(58)【調査した分野】(Int.Cl.,DB名)
前記シールド補助スリットは、前記軸方向において前記トップクライオパネルと前記シールド主スリットとの間に形成されていることを特徴とする請求項1に記載のクライオポンプ。
前記補助スリット幅、前記第1距離、及び、前記シールド補助スリットに対する前記第1下方クライオパネルの角度位置に基づく第1補助スリット吸蔵限界値と、前記主スリット幅、前記シールド主スリットから前記第1下方クライオパネルへの距離、及び、前記シールド主スリットに対する前記第1下方クライオパネルの角度位置に基づく第1主スリット吸蔵限界値との和である第1合計吸蔵限界値が、前記主スリット幅、前記第2距離、及び、前記シールド主スリットに対する前記第2下方クライオパネルの角度位置に基づく第2主スリット吸蔵限界値と、前記補助スリット幅、前記シールド補助スリットから前記第2下方クライオパネルへの距離、及び、前記シールド補助スリットに対する前記第2下方クライオパネルの角度位置に基づく第2補助スリット吸蔵限界値との和である第2合計吸蔵限界値と等しいことを特徴とする請求項1から5のいずれかに記載のクライオポンプ。
前記補助スリット幅、前記第1距離、及び、前記シールド補助スリットに対する前記第1下方クライオパネルの角度位置に基づく第1補助スリット吸蔵限界値と、前記主スリット幅、前記シールド主スリットから前記第1下方クライオパネルへの距離、及び、前記シールド主スリットに対する前記第1下方クライオパネルの角度位置に基づく第1主スリット吸蔵限界値との和である第1合計吸蔵限界値が、前記主スリット幅、前記第2距離、及び、前記シールド主スリットに対する前記第2下方クライオパネルの角度位置に基づく第2主スリット吸蔵限界値と、前記補助スリット幅、前記シールド補助スリットから前記第2下方クライオパネルへの距離、及び、前記シールド補助スリットに対する前記第2下方クライオパネルの角度位置に基づく第2補助スリット吸蔵限界値との和である第2合計吸蔵限界値と等しいことを特徴とする請求項17に記載のクライオポンプ。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。
【0012】
まず、本発明のある実施形態に至った経緯とその概要を説明する。
【0013】
複数の第2クライオパネルを有するクライオポンプにおいては、個々の第2クライオパネルの配置場所に依存して、第2クライオパネルごとに凝縮層の成長の速さは異なる。ある第2クライオパネルがクライオポンプ吸気口などのガス入口に近ければ、ガス入口からその第2クライオパネルに多くのガスが到達しうるのでその第2クライオパネルに堆積する凝縮層は速く成長しうる。逆に、ガス入口から遠い別の第2クライオパネルに堆積する凝縮層は遅く成長しうる。
【0014】
複数の第2クライオパネルは、クライオポンプ吸気口に対面するトップクライオパネルを含んでもよい。トップクライオパネルは、放射シールド内の空洞をクライオポンプ吸気口側の空洞上部とその反対側の空洞下部に仕切るよう当該空洞に配設された大型の平板状部材であってもよい。ただし、トップクライオパネルは、とりわけトップクライオパネルの外周は、温度差を維持するために放射シールドに非接触である。空洞上部は吸気口からガスを直接受け入れるので、トップクライオパネルの前面には凝縮層が速く成長する。一方、空洞下部では凝縮層の成長が遅い。したがって、空洞上部に成長した凝縮層が放射シールドに接触するとき、空洞下部には凝縮層のまわりに空所がまだ残されているかもしれない。
【0015】
このように、ある場所に成長した凝縮物の塊が第1クライオパネルに接触するとき、他の場所には凝縮層と第1クライオパネルの間に空所が、つまり凝縮層を収容可能な容積が、まだ残されているかもしれない。これは、クライオポンプがその吸蔵限界において潜在的な余力をもつことを意味する。
【0016】
未利用の空所を減らし、クライオポンプ内部空間の利用率を高めることで、クライオポンプの吸蔵限界を向上することができる。理想的には、あらゆる場所で凝縮物が同時に第1クライオパネルに接触すれば、そのとき未利用の空所は皆無となり(すなわち、クライオポンプ内は完全に凝縮物で満たされ)、クライオポンプの吸蔵限界が最大化される。
【0017】
空所を減らすには、第2クライオパネルごとの凝縮層の成長の速さの違いを小さくすること、つまり凝縮層成長速さの均一化が望まれる。それとともに又はそれに代えて、第2クライオパネルごとに隣接する凝縮物収容容積をその第2クライオパネルへの凝縮層成長速さに応じて調整することが望まれる。
【0018】
ある第2クライオパネルへの凝縮層成長速さを決める主な因子には、その第2クライオパネルに対応するガス入口の開口面積がある。例えば、ガス入口が広ければ、凝縮層は速く成長する。また、凝縮層成長速さは、ガス入口と第2クライオパネルとの相対的な位置関係(例えば、ガス入口と第2クライオパネルとの距離、及び/または、ガス入口に対する第2クライオパネルの角度位置)にも影響される。例えば、第2クライオパネルがガス入口に近ければ、凝縮層は速く成長する。第2クライオパネルの角度位置がガス入口の法線に近ければ、凝縮層は速く成長する。
【0019】
そこで、本発明のある実施形態によると、クライオポンプは、ある第2クライオパネルと別の第2クライオパネルとにある実質的に均一化された速さで凝縮層が成長するよう設計されている。例えば、均一化された凝縮層成長速さがトップクライオパネルとシールド空洞下部に配置されたある第2クライオパネルとにもたらされる。あるいは、均一化された凝縮層成長速さがシールド空洞下部に配置されたある第2クライオパネルと別の第2クライオパネルとにもたらされる。例えば、ある実施形態においては、シールド空洞下部へのガス進入経路及び/またはシールド空洞下部におけるクライオパネル配置が凝縮層の成長を均一化するよう設計されている。
【0020】
また、ある第2クライオパネルへの凝縮層成長速さが大きければ、その第2クライオパネルの周囲に広い凝縮層収容容積が形成されてもよい。それを実現するように、その第2クライオパネルと他のクライオパネル(第1クライオパネル、及び/または、別の第2クライオパネル)との幾何学的な相対配置(例えば、クライオパネル間の距離、及び/または、クライオパネル間でなす角度)が決定されてもよい。
【0021】
このようにすれば、クライオポンプの未利用の余力を現実に使用し、クライオポンプ内部空間の利用率を高めることができる。したがって、クライオポンプの吸蔵限界を向上することができる。
【0022】
図1は、本発明のある実施形態に係るクライオポンプ10の一部を概略的に示す上面図である。
図2は、
図1に示されるクライオポンプ10のA−A線断面を概略的に示す。
【0023】
クライオポンプ10は、例えば、真空処理装置の真空チャンバに取り付けられて、真空チャンバ内部の真空度を所望のプロセスに要求されるレベルまで高めるために使用される。クライオポンプ10が取り付けられる真空処理装置は、例えば、スパッタリング装置である。
【0024】
クライオポンプ10は、ガスを受け入れるための吸気口12を有する。クライオポンプ10が取り付けられた真空チャンバから吸気口12を通じて、排気されるべきガスがクライオポンプ10の内部空間に進入する。
【0025】
なお以下では、クライオポンプ10の構成要素の位置関係をわかりやすく表すために、「軸方向」、「径方向」との用語を使用することがある。軸方向は吸気口12を通る方向(
図2において中心軸Cを表す一点鎖線に沿う方向)を表し、径方向は吸気口12に沿う方向(中心軸Cに垂直な方向)を表す。便宜上、軸方向に関して吸気口12に相対的に近いことを「上」、相対的に遠いことを「下」と呼ぶことがある。つまり、クライオポンプ10の底部から相対的に遠いことを「上」、相対的に近いことを「下」と呼ぶことがある。径方向に関しては、吸気口12の中心(
図2において中心軸C)に近いことを「内」、吸気口12の周縁に近いことを「外」と呼ぶことがある。なお、こうした表現はクライオポンプ10が真空チャンバに取り付けられたときの配置とは関係しない。例えば、クライオポンプ10は鉛直方向に吸気口12を下向きにして真空チャンバに取り付けられてもよい。
