【実施例】
【0047】
以下に実施例を挙げて、本発明を更に具体的に説明する。しかしながら、本発明の範囲はこれらの実施例に限定されるものではない。特に断らない限り「部」は「質量部」を示す。また「%」は「質量%」を示す。
【0048】
[1]フェノール樹脂の調製
以下のフェノール樹脂の調製の例で用いた分析方法及び評価方法について説明する。
<軟化点>JIS K6910に基づく環球法軟化点測定によって求めた。
<150℃溶融粘度>ICI溶融粘度計を用い、150℃でのフェノール樹脂及びエポキシ樹脂の溶融粘度を測定した。
ICI粘度の測定方法は以下のとおりである。
ICIコーンプレート粘度計 MODEL CV−1S TOA工業(株)
ICI粘度計のプレート温度を150℃に設定し、試料を所定量秤量する。
プレート部に秤量した樹脂を置き、上部からコーンで押さえつけ、90秒放置する。コーンを回転させて、そのトルク値をICI粘度として読み取る。
<水酸基当量>JIS K0070に準じた水酸基当量測定によって求めた。
<分子量分布の測定>以下のようにしてゲル浸透クロマトグラフ測定によりフェノール樹脂の分子量分布を測定した。フェノール樹脂におけるi成分(iは一般式(1)におけるn=iの成分を表す)の割合は解析ソフトMulti Station GPC−8020を用い、測定されたチャートにおけるピーク面積に基づき算出した。その際、ピーク前後の直線部分をベースライン(ゼロ値)とし、各成分のピーク間は最も低くなるところでの縦切りでピークを分けた。サンプリングピッチは500ミリ秒とした。また分子量(Mw、Mn)及び分散度(Mw/Mn)は標準ポリスチレン換算によって算出した。
装置:HLC−8220(東ソー株式会社製、ゲル浸透クロマトグラフ分析装置)
カラム:TSK−GEL Hタイプ
G2000H×L 4本
G3000H×L 1本
G4000H×L 1本
測定条件:カラム圧力 13.5MPa
溶解液:テトラヒドロフラン(THF)
フローレート:1mL/分
測定温度:40℃
検出器:RI検出部
RANGE:256(レコーダ出力:256×10
−6RIU/10mV)
温度制御(RI光学ブロックの温調温度):40℃
インジェクション量:100μmL
試料濃度:5mg/mL(THF)
<分子量(Mw、Mn)及び分散度(Mw/Mn)の測定>以下のようにしてゲル浸透クロマトグラフ測定によりフェノール樹脂の分子量(Mw、Mn)及び分散度(Mw/Mn)を測定した。フェノール樹脂におけるi成分(iは一般式(1)におけるn=iの成分を表す)の割合は解析ソフトMulti Station GPC−8020を用い、測定されたチャートにおけるピーク面積に基づき算出した。その際、ピーク前後の直線部分をベースライン(ゼロ値)とし、各成分のピーク間は最も低くなるところでの縦切りでピークを分けた。サンプリングピッチは500ミリ秒とした。また分子量(Mw、Mn)及び分散度(Mw/Mn)は標準ポリスチレン換算によって算出した。
装置:HLC−8220(東ソー株式会社製、ゲル浸透クロマトグラフ分析装置)
カラム:TSK−GEL Hタイプ
G2000H×L 4本
G3000H×L 1本
G4000H×L 1本
測定条件:カラム圧力 13.5MPa
溶解液:テトラヒドロフラン(THF)
フローレート:1mL/分
測定温度:40℃
検出器:スペクトロフォトメーター(UV−8020)
RANGE:2.56
WAVE LENGTH:254nm
インジェクション量:100μmL
試料濃度:5mg/mL(THF)
<ゲル化時間>
使用機器:株式会社サイバー製 自動硬化時間測定装置
測定条件:150℃ 600rpm
測定方法:o−クレゾール型エポキシ樹脂 EOCN−1020−55(日本化薬株式会社製 エポキシ当量:195g/eq)のエポキシ当量とフェノール樹脂の水酸基当量を当量比(エポキシ当量と水酸基当量との比が1)にて混合し、硬化促進剤としてトリフェニルホスフィンをエポキシ樹脂に対し1.9%配合したエポキシ樹脂組成物を、50%メチルエチルケトン(MEK)溶液に調製する。エポキシ樹脂組成物のMEK溶液を約0.6mL量りとり装置の熱板上に乗せ測定する。測定されたトルクが、装置の測定上限トルク値の20%になった時間をゲルタイムとした。
【0049】
〔実施例1〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、o−アリルフェノール134部(1.0モル)、92%パラホルムアルデヒド32部(0.98モル)、純水0.4部及びシュウ酸1.1部を入れた。還流下に、100℃で12時間反応させ、更に160℃で2時間反応させた後、95℃まで冷却した。冷却後、90℃以上の純水130部を投入して水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂A(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Aの軟化点は73℃、150℃での溶融粘度は4.3P、水酸基当量は170g/eq、ゲル化時間は72秒であった。ゲル浸透クロマトグラフ測定による、n=0の化合物はフェノール樹脂全体の5.9面積%であり、n=1の化合物はフェノール樹脂全体の6.2面積%であった。
