EpCam単独またはEpCAM、Trop-2、EGFR、MUC-1、CD318およびHER-2を含む細胞により発現される他の表面抗原に特異的な抗体の混合物により、高レベルのEpCam抗原(およそ細胞1個あたり40〜70,000 EpCam抗原(apc))を発現することが公知であるSKOV細胞の捕捉率を示す。結果は、EpCam抗体単独またはEpCamに加えて他の抗原に特異的な抗体の混合物で捕捉したSKOV細胞のパーセント数値は有意に改善しなかったことを示す。
【0096】
一方、
図15Bは、同じSKOV細胞のFACSによる蛍光染色強度とスライド上での蛍光染色強度を示す。これらの細胞は、それらがEpCam単独(〜66,000表面抗原)またはFACS解析により決定されたように約600,00抗原の表面抗原レベルに混合されたHer-2、CD24、CD44に対して作られた抗体混合物と共に前もって混合されているか否かによって、非常に異なる強度で染色される。蛍光標識抗マウス抗体は、一次抗体を標識するために用いられた。
図15Aに示す通り、ビオチン化二次抗体を使用するこれら抗体カクテルでインキュベートされたSKOV細胞の捕捉は、わずかに増加していたが、
図15Bの蛍光標識二次抗体の使用は、染色強度は抗体混合物を使用する場合に有意に高くなることを示す。同じような方法で、細胞を一次抗体、続いてビオチン化二次抗体および蛍光標識ビオチン反応性アビジンと共に反応させた場合に、このような差が得られた。よって、追加の抗体が細胞の捕捉に必要ではない場合であっても、抗体カクテル混合物を用いることに有意な利点が存在する。EpCam低発現細胞の場合、捕捉は、EpCam抗体を単独で用いると減少するが(
図4〜6、14)、抗体カクテルを用いる場合に有意に増加する。この場合、細胞の表面に結合した抗体の数に基づく蛍光強度もまた、増大する。したがって、細胞をより好適に捕捉するために用いられる複数の抗体を標的とする蛍光標識分子の使用は、そのような同じ細胞のより好適な検出にとって全般的な利点を有する。抗体カクテルの使用は、上皮細胞におけるサイトケラチンなど検出用の公知の特異的マーカーが存在しない可能性があるか、または
図14に示すようにサイトケラチンが失われている細胞の検出を可能にするという優れた利点を有する。様々な表面マーカーの発現を伴う細胞のより良い捕捉のための混合物で用いられる複数の抗体はさらに、それらの抗体カクテル由来の結合抗体のレベルの増加だけに基づく蛍光標識の標的となりうる。
【0097】
図16は、血液試料にSKOV標的細胞を添加した場合の、SKOV標的細胞に対して特異的な抗体を含みかつ血液試料中に存在する非特異的細胞と最小限に関係することが示される、カクテル中の複数の抗体の相加効果を示す。抗体カクテルは、CD340、EGFR、CD318、Muc-1、Trop-2、EpCam、Mov-18、MSC、c-metおよびN-カドヘリンに対して作られた抗体を含んだ。試料中の非特異的細胞のいくつかは、試料に加えられたビオチン化抗体(一次抗体または二次抗体のいずれか)のいくつかに吸収される可能性があるが、吸収された抗体のレベルは、低すぎて蛍光標識ニュートラアビジンを用いて可視化することができない。特異的標的細胞と非特異的細胞の染色の違いは、標的細胞により結合または捕捉された抗体混合物由来のビオチン化抗体を多数有する標的細胞の可視化にとって有利に働く。
図15および16は、カクテル中の複数の抗体を加えることが、マイクロチャネル上で低レベルの抗原を発現する希少な細胞型を検出する共通かつ全般的な方法をもたらすことを明らかにする。よって、抗体カクテルは、試料中の不均一な細胞集団において非常に多様である循環腫瘍細胞の捕捉を向上させそれにより増加させるように用いられ、さらに任意の捕捉細胞の検出も向上させる。