【0026】
また、軸方向を囲む方向を「周方向」と呼ぶことがある。周方向は、吸気口12に沿う第2の方向であり、径方向に直交する接線方向である。
【0027】
クライオポンプ10は、冷凍機16と、少なくとも1つの第1クライオパネルと、少なくとも1つの第2クライオパネルと、クライオポンプ容器18と、を備える。
【0028】
冷凍機16は、例えばギフォード・マクマホン式冷凍機(いわゆるGM冷凍機)などの極低温冷凍機である。冷凍機16は、第1ステージ22、第1シリンダ23、第2ステージ24、及び第2シリンダ25を備える二段式の冷凍機である。第1シリンダ23は、冷凍機16の室温部を第1ステージ22に接続する。第2シリンダ25は、第1ステージ22を第2ステージ24に接続する接続部分である。
【0029】
図示されるクライオポンプ10は、いわゆる横型のクライオポンプである。横型のクライオポンプとは一般に、冷凍機16がクライオポンプ10の中心軸Cに交差する(通常は直交する)よう配設されているクライオポンプである。冷凍機16の第1シリンダ23、第1ステージ22、第2シリンダ25、及び第2ステージ24がこの順にクライオポンプ10の径方向に沿って並ぶように冷凍機16は配設されている。
【0030】
なお、本発明はいわゆる縦型のクライオポンプにも同様に適用することができる。縦型のクライオポンプとは、冷凍機がクライオポンプの軸方向に沿って配設されているクライオポンプである。
【0031】
冷凍機16は、第1ステージ22を第1冷却温度に冷却し、第2ステージ24を第2冷却温度に冷却するよう構成されている。第2冷却温度は第1冷却温度より低い。よって、第1ステージ22及び第2ステージ24はそれぞれ、高温冷却ステージ及び低温冷却ステージとも称しうる。
【0032】
第1ステージ22は、第1クライオパネルに熱的に結合されており、第1クライオパネルを第1冷却温度に冷却する。第2ステージ24は、第2クライオパネルに熱的に結合されており、第2クライオパネルを第2冷却温度に冷却する。第1ステージ22及び第1クライオパネルは例えば65K〜120K程度、好ましくは80K〜100Kに冷却される。第2ステージ24及び第2クライオパネルは例えば10K〜20K程度に冷却される。
【0033】
クライオポンプ容器18は、第1クライオパネル及び第2クライオパネルを収容するクライオポンプ10の筐体である。また、クライオポンプ容器18は、冷凍機16の低温部、すなわち、第1シリンダ23、第1ステージ22、第2シリンダ25、及び第2ステージ24を収容する。クライオポンプ容器18は、その内部空間を気密に保持する真空容器である。クライオポンプ容器18は、冷凍機16の室温部に取り付けられる。
【0034】
クライオポンプ容器18は、吸気口12を画定する吸気口フランジ19を備える。吸気口フランジ19は、クライオポンプ容器18の前端から全周にわたって径方向外側に延びている。吸気口フランジ19を用いてクライオポンプ10が真空チャンバに取り付けられる。
【0035】
第1クライオパネルは、放射シールド30と、入口クライオパネル(例えばプレート部材32)と、を備える。放射シールド30はシールド主開口31を有する。シールド主開口31は、平面視にて吸気口12に含まれる。放射シールド30はその内部にシールド空洞33を定める。シールド空洞33は、シールド主開口31から軸方向に連続する。放射シールド30は、軸方向においてシールド主開口31と反対側にシールド底部34を備える。シールド空洞33は、シールド底部34で終端する。放射シールド30の詳細は後述する。
【0036】
入口クライオパネルは、クライオポンプ10の外部の熱源からの輻射熱から第2クライオパネルを保護するために、シールド主開口31に配設されている。クライオポンプ10の外部の熱源は、例えば、クライオポンプ10が取り付けられる真空チャンバ内の熱源である。また、入口クライオパネルの表面には第1冷却温度で凝縮するガス(例えば水)が捕捉される。
【0037】
入口クライオパネルは、輻射熱だけではなくシールド空洞33へのガス分子の進入も制限する。入口クライオパネルは、シールド主開口31を通じたシールド空洞33へのガス流入を所望量に制限するように吸気口12の開口面積の一部(例えば大部分)を占有する。
【0038】
入口クライオパネルは、シールド主開口31に入口開口部を形成する有孔部材を備える。入口開口部は、有孔部材に形成されている少なくとも1つの開口(例えば小孔32a)である。有孔部材は、シールド主開口31を覆う単一のプレート部材32であってもよい。単一のプレート部材32に代えて、入口クライオパネルは、例えば、複数の小プレートを備えてもよいし、あるいは、同心円状または格子状に形成されたルーバーまたはシェブロンを備えてもよい。
【0039】
放射シールド30は、軸方向上方に吸気口フランジ19を越えて延びており、従って入口クライオパネルは、軸方向に吸気口フランジ19の上方に位置する。よって、放射シールド30の前端及び入口クライオパネルは、クライオポンプ容器18の外に位置する。このように、放射シールド30は、クライオポンプ10が取り付けられる真空チャンバに向けて延出している。放射シールド30を上方に延ばすことにより、シールド空洞33すなわち凝縮層の収容容積を軸方向に広くすることができる。ただし、この延出部分の軸方向長さは、真空チャンバ(または真空チャンバとクライオポンプ10との間のゲートバルブ)に干渉しないように定められている。
【0040】
プレート部材32は、シールド主開口31を横断する一枚の平板(例えば円板)である。プレート部材32の寸法(例えば直径)は、シールド主開口31の寸法にほぼ等しい。放射シールド30の前端とプレート部材32との間には軸方向及び/または径方向にわずかな間隙があってもよい。
【0041】
プレート部材32の前面がクライオポンプ10の外部空間に露出されている。プレート部材32にはクライオポンプ10の外から中へのガス流れを許容する多数の小孔32aが貫通する。図示されるプレート部材32はその中心部に小孔32aを有し外周部には小孔32aを有しない。しかし、小孔32aはプレート部材32の外周部に形成されていてもよい。小孔32aは規則的に配列されている。小孔32aは、直交する二つの直線方向それぞれにおいて等間隔に設けられ、小孔32aの格子を形成する。代案として、小孔32aは、径方向及び周方向それぞれにおいて等間隔に設けられていてもよい。
【0042】
小孔32aの形状は例えば円形であるが、これに限られず、小孔32aは、矩形その他の形状を有する開口、直線状または曲線状に延びるスリット、または、プレート部材32の外周部に形成された切り欠きであってもよい。小孔32aの大きさは明らかにシールド主開口31より小さい。
【0043】
プレート部材32はその外周部でジョイントブロック29に取り付けられている。ジョイントブロック29は、放射シールドの前端から径方向内側に突き出す凸部であり、周方向に等間隔(例えば90°おき)に形成されている。プレート部材32は適切な手法でジョイントブロック29に固定される。例えば、ジョイントブロック29及びプレート部材32はそれぞれボルト孔(図示せず)を有し、プレート部材32がジョイントブロック29にボルト留めされる。
【0044】
プレート部材32の裏面及び放射シールド30の内面には、輻射率を高める表面処理例えば黒体処理がされていてもよい。これにより、プレート部材32の裏面及び放射シールド30の内面の輻射率はほぼ1に等しい。黒色表面は、例えば銅の基材の表面に黒色クロムめっきをすることにより形成されてもよいし、黒色塗装により形成されてもよい。こうした黒色表面は、クライオポンプ10に進入した熱の吸収に役立つ。
【0045】
一方、プレート部材32の前面及び第2クライオパネルには、外部からの輻射熱を反射するために、輻射率を低くする表面処理がなされていてもよい。こうした低輻射率の表面は、例えば、銅の基材の表面にニッケルめっきをすることにより形成されてもよい。
【0046】