【0050】
〔実施例2〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、o−アリルフェノール134部(1.0モル)、92%パラホルムアルデヒド36部(1.1モル)、純水0.4部及びシュウ酸1.1部を入れた。還流下に、100℃で12時間反応させ、更に160℃にて2時間反応させた後、95℃まで冷却した。冷却後、90℃以上の純水130部を投入して水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂B(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Bの軟化点は98℃、150℃での溶融粘度は20P、水酸基当量は172g/eqであった。
【0051】
〔実施例3〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量2000部のガラス製フラスコに、o−アリルフェノール1200部(9.0モル)、42%ホルマリン127部(1.8モル)、及びシュウ酸12部を入れた。還流下に、100℃で7時間反応させた。反応終了後、90℃以上の純水600部を投入して水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することでフェノールノボラック樹脂C(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Cは常温で液状であり、水酸基当量は141g/eqであった。
【0052】
〔実施例4〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、ジアリルレゾルシン95部(0.5モル)、42%ホルマリン14部(0.2モル)を入れた。還流下に、100℃で12時間反応させた後、95℃まで冷却した。冷却後、90℃以上の純水110部を投入して水洗した。その後、内温を160℃まで昇温し、減圧を行い、フェノールノボラック樹脂D(一般式(1)におけるRがアリル基、p=2、q=2のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Dは常温で液状であり、水酸基当量は108g/eqであった。
【0053】
〔実施例5〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量1000部のガラス製フラスコに、p−tert−ブチルフェノール200部(1.3モル)、42%ホルマリン57部(0.8モル)、シュウ酸0.3部を入れた。還流下に、100℃で20時間反応させた後、95℃まで冷却した。冷却後、90℃以上の純水130部を投入して水洗した。その後、内温を180℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂E(一般式(1)におけるRがtert−ブチル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Eの軟化点は99℃、150℃でのICI粘度は4.3P、水酸基当量は167g/eqであった。
【0054】
〔実施例6〕
温度計、仕込み・留出口、冷却器及び撹拌器を備えた容量300部(300mL)のガラス製フラスコに、o−アリルフェノール67.0部(0.50モル)、42%ホルマリン71.4部(1.00モル)、及び塩基性触媒として25%水酸化ナトリウム19.2部(0.12モル)を投入し、60℃で7時間反応させて第1工程のレゾール化反応を行った。この反応混合物に、反応停止用の純水134部を投入し、40℃に温度を下げて、25%塩化水素を17.5部(0.12モル)加えて中和して反応混合物を得た。次いで反応混合物にo−アリルフェノール73.7部(0.55モル)、及び酸触媒としてシュウ酸1.3部を投入し、100℃で2時間、次いで120℃で2時間反応させて第2工程のノボラック化反応を行った。得られた反応混合液を、95℃に温度を下げて、同温度の純水134部にて水洗した。水洗後、160℃に昇温し、減圧スチーミング処理を行い、未反応性分を除去することで、フェノールノボラック樹脂I(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Iの軟化点は59℃、150℃でのICI粘度は1.2P、水酸基当量は154g/eq、ゲル化時間は59秒であった。ゲル浸透クロマトグラフ測定による、n=0の化合物はフェノール樹脂全体の3.5面積%であり、n=1の化合物はフェノール樹脂全体の6.0面積%であった。
【0055】
〔実施例7〕