【0098】
実施例8.マイクロチャネルデバイスは、少ない細胞数で存在する生体試料由来の細胞の捕捉に優れている
図17では、血液試料に、10 ml血液試料あたり約10〜250細胞の範囲で、様々な数のSKBr3細胞、高レベルのEpCAMを発現する細胞株を添加した。EpCAM抗体を、前記添加した血液試料に加えられ、EpCAM Ab-結合細胞を実施例1に記載の方法を用いてマイクロチャネルデバイスで捕捉した。
【0099】
図17の結果は、およそ100%のSKBr3細胞が、添加した試料から回収されたことを示す。データは、マイクロチャネルデバイスによる細胞のパーセント捕捉が、細胞投与量とは無関係であることを示す。
【0100】
実施例9.抗体カクテルはマイクロチャネルデバイスを用いる患者血液試料からの循環腫瘍細胞(CTC)の捕捉に優れている
表2は、前立腺癌、肺癌、膵臓癌、腎細胞癌、結腸直腸癌、乳癌および卵巣癌を有すると診断された患者由来の10 mL血液試料からマイクロチャネルデバイスで捕捉した循環腫瘍細胞(CTC)の結果を示す。血液試料を、CD340、EGFR、CD318、Muc-1、Trop-2、EpCam、Mov-18、およびMSCに対して作られた抗体を含む可溶性抗体のカクテル、または抗EpCAM抗体のみで前標識した。細胞を、蛍光標識抗サイトケラチンで染色することにより同定した。
【0101】
(表2)
*前立腺癌、肺癌、膵臓癌、腎細胞癌、結腸直腸癌、乳癌および卵巣癌由来の試料。
【0102】
表2は、可溶性抗体カクテルで前標識された血液試料が、単一種類の抗体のみで前標識された試料と比べて、CTCの捕捉で優れていることを示す。
【0103】
実施例10.マイクロチャネルデバイスは、乳癌患者から得られた血液試料がマイクロチャネルデバイス上で可溶性抗体カクテルで前標識される場合に、強磁性標識抗体を用いるCTCの捕捉と比べて、CTCの捕捉について優れている
血液試料を、マイクロチャネルデバイスでの捕捉用に抗EpCAM抗体と共にプレインキュベートするか、または微細鉄粒子と接合させた抗体(免疫強磁性Ab)と共にプレインキュベートし、CellSearch(登録商標)(VERIDEX、LLC)を用いて捕捉した。捕捉細胞を、CKマーカー、CD45マーカーおよびDAPI、核染色剤について染色した。CK
+/CD45
-/DAPI
+でインサイチュー染色された細胞を計数した。
【0104】
(表3)
*両側t-検定による有意差はない(P=0.715)
太字で示した総CTC数は、正常なCTC、アポトーシスを起こしたCTCおよび微小核CTCを含む;一方、丸括弧中の数字は正常なCTCを示す。
【0105】
表3は、CK
+/CD45
-/DAPI
+である、マイクロチャネルデバイスで捕捉したCTCの総数が、VERIDEXシステムにより捕捉したCTC一貫して多いことを示し、本発明がCTCの優れた捕捉をもたらすことを意味する。
【0106】
実施例11.捕捉細胞の捕捉後分子解析は、ステージIIIおよびIVの乳癌患者において癌細胞としてCTCの同定を向上させる
循環腫瘍細胞(CTC)を、ステージIV(表4)およびステージIII(表5)の乳癌患者の血液試料から捕捉した。CTCを、CD340、EGFR、CD318、Muc-1、Trop-2、EpCam、Mov-18、およびMSCに対する抗体を含む抗体カクテルで前標識し、マイクロチャネルデバイスでから遊離させた。捕捉細胞を、8番および17番染色体の異数性および乳癌マーカー、Her2の増幅について蛍光インサイチューハイブリダイゼーション(FISH)により解析した(表4)。これらの細胞は、マイクロチャネルから全く遊離されず、全てのFISHは、FISH解析用の計数の後に再配置させた細胞を有するチャネル内で行われる。異数性が陽性だとわかったCTCの総数を、CKマーカーが陽性で染色された細胞の総数と比較した。