第2クライオパネルは、詳細は後述するが、トップクライオパネル41、第1下方クライオパネル42、第2下方クライオパネル43、ボトムクライオパネル44、及び接続クライオパネル45を備える。これら第2クライオパネルは、各々が第2ステージ24に熱的に結合され、かつ放射シールド30及びプレート部材32と非接触にシールド空洞33に配設される。トップクライオパネル41は、シールド空洞33をシールド空洞上部33aとシールド空洞下部33bとに仕切る。
【0047】
冷凍機16の第1ステージ22は、放射シールド30の側部外面に直接取り付けられている。こうして、放射シールド30は、第1ステージ22に熱的に結合され、故に第1冷却温度に冷却される。なお放射シールド30は適宜の伝熱部材を介して第1ステージ22に取り付けられてもよい。また、冷凍機16の第2ステージ24及び第2シリンダ25が放射シールド30の側部からシールド空洞33に挿入されている。こうして、放射シールド30は、第2ステージ24をシールド空洞33に受け入れる。
【0048】
放射シールド30は、クライオポンプ容器18の輻射熱から第2クライオパネルを保護するために設けられている。放射シールド30は、クライオポンプ容器18と第2クライオパネルとの間にあり、第2クライオパネルを内包する。放射シールド30は、クライオポンプ容器18より僅かに小さい直径を有する。よって、放射シールド30とクライオポンプ容器18との間にシールド外側隙間20が形成され、放射シールド30はクライオポンプ容器18と接触していない。
【0049】
放射シールド30はその側部に少なくとも1つの副開口を有する。副開口は、シールド外側隙間20をシールド空洞33に連通する。例えば、放射シールド30は、シールド主スリット36と、少なくとも1つのシールド補助スリット37と、を有する。シールド補助スリット37は、軸方向においてシールド主スリットと異なる位置に形成されている。シールド主スリット36及びシールド補助スリット37は、それぞれ個別的にシールド外側隙間20をシールド空洞下部33bに連通する。これら複数のガス流入口は、シールド空洞下部33bにおける凝縮層成長速さの均一化を助ける。
【0050】
シールド主スリット36は、放射シールド30のある軸方向位置に形成された1以上の周方向細長開口であってもよい。複数の細長開口が周方向に離散的に形成されていてもよい。同様に、シールド補助スリット37は、放射シールド30のある軸方向位置に形成された1以上の周方向細長開口であってもよい。
【0051】
シールド補助スリット37は、軸方向においてトップクライオパネル41とシールド主スリット36との間に形成されている。このような補助的なガス流入口は、トップクライオパネル41の直下に形成される空きスペース(すなわち、シールド空洞下部33bのうち上方領域)にシールド外側隙間20からガスを案内する。シールド補助スリット37は、シールド空洞下部33bにおける凝縮層成長速さの均一化を助ける。
【0052】
放射シールド30は、複数のパーツにより全体として筒状の形状をなす。放射シールド30は、シールド上部38及びシールド下部40を備える。シールド上部38は、両端が開放された円筒であり、シールド空洞上部33aを包囲する。シールド下部40は、シールド底部34をもつ有底円筒であり、シールド空洞下部33bを包囲する。なお放射シールド30は、シールド主スリット36を有する単一の有底円筒部材であってもよい。
【0053】
シールド主スリット36は、シールド上部38の下端とシールド下部40の上端との間に定められている。シールド主スリット36は、軸方向中央部に位置し、冷凍機16の第2ステージ24を周方向に囲む。
【0054】
シールド主スリット36は主スリット幅を有し、シールド補助スリット37は補助スリット幅を有する。主スリット幅は補助スリット幅より広い。ここで、スリット幅とは、周方向に直交する方向におけるスリットの寸法(例えば、
図2に両矢印で示されるスリット幅)である。例えば、主スリット幅は、シールド上部38の下端とシールド下部40の上端との距離であってもよい。補助スリット幅は、シールド補助スリット37の軸方向の寸法であってもよい。
【0055】
シールド上部38の径は、シールド下部40の径よりいくらか小さい。また、シールド上部38の下端は、シールド下部40の上端より軸方向上方にある。このようにすれば、シールド主スリット36が吸気口12に露出される。そのため、吸気口12からシールド外側隙間20を通じてシールド主スリット36に入るガスを増やすことができる。これは、シールド空洞下部33bにおける凝縮層の成長を速くするので、シールド空洞下部33bにおける凝縮層成長速さをシールド空洞上部33aでのそれに近づけることができる。
【0056】
なお、シールド上部38はシールド下部40と同径であってもよいし、シールド上部38が大径であってもよい。また、シールド上部38がシールド下部40に入り込み、シールド上部38の下端がシールド下部40の上端より軸方向下方にあってもよい。シールド主スリット36は、冷凍機16に対し軸方向上方または下方に位置してもよい。
【0057】
シールド上部38は、2つの部材、シールド上部本体38aとシールドリング部材38bに分割されている。シールドリング部材38bは、シールド上部本体38aの軸方向下端に取り付けられ、周方向に延在する。シールドリング部材38bは、シールド上部本体38aをシールド下部40に軸方向に接続する接続部材である。シールド補助スリット37は、シールドリング部材38bに貫設されている。このような分割構成は、製造上の利点を与えうる。例えば、シールド補助スリット37を有しない放射シールドにシールドリング部材38bを取り付けることによって、シールド補助スリット37を追加することができる。
【0058】
なおシールド上部38は単一の部材であってもよい。シールド補助スリット37はシールド下部40に形成されていてもよい。シールド上部38及びシールド下部40の少なくとも一方に複数のシールド補助スリット37が設けられていてもよい。
【0059】
トップクライオパネル41は、軸方向に垂直に配置された円板状の部材である。トップクライオパネル41の前面がシールド空洞上部33aを挟んでプレート部材32の裏面に対面する。トップクライオパネル41の中心部は冷凍機16の第2ステージ24の上面に直に取り付けられている。第2ステージ24はクライオポンプ10のシールド空洞33の中心部に位置する。こうして、シールド空洞上部33aは広い凝縮層収容容積を与える。トップクライオパネル41の前面には活性炭等の吸着剤は設けられていない。なお、トップクライオパネル41の裏面に吸着剤が設けられていてもよい。
【0060】
トップクライオパネル41は比較的大きい。トップクライオパネル41の中心からトップクライオパネル外周端41aへの径方向距離46は、シールド主開口31の中心から放射シールド30の前端への径方向距離の70%以上である。つまりトップクライオパネル41の半径はシールド主開口31の半径の70%以上である。また、トップクライオパネル41の径はシールド主開口31の径の98%以下である。こうして、トップクライオパネル41が放射シールド30に確実に非接触とすることができる。トップクライオパネル41の軸方向投影面積は、シールド主開口31の50%から95%までの面積、好ましくは73%から90%までの面積であってもよい。
【0061】
トップクライオパネル41は、放射シールド30との間に径方向隙間50を形成する。径方向隙間50は、トップクライオパネル外周端41aとシールド上部38(例えばシールド上部本体38a)との間に形成されている。トップクライオパネル外周端41aは、軸方向にシールド主スリット36の上方に位置する。トップクライオパネル41は軸方向に垂直な平板であるから、トップクライオパネル41の全体が軸方向にシールド主スリット36の上方にある。
【0062】
トップクライオパネル41を除く他の第2クライオパネル、すなわち第1下方クライオパネル42、第2下方クライオパネル43、ボトムクライオパネル44、及び接続クライオパネル45は、シールド空洞下部33bに配設されている。
【0063】