温度計、仕込み・留出口、冷却器及び撹拌器を備えた容量300部のガラス製フラスコに、o−アリルフェノール67.0部(0.50モル)、42%ホルマリン71.4部(1.00モル)、及び塩基性触媒として25%水酸化ナトリウム19.2部(0.12モル)を投入し、60℃で7時間反応させて第1工程のレゾール化反応を行った。この反応混合物に、反応停止用の純水134部を投入し、40℃に温度を下げて、25%塩化水素を17.5部(0.12モル)加えて中和して反応混合物を得た。次いで反応混合物にo−アリルフェノール60.3部(0.45モル)、及び酸触媒としてシュウ酸1.3部を投入し、100℃で2時間、次いで120℃で2時間反応させて第2工程のノボラック化反応を行った。その後は実施例6と同様にして、フェノールノボラック樹脂J(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Jの軟化点は74℃、150℃でのICI粘度は4.3P、水酸基当量は159g/eq、ゲル化時間は55秒であった。ゲル浸透クロマトグラフ測定による、n=0の化合物はフェノール樹脂全体の1.9面積%であり、n=1の化合物はフェノール樹脂全体の4.1面積%であった。
【0056】
〔実施例8〕
温度計、仕込み・留出口、冷却器及び撹拌器を備えた容量300部のガラス製フラスコに、o−アリルフェノール67.0部(0.50モル)、42%ホルマリン71.4部(1.00モル)、及び塩基性触媒として25%水酸化ナトリウム19.2部(0.12モル)を投入し、60℃で7時間反応させて第1工程のレゾール化反応を行った。この反応混合物に、反応停止用の純水134部を投入し、40℃に温度を下げて、25%塩化水素を17.5部(0.12モル)加えて中和して反応混合物を得た。次いで反応混合物にo−アリルフェノール46.9部(0.35モル)、及び酸触媒としてシュウ酸1.3部を投入し、100℃で2時間、次いで120℃で2時間反応させて第2工程のノボラック化反応を行った。その後は実施例6と同様にして、フェノールノボラック樹脂K(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Kの軟化点は91℃、150℃でのICI粘度は29P、水酸基当量は159g/eq、ゲル化時間は51秒であった。ゲル浸透クロマトグラフ測定による、n=0の化合物はフェノール樹脂全体の1.4面積%であり、n=1の化合物はフェノール樹脂全体の2.8面積%であった。
【0057】
〔比較例1〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量1000部のガラス製フラスコに、フェノール513部(5.5モル)、42%ホルマリン229部(3.3モル)、及びシュウ酸0.6部を入れた。還流下に、100℃で6時間反応させた。反応終了後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂F(一般式(1)におけるp=1、q=0のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Fの軟化点は83℃、150℃でのICI粘度は2.0P、水酸基当量は107g/eqであった。
【0058】
〔比較例2〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、o−クレゾール108部(1.0モル)、92%パラホルムアルデヒド32部(0.98モル)、純水0.4部及びシュウ酸1.1部を入れた。還流下に、100℃で6時間反応させ、更に160℃で2時間反応させた。反応終了後、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂G(一般式(1)におけるRがメチル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Gの軟化点は130℃であったが、150℃でのICI粘度は測定できなかった。水酸基当量は116g/eqであった。
【0059】
〔比較例3〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、o−フェニルフェノール170部(1.0モル)、42%ホルマリン42部(0.58モル)、及びパラトルエンスルホン酸3.8部を入れた。還流下に、100℃で7時間反応させた後、95℃まで冷却した。冷却後、25%水酸化ナトリウム水溶液で中和した。更に、90℃以上の純水340部を投入して水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂H(一般式(1)におけるRがフェニル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Hの軟化点は81℃、150℃でのICI粘度は1.7P、水酸基当量は188g/eqであった。
【0060】
実施例及び比較例で得られたフェノール樹脂を用い、エポキシ樹脂組成物を調製し、該エポキシ樹脂組成物から得られた硬化物について硬化物特性を測定した。それらの結果を表1にまとめて示した。
【0061】
[2]エポキシ樹脂組成物及び硬化物の調製及び評価