【0107】
(表4)
【0108】
表4は、異数性およびHer2増幅状態についてのステージIV乳癌患者由来のCTCの捕捉後分子解析が、CK染色と比べて捕捉CTCから乳癌細胞を検出するのに優れていることを示す。
【0109】
表5では、ステージIIIの癌を有すると診断された患者の血液試料由来の捕捉CTCを、8番、11番および17番染色体の異数性について解析した。異数性が陽性だとわかったCTCの総数を、CKマーカーが陽性に染色された細胞の総数と比較した。8番、11番および17番染色体の異数性の詳細を示す。
【0110】
(表5)
【0111】
ステージIII乳癌患者の血液から捕捉したCTCはいずれも、CKマーカーに陽性(CK
+)で染色されなかったが、8番、11番、17番染色体の異数性の捕捉後解析は、多数の捕捉CTCが、これらのCTCが腫瘍細胞であることを意味する異数性細胞であることを示した。Her2(表4)増幅および異数性(表4および5)を検出するためにFISHを用いるインサイチューハイブリダイゼーション試験は、CK
-である捕捉CTCが乳癌細胞であることを確認する。表4および5の結果は、Her2マーカーの増幅およびマイクロチャネルデバイスから放出された捕捉細胞の異数性の検出などの捕捉後分子解析が、ステージIIIおよびIVの癌患者由来のCK
-細胞中の癌細胞を明確に同定する。この試験は、マイクロチャネルデバイス内に捕捉されたCTCは、普通なら検出されないはずの癌細胞を同定するための安定的な方法を提供する。
【0112】
実施例12.捕捉細胞の捕捉後分子解析は、膀胱癌患者における癌細胞としてのCTCの同定を向上させる
循環腫瘍細胞(CTC)を膀胱癌患者の血液試料から捕捉した。CTCを、CD340、EGFR、CD318、Muc-1、Trop-2、EpCam、Mov-18、MSC、c-metおよびN-カドヘリンに対する抗体を含む抗体カクテルで前標識した。捕捉細胞を、3番、7番および17番染色体中の異数性について蛍光インサイチューハイブリダイゼーションによりマイクロチャネルデバイス内で直接的に解析し、捕捉CTC上のCKマーカーの染色と比較した。
【0113】
(表6)
【0114】
表6は、CKが陰性染色される(第2欄)、膀胱癌を有する患者から得られた試料由来の捕捉細胞の多くが、異数性細胞(3番、7番および17番染色体でモノソミー、トリソミーおよび/または四倍体)であることを示す。表6の結果は、方法が、異なる癌の種類から得られた血液からCTCを同定することが可能であることを示す。
【0115】
これらの実験の結果は、マイクロチャネルデバイスで捕捉したCTCにおける異数性および特定のマーカーの発現を同定する能力は、腫瘍発生の初期段階または腫瘍細胞が転移し循環内に流出している腫瘍発生の後期に癌などの疾患を予測しかつ管理するための手段を提供することを示す。加えて、記載の方法はまた、治療の効果もしくは失敗をモニターするために適用できる。
【0116】
開示された発明は、記載された特定の方法論、プロトコルおよび材料に限定するものではなく、これらは多様であることが理解される。本明細書において用いられる用語は、特定の態様を記載することのみを目的としており、添付の特許請求の範囲によってのみ限定される本発明の範囲を限定することを意図しないこともまた理解される。
【0117】
当業者は、本明細書において記載の発明の特定の態様に対する多くの同等物について、認識するか、または日常を超えない程度の実験を用いて確認することができる。そのような同等物は、添付の特許請求の範囲に包含されることが意図される。