トップクライオパネル41、第1下方クライオパネル42、第2下方クライオパネル43、及びボトムクライオパネル44それぞれの中心は、クライオポンプ10の中心軸C上にある。トップクライオパネル41、第1下方クライオパネル42、第2下方クライオパネル43、及びボトムクライオパネル44は同軸に配設されている。接続クライオパネル45は、中心軸Cの両側で中心軸Cに沿って配設されている。
【0064】
第1下方クライオパネル42及び第2下方クライオパネル43がトップクライオパネル41の下方に配列されている。第1下方クライオパネル42は、軸方向にトップクライオパネル41とボトムクライオパネル44との間に配設されている。第2下方クライオパネル43は、軸方向に第1下方クライオパネル42とボトムクライオパネル44(またはシールド底部34)との間に配設されている。
【0065】
これら2つのクライオパネルはトップクライオパネル41と形状が異なる。第1下方クライオパネル42は円すい台の側面の形状、いわば傘状の形状を有する。第2下方クライオパネル43も同様に傘状である。各下方クライオパネルには活性炭等の吸着剤が設けられている。吸着剤は例えば下方クライオパネルの裏面に接着されている。よって、下方クライオパネルの前面は凝縮面、裏面は吸着面として機能する。
【0066】
第1下方クライオパネル42は第1径47を有し、第2下方クライオパネル43は第2径48を有する。第2径48は第1径47より大きい。すなわち、第2下方クライオパネル43は、第1下方クライオパネル42より大型の傘状クライオパネルである。
【0067】
ただし、第1下方クライオパネル42及び第2下方クライオパネル43はともに、トップクライオパネル41より小径である。第1下方クライオパネル42は、トップクライオパネル外周端41aへの軸方向に平行な接線(軸方向に平行なトップクライオパネル41への投影線)66より径方向に内側に配設される(
図4参照)。第2下方クライオパネル43は、トップクライオパネル外周端41aへの軸方向に平行な接線66より径方向に内側に配設される。同様に、第1下方クライオパネル42及び第2下方クライオパネル43はともに、ボトムクライオパネル44より小径である。
【0068】
第1下方クライオパネル42は、放射シールド30との間に第1径方向間隔52を形成する。第1径方向間隔52は、第1下方クライオパネル外周端42aとシールド上部38(例えばシールドリング部材38b)との間に形成されている。第1径方向間隔52は径方向隙間50より広い。こうして、比較的広い環状の凝縮層収容容積がトップクライオパネル41の軸方向直下に形成される。この容積はシールド空洞下部33bの一部である。
【0069】
この空きスペースはその上部で径方向隙間50を通じてシールド空洞上部33aに連通し、当該スペースの軸方向中央部でシールド補助スリット37を通じてシールド外側隙間20に連通し、当該スペースの下部でシールド主スリット36を通じてシールド外側隙間20に連通する。また、このスペースは、軸方向上方でトップクライオパネル41の裏面に隣接し、径方向外側でシールド上部38に隣接し、径方向内側で第1下方クライオパネル側表面42bに隣接する。
【0070】
第1下方クライオパネル側表面42bは円すい状の傾斜面であり、第1下方クライオパネル側表面42bの径方向に最も外側に第1下方クライオパネル外周端42aがある。第1下方クライオパネル外周端42aは、第1下方クライオパネル42の軸方向下端でもある。なお第1下方クライオパネル側表面42bは円筒面であってもよい。第1下方クライオパネル側表面42bの軸方向上端から径方向内側には第1下方クライオパネル中心部42cがある。第1下方クライオパネル中心部42cは、冷凍機16の第2ステージ24の上面に直に取り付けられ、第2ステージ24に熱的に結合される。
【0071】
第1下方クライオパネル外周端42aは、シールド主開口31から視認不能であるようトップクライオパネル41に覆われている。このように、第1下方クライオパネル外周端42aは、トップクライオパネル外周端41aに対し径方向にかなり内側に位置する。これにより、トップクライオパネル41直下のスペースを広くすることができる。
【0072】
第1下方クライオパネル外周端42aは、軸方向においてトップクライオパネル41とシールド主スリット36との間に位置する。よって第1下方クライオパネル42は、シールド補助スリット37と同様に、シールド主スリット36の上方に位置する。これにより、第1下方クライオパネル42は、シールド補助スリット37から入るガスを効率的に受けることができる。また、シールド主スリット36からシールド空洞下部33bへと斜め下向きに入るガスの大半が第1下方クライオパネル外周端42aの下側を通過する。よって、このガスを第2下方クライオパネル43へと向けることができる。
【0073】
第2下方クライオパネル43は、放射シールド30との間に第2径方向間隔54を形成する。第2径方向間隔54は、第2下方クライオパネル外周端43aとシールド下部40との間に形成されている。第2径方向間隔54は径方向隙間50より広い。こうして、比較的広い環状の凝縮層収容容積が形成される。この容積はシールド空洞下部33bの一部であり、トップクライオパネル41直下のスペースとともに環状空間部60を形成する。
【0074】
この空きスペースはその上部で径方向外側にシールド主スリット36を通じてシールド外側隙間20に連通し、当該スペースの上部で径方向内側に中心空間部56に連通し、当該スペースの下部で底部隙間58に連通する。このスペースは、径方向外側でシールド下部40に隣接し、径方向内側で第2下方クライオパネル側表面43b及び接続クライオパネル45に隣接し、軸方向下方でボトムクライオパネル44及びシールド底部34に隣接する。
【0075】
第2下方クライオパネル側表面43bは円すい状の傾斜面であり、第2下方クライオパネル側表面43bの径方向に最も外側に第2下方クライオパネル外周端43aがある。第2下方クライオパネル側表面43bの軸方向上端から径方向内側には第2下方クライオパネル中心部43cがある。第2下方クライオパネル中心部43cは、第2下方クライオパネル43の軸方向上端でもある。第2下方クライオパネル中心部43cは、接続クライオパネル45に取り付けられている。第2下方クライオパネル43は、接続クライオパネル45を介して第2ステージ24に熱的に結合される。
【0076】
ボトムクライオパネル44は、軸方向に垂直に配置された円板状の部材である。ボトムクライオパネル44はその両面に吸着剤を備えてもよい。ボトムクライオパネル44は、シールド底部34との間に底部隙間58を形成する。
【0077】
ボトムクライオパネル44は、軸方向にシールド主スリット36の下方に位置するボトムクライオパネル外周端44aを備える。ボトムクライオパネル44はシールド底部34に近接する。ボトムクライオパネル外周端44aから放射シールド30(例えばシールド底部34)への距離65は、シールド主スリット36の幅と同程度(例えば
、2倍以内)である。これにより、ある程度のガスを底部隙間58に導くことができる。また、ボトムクライオパネル44は、ボトムクライオパネル中心開口44bを有する。
【0078】
接続クライオパネル45は、第2ステージ24からボトムクライオパネル44へと延在しボトムクライオパネル44を第2ステージ24に熱的に結合する。接続クライオパネル45の上端が第2ステージ24に取り付けられ、下端がボトムクライオパネル44に取り付けられている。
【0079】
接続クライオパネル45は、第2ステージ24の径方向両側を軸方向に延在する一組の細長板状部材である。それら板状部材の互いに向き合う内面の間に中心空間部56が形成されている。中心空間部56は、接続クライオパネル45の内面に径方向に隣接しかつ第2ステージ24の下方に軸方向に隣接する。中心空間部56もまた、凝縮層収容容積として利用可能である。
【0080】
上述の説明に加えて、クライオポンプ10は、更にいくつかの顕著な構造的特徴を実装している。これらの特徴もまた吸蔵限界の向上に寄与する。そうした特徴を
図3ないし
図5を参照して次に説明する。
【0081】