実施例及び比較例で得られたフェノール樹脂と、前記の一般式(2)で表されるビフェニル型エポキシ樹脂(三菱化学株式会社製 YX−4000 エポキシ当量:186g/eq)と、硬化促進剤としてのトリフェニルホスフィン(北興化学株式会社製 TPP)とを使用してエポキシ樹脂組成物を調製した。調製においては、フェノール樹脂とエポキシ樹脂とを、水酸基当量とエポキシ当量との比である〔水酸基当量(g/eq)/エポキシ当量(g/eq)〕の値が1となるように両者を配合して加熱溶融混合した後、表1に示す量のトリフェニルホスフィンを加え均一に混合し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を150℃で5時間、180℃で8時間のポストキュアを行い、エポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物について、熱膨張率、ガラス転移点、線膨張係数及び貯蔵弾性率を測定した。
【0062】
前記のエポキシ樹脂組成物の硬化物の例で用いた分析方法及び評価方法について説明する。
(1)貯蔵弾性率
エポキシ硬化物を40mm×2mm×4mmに切り出し測定試料とした。測定は、ティー・エイ・インスツルメント社製動的粘弾性測定装置RSA−G2を用い、30℃から3℃/分の昇温速度で昇温しながら貯蔵弾性率を測定し、250℃での貯蔵弾性率を求めた。またTanδのピーク温度をTgとした。
(2)ガラス転移温度(Tg)、線膨張係数(α1、α2)及び熱膨張率
エポキシ硬化物を10mm×6mm×4mmに切り出し測定試料とした。島津製作所株式会社製熱機械分析装置 TMA−60を用い、30℃から3℃/分の昇温速度で昇温しながら試料のガラス転移温度及び線膨張係数(α1、α2)を測定した。40℃から70℃の線膨張係数をα1、185℃から220℃の線膨張係数をα2とした。また、40℃から180℃における試料の熱膨張率を求めた。
【0063】
【表1】
【0064】
表1に示す結果から明らかなとおり、各実施例で得られたフェノールノボラック樹脂を用いて得られたエポキシ樹脂硬化物は、各比較例で得られたフェノールノボラック樹脂を用いて得られたエポキシ樹脂硬化物に比べて、加熱時に熱膨張率が高く、換言すれば冷却時に熱収縮率が高く、また貯蔵弾性率が高いことが判る。
特に、実施例1と実施例6ないし8との対比から明らかなとおり、一般式(1)においてn=0の化合物の割合を、フェノールノボラック樹脂の全体に対して5%以下の少量にすることによって、硬化物の熱膨張率を高くすることができ、且つゲル化時間を短縮化できる。
また、実施例1と実施例6ないし8との対比から明らかなとおり、一般式(1)においてn=0の化合物とn=1の化合物との合計の割合を、フェノールノボラック樹脂の全体に対して10%以下にすることによって、硬化物の熱膨張率を高くすることができ、且つゲル化時間を短縮化できる。
更に、実施例6ないし8との対比から明らかなとおり、一般式(1)においてn=0の化合物とn=1の化合物との合計の割合をフェノールノボラック樹脂の全体に対して10%以下とし、且つn=2である化合物の割合を5.0%以上13.5%以下とすることによって、硬化物の熱膨張率を高くすることができ、且つゲル化時間を短縮化でき、且つ貯蔵弾性率(熱時弾性率)を高くすることができる。
また実施例1、2、4及び7(置換基Rはアリル基)と、比較例1、2及び3(置換基Rはアリル基以外)との対比から明らかなとおり、置換基Rがアリル基とすることによって、硬化物の熱膨張率を高くすることができ、且つ熱時弾性率も高くすることができる。同様のことは、実施例1(置換基Rはアリル基)と実施例5(置換基Rはtert-ブチル基)との対比からも明らかである。
また、実施例1(150℃溶融粘度:4.3P、軟化点:73℃、貯蔵弾性率86MPa)と実施例2(150℃溶融粘度:20.0P、軟化点:98℃、貯蔵弾性率:33MPa)との対比から明らかなとおり、150℃溶融粘度の値が、より好ましくは0.1P以上20.0P未満、更に好ましくは0.1P以上10.0P以下、更に好ましくは0.1P以上7.0P以下、最も好ましくは、0.1P以上5.0P以下であるフェノールノボラック樹脂を用いて硬化体を製造すると、該硬化物の熱時弾性率を高くすることができる。同様のことは、実施例7(150℃溶融粘度:4.3P、軟化点:74℃、貯蔵弾性率96MPa)と、実施例8(150℃溶融粘度:29.0P、軟化点:91℃、貯蔵弾性率26MPa)との対比によっても明らかである。
更に、実施例4(置換基R:アリル基、p=2、q=2、軟化点:液状、150℃溶融粘度:<0.1、貯蔵弾性率100MPa)と、実施例3(置換基R:アリル基、p=1、q=1、軟化点:液状、150℃溶融粘度:<0.1、貯蔵弾性率19MPa)との対比から明らかなとおり、q(一つのフェノール核に結合するアリル基の数)が1を超える場合(2以上である場合)には、フェノールノボラック樹脂の150℃における溶融粘度が低い場合、例えば0.1P未満の場合であっても、高熱時弾性率の硬化体を得ることができる。