図3に示されるように、第1下方クライオパネル42の軸方向下端と第2下方クライオパネル43の軸方向上端との軸方向クライオパネル間隔62は、トップクライオパネル41の中心からトップクライオパネル外周端41aへの径方向距離の40%以上である。つまり軸方向クライオパネル間隔62は、トップクライオパネル41の直径の20%以上である。このように2つのクライオパネルを離間することにより、シールド空洞下部33bにおいて軸方向に比較的広い凝縮層収容容積を提供することができる。
【0082】
環状空間部60は、トップクライオパネル外周端41aとボトムクライオパネル外周端44aとの間に形成されている。トップクライオパネル外周端41aは、環状空間部60を挟んでボトムクライオパネル外周端44aと直接向かい合う。トップクライオパネル41はシールド主スリット36の上方に位置するから、環状空間部60はシールド主スリット36の軸方向両側に広がる比較的広い凝縮層収容容積をもたらす。
【0083】
トップクライオパネル外周端41aからボトムクライオパネル外周端44aへの軸方向隙間63は、トップクライオパネル41の中心からトップクライオパネル外周端41aへの径方向距離(例えばトップクライオパネル41の半径)以上である。これは、環状空間部60を広くすることを助ける。また、軸方向隙間63は、トップクライオパネル外周端41aからシールド底部34への軸方向距離より短い。こうして、ボトムクライオパネル44をシールド底部34と非接触に配置することができる。
【0084】
中心空間部56は、第1下方クライオパネル42と第2下方クライオパネル43との軸方向クライオパネル間隔62を通じて環状空間部60に連通する。中心空間部56に環状空間部60からガスを受け入れることができるので、中心空間部56を凝縮層収容容積として有効に利用できる。
【0085】
また、中心空間部56は、ボトムクライオパネル中心開口44bを通じて底部隙間58に連通する。これも、中心空間部56へのガス流入に役立つ。
【0086】
図4に示されるように、環状空間部60は、クライオパネル無配置領域(cryopanel-less zone)64を含む。径方向については、クライオパネル無配置領域64は、第2下方クライオパネル外周端43aへの軸方向に平行な接線67とトップクライオパネル外周端41aへの軸方向に平行な接線66との間に画定される。軸方向については、クライオパネル無配置領域64は、トップクライオパネル41と、ボトムクライオパネル44(または第2下方クライオパネル43)との間に画定される。クライオパネル無配置領域64は、周方向に延在する環状の区域である。
【0087】
第1下方クライオパネル外周端42aはクライオパネル無配置領域64より径方向に内側に位置し、従って第1下方クライオパネル42はクライオパネル無配置領域64より径方向に内側に位置する。接続クライオパネル45もまた、クライオパネル無配置領域64より径方向に内側に位置する。クライオポンプ10においては、クライオパネル無配置領域64に挿入されるクライオパネルは存在しない。
【0088】
典型的なクライオポンプは、ガス吸蔵量を増やすために、多数のクライオパネルが密に配列される。その場合、クライオパネルどうしの間隙はかなり狭くなる。凝縮層がクライオパネル上に成長するとき、クライオパネル間隙の入口に凝縮が集中しやすい。入口が凝縮層によって塞がれ、クライオパネル間隙の深部に空所が残される。したがって、多数のクライオパネルを密に配列するという常識的な設計に基づく限り、クライオポンプ内部空間の利用効率を充分に向上することはできない。
【0089】
これに対して、クライオポンプ10においては、クライオパネル無配置領域64を確保するように、少数の第2クライオパネルがクライオパネル無配置領域64の外に配置されている。これにより、クライオポンプ内部空間の利用率を高め、クライオポンプ10の吸蔵限界を向上することができる。
【0090】
なお、クライオパネル無配置領域64は、第1下方クライオパネル外周端42aへの軸方向に平行な接線68とトップクライオパネル外周端41aへの軸方向に平行な接線66との間に画定されてもよい。第2下方クライオパネル外周端43aは、クライオパネル無配置領域64より径方向に内側に位置してもよい。
【0091】
ある第2クライオパネルへの凝縮層成長速さは、その第2クライオパネルの近傍に位置するガス流入口の大きさ(例えばスリット幅)に相関する。例えば、スリット幅が大きければ、そのスリットに対面する第2クライオパネルに凝縮層は速く成長する。また、凝縮層成長速さは、ガス流入口と第2クライオパネルとの距離にも影響される。距離が小さければその第2クライオパネルにガス凝縮が集中し、凝縮層は速く成長する。
【0092】
したがって、あるガス流入口から第2クライオパネルまでの距離をそのガス流入口の大きさに応じて調整することによって、その第2クライオパネルへの凝縮層成長速さを調整することができる。例えば、広いガス流入口に対面する第2クライオパネルはその広いガス流入口から遠くに配置され、別の狭いガス流入口に対面する別の第2クライオパネルはその狭いガス流入口の近くに配置される。このようにすれば、ガス流入口の大きさの違いによる2つの第2クライオパネルの凝縮層成長速さ差が、距離による凝縮層成長速さ差と互いに打ち消し合う。こうして、2つの第2クライオパネルの凝縮層成長速さを均一化することができる。
【0093】
シールド主スリット36から第2下方クライオパネル43への第2距離(例えば、
図3に示されるシールド主スリット36の法線70)は、シールド補助スリット37から第1下方クライオパネル42への第1距離(例えば、
図2に示される第1径方向間隔52)より長い。これに加えて、上述のように、シールド主スリット36はシールド補助スリット37より幅広である。このようにすれば、第1下方クライオパネル42と第2下方クライオパネル43とで凝縮層の成長速さの差を小さくすることができる。
【0094】
ガス流入口に対する第2クライオパネルの角度位置もまた、第2クライオパネルへの凝縮層成長速さに影響する。例えば、第2クライオパネルがスリットの法線上に位置すれば(つまりクライオパネルがスリットに対面すれば)、凝縮層は速く成長する。逆に、第2クライオパネルがスリットの法線から外れた場所に位置すれば、凝縮層は遅く成長する。
【0095】
図3に示されるように、第2下方クライオパネル43は、シールド主スリット36の法線70に交差するよう配設されている。このようにして、第2下方クライオパネル43は、シールド主スリット36の正面に配置されている。これは、第2下方クライオパネル43のガス凝縮を促進することに役立つ。なお第1下方クライオパネル42がシールド補助スリット37の法線に交差するよう配設されていてもよい。
【0096】
径方向に対するシールド補助スリット37の法線の角度(図示の実施形態の場合、法線は径方向に一致し、角度はゼロ)は、径方向に対するシールド主スリット36の法線70の角度より小さい。このようにして、シールド補助スリット37の法線は、径方向または径方向に近い方向に向けられ、シールド主スリット36の法線70は、径方向から離れる方向または軸方向に向けられている。これにより、シールド補助スリット37から入るガスを第1下方クライオパネル42に向け、シールド主スリット36から入るガスを第2下方クライオパネル43に向けることができる。
【0097】
また、シールド主スリット36の法線70と第2下方クライオパネル側表面43bの法線との角度(図示の実施形態の場合、両者は一致し、角度はゼロ)は、シールド主スリット36の法線70と第1下方クライオパネル側表面42bの法線との角度より小さくてもよい。また、シールド補助スリット37の法線と第1下方クライオパネル側表面42bの法線との角度は、シールド補助スリット37の法線と第2下方クライオパネル側表面43bの法線(図示の実施形態の場合、シールド主スリット36の法線70)との角度より小さくてもよい。このようにして、シールド補助スリット37の正面に第1下方クライオパネル42が配置され、シールド主スリット36の正面に第2下方クライオパネル43が配置されてもよい。
【0098】
「吸蔵限界値(gas capacity limit value)」なるパラメタが、クライオパネルどうしの凝縮層成長速さの均一化の設計のために用いられてもよい。吸蔵限界値は、スリット幅、スリットとクライオパネルとの距離、及び、スリットに対するクライオパネルの角度位置に基づき計算される。
【0099】
あるクライオパネルとあるガス流入口の組合せについての吸蔵限界値は、次式で計算されてもよい。
吸蔵限界値=L/(S・cosθ)
ここで、Lはスリット幅、Sはスリットとクライオパネルの代表点との距離、θはスリットに対するクライオパネルの代表点の角度位置を表す。
【0100】
この吸蔵限界値が大きければ、そのクライオパネルでの凝縮層成長速さは大きい。各クライオパネルについて吸蔵限界値が同程度であれば、各クライオパネルに凝縮層が一様に成長することになる。
【0101】
例として、シールド主スリット36と第2下方クライオパネル43の組合せについての第2主スリット吸蔵限界値は、
図5を参照して次の手順で計算される。まずシールド主スリット36の断面両端を線分Lでむすぶ。線分Lの中心(すなわちシールド主スリット36の中心)から法線R(すなわちシールド主スリット36の法線)を引く。中心が直線R上にあり、線分Lの両端を通り、第2下方クライオパネル43に接する円Pを作る。第2下方クライオパネル43と円Pとの接点を第2下方クライオパネル43の「代表点」とする。線分Lの中心と第2下方クライオパネル43の代表
点を結ぶ線分Sを引く。
【0102】
このとき、第2主スリット吸蔵限界値は、次式で定義されてもよい。
第2主スリット吸蔵限界値=l/(s・cosθ)
ここで、lは線分Lの長さ(すなわち主スリット幅)、sは線分Sの長さ(すなわちシールド主スリット36と第2下方クライオパネル43の代表点との距離)、θは法線Rと線分Sとの角度(すなわちシールド主スリット36に対する第2下方クライオパネル43の代表点の角度位置)を表す。なお
図5の場合、線分Sは法線Rに一致するので、θ=90°である。
【0103】
なお、あるクライオパネルの「代表点」は、そのクライオパネルの端点または中央点など、任意の位置であってもよい。
【0104】
シールド主スリット36と第1下方クライオパネル42の組合せについての第1主スリット吸蔵限界値も同様の方法で計算される。この場合、中心が直線R上にあり、線分Lの両端を通り、第1下方クライオパネル42に接する円P’を作る。第1下方クライオパネル42と円P’との接点を第1下方クライオパネル42の「代表点」とする。線分Lの中心と第1下方クライオパネル42の代表
点を結ぶ線分S’を引く。図示の実施形態の場合、代表
点は第1下方クライオパネル外周端42aに一致する。第1主スリット吸蔵限界値は、次式で定義されてもよい。
第1主スリット吸蔵限界値=l/(s’・cosθ’)
ここで、s
’は線分S’の長さ(すなわちシールド主スリット36と第1下方クライオパネル42の代表点との距離)、θ’は法線Rと線分S’との角度(すなわちシールド主スリット36に対する第1下方クライオパネル42の代表点の角度位置)を表す。なお、簡明化のため
図5において、円P’及び線分S’の図示を省略する。
【0105】
同様にして、シールド補助スリット37と第1下方クライオパネル42の組合せについての第1補助スリット吸蔵限界値は、補助スリット幅、シールド補助スリット37から第1下方クライオパネル42への距離、及び、シールド補助スリット37に対する第1下方クライオパネル42の角度位置に基づき計算される。シールド補助スリット37と第2下方クライオパネル43の組合せについての第2補助スリット吸蔵限界値は、補助スリット幅、シールド補助スリット37から第2下方クライオパネル43への距離、及び、シールド補助スリット37に対する第2下方クライオパネル43の角度位置に基づき計算される。
【0106】
クライオポンプ10においては、第1合計吸蔵限界値が第2合計吸蔵限界値と実質的に等しい。第1合計吸蔵限界値は、第1補助スリット吸蔵限界値と第1主スリット吸蔵限界値との和である。第2合計吸蔵限界値は、第2補助スリット吸蔵限界値と第2主スリット吸蔵限界値との和である。このように各クライオパネルの吸蔵限界値の和が等しくなるようクライオポンプを設計することにより、クライオパネル間で凝縮層成長速さを均一化することができる。
【0107】
第1合計吸蔵限界値と第2合計吸蔵限界値との差は、第1合計吸蔵限界値の例えば5%以内、3%以内、または1%以内であってもよい。
【0108】
上記の構成のクライオポンプ10による動作を以下に説明する。クライオポンプ10の作動に際しては、まずその作動前に他の適当な粗引きポンプで真空チャンバ内部を例えば1Pa程度にまで粗引きする。その後クライオポンプ10を作動させる。冷凍機16の駆動により第1ステージ22及び第2ステージ24が冷却され、これらに熱的に結合されている第1クライオパネル及び第2クライオパネルも冷却される。第1クライオパネル及び第2クライオパネルはそれぞれ、第1冷却温度及び第2冷却温度に冷却される。
【0109】
真空チャンバからクライオポンプ10に向かうガスの一部はプレート部材32に衝突し、他の一部はプレート部材32の小孔32aを通じてシールド空洞上部33aに進入する。また、ガスの他の一部は、プレート部材32の周囲のシールド外側隙間20からシールド主スリット36またはシールド補助スリット37を通じてシールド空洞下部33bに進入する。
【0110】
第1冷却温度で蒸気圧が充分に低くなる第1種ガス(例えば水)は第1クライオパネルの表面に凝縮する。第2冷却温度で蒸気圧が充分に低くなる第2種ガス(例えばアルゴン)は第2クライオパネルの表面に凝縮する。第2冷却温度でも蒸気圧が充分に低くならない第3種ガス(例えば水素)は第2クライオパネル上で冷却された吸着剤に吸着される。こうしてクライオポンプ10は真空チャンバを排気し、所望の真空度を実現することができる。
【0111】
クライオポンプ10においては、種々の構造的特徴を実装することによって、第2種ガスの凝縮層成長速さが均一化されている。したがって、特定のクライオパネル(例えばトップクライオパネル41)のみに集中的に第2種ガスが凝縮することが回避される。それぞれのクライオパネルに一様に第2種ガスが凝縮し、クライオポンプ内部空間の利用率がきわめて高い。第2種ガスの凝縮層が成長して第1クライオパネルに接触するとき、シールド空洞33に空所はほとんど残されていない。よって、クライオポンプ10の吸蔵限界が向上される。
【0112】
以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
【0113】
例えば、トップクライオパネルと入口クライオパネルとの間に少なくとも1つの追加の第2クライオパネルが設けられていてもよい。ボトムクライオパネルとシールド底部との間に少なくとも1つの追加の第2クライオパネルが設けられていてもよい。追加の第2クライオパネルは、トップクライオパネル及び/またはボトムクライオパネルより小型(例えば小径)であってもよい。
【0114】
トップクライオパネルとこれに隣接する少なくとも1つの第2クライオパネル(例えば第1下方クライオパネル)とが一体のクライオパネル部材を形成してもよい。ボトムクライオパネルとこれに隣接する少なくとも1つの第2クライオパネル(例えば第2下方クライオパネル)とが一体のクライオパネル部材を形成してもよい。
【0115】
ボトムクライオパネル及び第2下方クライオパネルのうち一方が設けられていなくてもよい。第2下方クライオパネルがボトムクライオパネルを兼ねてもよい。あるいは、ボトムクライオパネル及び第2下方クライオパネルの両方が設けられていなくてもよい。それとともに又はそれに代えて、第1下方クライオパネルが設けられていなくてもよい。
【0116】
放射シールド30などの第1クライオパネル、及び/または、トップクライオパネル41などの第2クライオパネルの軸方向に垂直な断面は、非円形であってもよく、例えば、矩形などの多角形または楕円であってもよい。
【0117】
本発明の実施形態は以下のように表現することもできる。
【0118】
1.クライオポンプ吸気口を有するクライオポンプ容器と、
前記クライオポンプ容器に収容される高温冷却ステージ及び低温冷却ステージを備える冷凍機と、
前記クライオポンプ吸気口にシールド主開口を有し前記シールド主開口から軸方向に連続するシールド空洞を定め、前記高温冷却ステージに熱的に結合されかつ前記低温冷却ステージを前記シールド空洞に受け入れる放射シールドであって、前記クライオポンプ容器との間にシールド外側隙間を形成する放射シールドと、
各々が前記低温冷却ステージに熱的に結合されかつ前記放射シールドと非接触に前記シールド空洞に配設される複数のクライオパネルと、を備え、
前記複数のクライオパネルは、前記シールド空洞をシールド空洞上部とシールド空洞下部とに仕切るトップクライオパネルを含み、
前記放射シールドは、前記シールド外側隙間を前記シールド空洞下部に連通するシールド主スリットと、前記軸方向において前記シールド主スリットと異なる位置に形成され前記シールド外側隙間を前記シールド空洞下部に連通するシールド補助スリットと、をさらに有することを特徴とするクライオポンプ。
【0119】
2.前記シールド補助スリットは、前記軸方向において前記トップクライオパネルと前記シールド主スリットとの間に形成されていることを特徴とする実施形態1に記載のクライオポンプ。
【0120】
3.前記放射シールドは、前記シールド空洞上部を包囲するシールド上部と、前記シールド空洞下部を包囲するシールド下部と、を備え、
前記シールド主スリットは、前記シールド上部の下端と前記シールド下部の上端との間に定められ、
前記シールド補助スリットは、前記シールド上部の下端に貫設されていることを特徴とする実施形態2に記載のクライオポンプ。
【0121】
4.前記トップクライオパネルは、前記放射シールドとの間に径方向隙間を形成し、
前記複数のクライオパネルは、前記シールド空洞下部に配設される第1下方クライオパネルをさらに含み、
前記第1下方クライオパネルは、前記放射シールドとの間に第1径方向間隔を形成する第1下方クライオパネル外周端を備え、前記第1径方向間隔は前記径方向隙間より広いことを特徴とする実施形態1から3のいずれかに記載のクライオポンプ。
【0122】
5.前記第1下方クライオパネル外周端は、前記シールド主開口から視認不能であるよう前記トップクライオパネルに覆われていることを特徴とする実施形態4に記載のクライオポンプ。
【0123】
6.前記第1下方クライオパネル外周端は、前記軸方向において前記トップクライオパネルと前記シールド主スリットとの間に位置することを特徴とする実施形態4または5に記載のクライオポンプ。
【0124】
7.前記放射シールドは、前記軸方向において前記シールド主開口と反対側にシールド底部を備え、
前記複数のクライオパネルは、前記軸方向において前記第1下方クライオパネルと前記シールド底部との間に配設される第2下方クライオパネルをさらに含むことを特徴とする実施形態4から6のいずれかに記載のクライオポンプ。
【0125】
8.前記シールド主スリットは主スリット幅を有し、前記シールド補助スリットは補助スリット幅を有し、前記主スリット幅は前記補助スリット幅より広く、
前記シールド主スリットから前記第2下方クライオパネルへの第2距離は、前記シールド補助スリットから前記第1下方クライオパネルへの第1距離より長いことを特徴とする実施形態7に記載のクライオポンプ。
【0126】
9.前記補助スリット幅、前記第1距離、及び、前記シールド補助スリットに対する前記第1下方クライオパネルの角度位置に基づく第1補助スリット吸蔵限界値と、前記主スリット幅、前記シールド主スリットから前記第1下方クライオパネルへの距離、及び、前記シールド主スリットに対する前記第1下方クライオパネルの角度位置に基づく第1主スリット吸蔵限界値との和である第1合計吸蔵限界値が、前記主スリット幅、前記第2距離、及び、前記シールド主スリットに対する前記第2下方クライオパネルの角度位置に基づく第2主スリット吸蔵限界値と、前記補助スリット幅、前記シールド補助スリットから前記第2下方クライオパネルへの距離、及び、前記シールド補助スリットに対する前記第2下方クライオパネルの角度位置に基づく第2補助スリット吸蔵限界値との和である第2合計吸蔵限界値と等しいことを特徴とする実施形態8に記載のクライオポンプ。
【0127】
10.前記第1下方クライオパネルは第1径を有し、前記第2下方クライオパネルは第2径を有し、前記第2径は前記第1径より大きいことを特徴とする実施形態7から9のいずれかに記載のクライオポンプ。
【0128】
11.前記第2下方クライオパネルは、前記シールド主スリットの法線に交差するよう配設されることを特徴とする実施形態7から10のいずれかに記載のクライオポンプ。
【0129】
12.前記第1下方クライオパネルは、第1下方クライオパネル側表面を有し、前記第2下方クライオパネルは、第2下方クライオパネル側表面を有し、
前記シールド主スリットの法線と前記第2下方クライオパネル側表面の法線との角度は、前記シールド主スリットの法線と前記第1下方クライオパネル側表面の法線との角度より小さく、
前記シールド補助スリットの法線と前記第1下方クライオパネル側表面の法線との角度は、前記シールド補助スリットの法線と前記第2下方クライオパネル側表面の法線との角度より小さいことを特徴とする実施形態7から11のいずれかに記載のクライオポンプ。
【0130】
13.径方向に対する前記シールド補助スリットの法線の角度は、径方向に対する前記シールド主スリットの法線の角度より小さいことを特徴とする実施形態1から12のいずれかに記載のクライオポンプ。
【0131】
14.クライオポンプ吸気口を有するクライオポンプ容器と、
前記クライオポンプ容器に収容される高温冷却ステージ及び低温冷却ステージを備える冷凍機と、
前記クライオポンプ吸気口にシールド主開口を有し前記シールド主開口から軸方向に連続するシールド空洞を定め、前記高温冷却ステージに熱的に結合されかつ前記低温冷却ステージを前記シールド空洞に受け入れる放射シールドであって、前記クライオポンプ容器との間にシールド外側隙間を形成する放射シールドと、
各々が前記低温冷却ステージに熱的に結合されかつ前記放射シールドと非接触に前記シールド空洞に配設される複数のクライオパネルと、を備え、
前記複数のクライオパネルは、前記シールド空洞をシールド空洞上部とシールド空洞下部とに仕切るトップクライオパネルと、前記シールド空洞下部に配設される第1下方クライオパネルと、を含み、
前記放射シールドは、前記シールド外側隙間を前記シールド空洞下部に連通するシールド主スリットをさらに有し、
前記トップクライオパネルは、前記放射シールドとの間に径方向隙間を形成し、
前記第1下方クライオパネルは、前記放射シールドとの間に第1径方向間隔を形成する第1下方クライオパネル外周端を備え、前記第1径方向間隔は前記径方向隙間より広いことを特徴とするクライオポンプ。
【0132】
15.前記第1下方クライオパネル外周端は、前記シールド主開口から視認不能であるよう前記トップクライオパネルに覆われていることを特徴とする実施形態14に記載のクライオポンプ。
【0133】
16.前記第1下方クライオパネル外周端は、前記軸方向において前記トップクライオパネルと前記シールド主スリットとの間に位置することを特徴とする実施形態14または15に記載のクライオポンプ。
【0134】
17.前記放射シールドは、前記軸方向において前記シールド主スリットと異なる位置に形成され前記シールド外側隙間を前記シールド空洞下部に連通するシールド補助スリットをさらに有することを特徴とする実施形態14から16のいずれかに記載のクライオポンプ。
【0135】
18.前記シールド補助スリットは、前記軸方向において前記トップクライオパネルと前記シールド主スリットとの間に形成されていることを特徴とする実施形態17に記載のクライオポンプ。
【0136】
19.前記放射シールドは、前記シールド空洞上部を包囲するシールド上部と、前記シールド空洞下部を包囲するシールド下部と、を備え、
前記シールド主スリットは、前記シールド上部の下端と前記シールド下部の上端との間に定められ、
前記シールド補助スリットは、前記シールド上部の下端に貫設されていることを特徴とする実施形態18に記載のクライオポンプ。
【0137】
20.径方向に対する前記シールド補助スリットの法線の角度は、径方向に対する前記シールド主スリットの法線の角度より小さいことを特徴とする実施形態17から19のいずれかに記載のクライオポンプ。
【0138】
21.前記放射シールドは、前記軸方向において前記シールド主開口と反対側にシールド底部を備え、
前記複数のクライオパネルは、前記軸方向において前記第1下方クライオパネルと前記シールド底部との間に配設される第2下方クライオパネルをさらに含むことを特徴とする実施形態17から20のいずれかに記載のクライオポンプ。
【0139】
22.前記シールド主スリットは主スリット幅を有し、前記シールド補助スリットは補助スリット幅を有し、前記主スリット幅は前記補助スリット幅より広く、
前記シールド主スリットから前記第2下方クライオパネルへの第2距離は、前記シールド補助スリットから前記第1下方クライオパネルへの第1距離より長いことを特徴とする実施形態21に記載のクライオポンプ。
【0140】
23.前記補助スリット幅、前記第1距離、及び、前記シールド補助スリットに対する前記第1下方クライオパネルの角度位置に基づく第1補助スリット吸蔵限界値と、前記主スリット幅、前記シールド主スリットから前記第1下方クライオパネルへの距離、及び、前記シールド主スリットに対する前記第1下方クライオパネルの角度位置に基づく第1主スリット吸蔵限界値との和である第1合計吸蔵限界値が、前記主スリット幅、前記第2距離、及び、前記シールド主スリットに対する前記第2下方クライオパネルの角度位置に基づく第2主スリット吸蔵限界値と、前記補助スリット幅、前記シールド補助スリットから前記第2下方クライオパネルへの距離、及び、前記シールド補助スリットに対する前記第2下方クライオパネルの角度位置に基づく第2補助スリット吸蔵限界値との和である第2合計吸蔵限界値と等しいことを特徴とする実施形態22に記載のクライオポンプ。
【0141】
24.前記第1下方クライオパネルは第1径を有し、前記第2下方クライオパネルは第2径を有し、前記第2径は前記第1径より大きいことを特徴とする実施形態21から23のいずれかに記載のクライオポンプ。
【0142】
25.前記第2下方クライオパネルは、前記シールド主スリットの法線に交差するよう配設されることを特徴とする実施形態21から24のいずれかに記載のクライオポンプ。
【0143】
26.前記第1下方クライオパネルは、第1下方クライオパネル側表面を有し、前記第2下方クライオパネルは、第2下方クライオパネル側表面を有し、
前記シールド主スリットの法線と前記第2下方クライオパネル側表面の法線との角度は、前記シールド主スリットの法線と前記第1下方クライオパネル側表面の法線との角度より小さく、
前記シールド補助スリットの法線と前記第1下方クライオパネル側表面の法線との角度は、前記シールド補助スリットの法線と前記第2下方クライオパネル側表面の法線との角度より小さいことを特徴とする実施形態21から25のいずれかに記載のクライオポンプ。
【0144】
27.前記トップクライオパネルは、前記軸方向に前記シールド主スリットの上方に位置するトップクライオパネル外周端を備え、
前記複数のクライオパネルは、前記軸方向に前記シールド主スリットの下方に位置するボトムクライオパネル外周端を備えるボトムクライオパネルをさらに含み、
前記トップクライオパネル外周端は、前記ボトムクライオパネル外周端との間に環状空間部を形成し、前記環状空間部を挟んで前記ボトムクライオパネル外周端と直接向かい合うことを特徴とする実施形態1から26のいずれかに記載のクライオポンプ。
【0145】
28.前記トップクライオパネル外周端から前記ボトムクライオパネル外周端への軸方向距離は、前記トップクライオパネルの中心から前記トップクライオパネル外周端への径方向距離以上であることを特徴とする実施形態27に記載のクライオポンプ。
【0146】
29.前記放射シールドは、前記シールド主開口を画定するシールド前端を備え、
前記トップクライオパネルの中心から前記トップクライオパネル外周端への径方向距離は、前記シールド主開口の中心から前記シールド前端への径方向距離の70%以上であることを特徴とする実施形態27または28に記載のクライオポンプ。
【0147】
30.前記ボトムクライオパネル外周端から前記放射シールドへの距離は、前記シールド主スリットの幅の2倍以内であることを特徴とする実施形態27から29のいずれかに記載のクライオポンプ。
【0148】
31.前記複数のクライオパネルは、前記軸方向に前記トップクライオパネルと前記ボトムクライオパネルとの間に配設される第1下方クライオパネルと、前記軸方向に前記第1下方クライオパネルと前記ボトムクライオパネルとの間に配設される第2下方クライオパネルと、をさらに含み、
前記第1下方クライオパネルの軸方向下端と前記第2下方クライオパネルの軸方向上端との軸方向クライオパネル間隔は、前記トップクライオパネルの中心から前記トップクライオパネル外周端への径方向距離の40%以上であることを特徴とする実施形態27から30のいずれかに記載のクライオポンプ。
【0149】
32.前記第1下方クライオパネルは、前記シールド主開口から視認不能であるよう前記トップクライオパネルに覆われていることを特徴とする実施形態31に記載のクライオポンプ。
【0150】
33.前記第2下方クライオパネルは、前記トップクライオパネル外周端への軸方向に平行な接線より径方向に内側に配設されることを特徴とする実施形態31または32に記載のクライオポンプ。
【0151】
34.前記冷凍機は、径方向に沿って配設され、
前記複数のクライオパネルは、前記低温冷却ステージから前記ボトムクライオパネルへと延在し前記ボトムクライオパネルを前記低温冷却ステージに熱的に結合する接続クライオパネルをさらに含み、
前記接続クライオパネルの内面に径方向に隣接しかつ前記低温冷却ステージの下方に前記軸方向に隣接する中心空間部が形成されることを特徴とする実施形態27から33のいずれかに記載のクライオポンプ。
【0152】
35.前記複数のクライオパネルは、前記軸方向に前記トップクライオパネルと前記ボトムクライオパネルとの間に配設される第1下方クライオパネルと、前記軸方向に前記第1下方クライオパネルと前記ボトムクライオパネルとの間に配設される第2下方クライオパネルと、をさらに含み、
前記中心空間部は、前記第1下方クライオパネルの軸方向下端と前記第2下方クライオパネルの軸方向上端との軸方向クライオパネル間隔を通じて前記環状空間部に連通することを特徴とする実施形態34に記載のクライオポンプ。
【0153】
36.前記放射シールドは、前記軸方向において前記シールド主開口と反対側にシールド底部を備え、
前記ボトムクライオパネルは、ボトムクライオパネル中心開口を有し、
前記中心空間部は、前記ボトムクライオパネル中心開口を通じて前記シールド底部と前記ボトムクライオパネルとの底部隙間に連通することを特徴とする実施形態34または35に記載のクライオポンプ。
【0154】
37.前記複数のクライオパネルは、前記軸方向に前記トップクライオパネルと前記ボトムクライオパネルとの間に配設される第1下方クライオパネルと、前記軸方向に前記第1下方クライオパネルと前記ボトムクライオパネルとの間に配設される第2下方クライオパネルと、をさらに含み、
前記トップクライオパネル外周端は、前記放射シールドとの間に径方向隙間を形成し、
前記第1下方クライオパネルは、前記放射シールドとの間に前記径方向隙間より広い第1径方向間隔を形成する第1下方クライオパネル外周端を備え、前記第2下方クライオパネルは、前記放射シールドとの間に前記径方向隙間より広い第2径方向間隔を形成する第2下方クライオパネル外周端を備え、
前記環状空間部は、前記第1下方クライオパネル外周端と前記第2下方クライオパネル外周端のうち一方への前記軸方向に平行な接線と前記トップクライオパネル外周端への前記軸方向に平行な接線との間に画定されるクライオパネル無配置領域を含み、
前記第1下方クライオパネル外周端と前記第2下方クライオパネル外周端のうち他方は、前記クライオパネル無配置領域より径方向に内側に位置することを特徴とする実施形態27から36のいずれかに記載のクライオポンプ。