【実施例】
【0016】
図1は、本発明の実施例の制御装置Cを備えた工作機械100の概略を示す図である。
工作機械100は、回転手段としての主軸110と、刃物台としての切削工具台130Aとを備えている。
主軸110の先端にはワーク保持手段としてのチャック120が設けられている。
チャック120を介して主軸110にワークWが保持される。
主軸110は、図示しない主軸モータの動力によって回転駆動されるように主軸台110Aに支持されている。
【0017】
主軸台110Aは、工作機械100のベッド側に、Z軸方向送り機構160によって主軸110の軸線方向となるZ軸方向に移動自在に搭載されている。
主軸110は、主軸台110Aを介してZ軸方向送り機構160によって、前記Z軸方向に移動する。
Z軸方向送り機構160は、主軸110をZ軸方向に移動させる主軸移動機構を構成している。
【0018】
Z軸方向送り機構160は、前記ベッド等のZ軸方向送り機構160の固定側と一体的なベース161と、ベース161に設けられたZ軸方向に延びるZ軸方向ガイドレール162とを備えている。
Z軸方向ガイドレール162に、Z軸方向ガイド164を介してZ軸方向送りテーブル163がスライド自在に支持されている。
Z軸方向送りテーブル163側にリニアサーボモータ165の可動子165aが設けられ、ベース161側にリニアサーボモータ165の固定子165bが設けられている。
【0019】
Z軸方向送りテーブル163に主軸台110Aが搭載され、リニアサーボモータ165の駆動によってZ軸方向送りテーブル163が、Z軸方向に移動駆動される。
Z軸方向送りテーブル163の移動によって主軸台110AがZ軸方向に移動し、主軸110のZ軸方向への移動が行われる。
【0020】
切削工具台130Aには、ワークWを旋削加工するバイト等の切削工具130が装着されている。
切削工具台130Aは、工作機械100のベッド側に、X軸方向送り機構150及び図示しないY軸方向送り機構によって、前記Z軸方向に直交するX軸方向と、前記Z軸方向及びX軸方向に直交するY軸方向とに移動自在に設けられている。
X軸方向送り機構150とY軸方向送り機構とによって、切削工具台130Aを主軸110に対して前記X軸方向及びY軸方向に移動させる刃物台移動機構が構成されている。
【0021】
X軸方向送り機構150は、X軸方向送り機構150の固定側と一体的なベース151と、ベース151に設けられたX軸方向に延びるX軸方向ガイドレール152とを備えている。
X軸方向ガイドレール152に、X軸方向ガイド154を介してX軸方向送りテーブル153がスライド自在に支持されている。
【0022】
X軸方向送りテーブル153側にリニアサーボモータ155の可動子155aが設けられ、ベース151側にリニアサーボモータ155の固定子155bが設けられている。
リニアサーボモータ155の駆動によってX軸方向送りテーブル153が、X軸方向に移動駆動される。
なおY軸方向送り機構は、X軸方向送り機構150をY軸方向に配置したものであり、X軸方向送り機構150と同様の構造であるため、構造についての詳細な説明は割愛する。
【0023】
図1においては、図示しないY軸方向送り機構を介してX軸方向送り機構150を前記ベッド側に搭載し、X軸方向送りテーブル153に切削工具台130Aが搭載されている。
切削工具台130Aは、X軸方向送りテーブル153の移動駆動によってX軸方向に移動し、Y軸方向送り機構が、Y軸方向に対して、X軸方向送り機構150と同様の動作をすることによって、Y軸方向に移動する。
【0024】
なお図示しないY軸方向送り機構を、X軸方向送り機構150を介して前記ベッド側に搭載し、Y軸方向送り機構側に切削工具台130Aを搭載してもよく、Y軸方向送り機構とX軸方向送り機構150とによって切削工具台130AをX軸方向及びY軸方向に移動させる構造は従来公知であるため、詳細な説明及び図示は割愛する。
【0025】
前記刃物台移動機構(X軸方向送り機構150とY軸方向送り機構)と前記主軸移動機構(Z軸方向送り機構160)とが協動し、X軸方向送り機構150とY軸方向送り機構によるX軸方向とY軸方向への切削工具台130Aの移動と、Z軸方向送り機構160による主軸台110A(主軸110)のZ軸方向への移動によって、切削工具台130Aに装着されている切削工具130は、ワークWに対して相対的に任意の加工送り方向に送られる。
【0026】
前記主軸移動機構と前記刃物台移動機構とから構成される送り手段により、切削工具130を、ワークWに対して相対的に任意の加工送り方向に送ることによって、
図2に示すように、ワークWは、前記切削工具130により任意の形状に切削加工される。
【0027】
なお本実施形態においては、主軸台110Aと切削工具台130Aの両方を移動するように構成しているが、主軸台110Aを工作機械100のベッド側に移動しないように固定し、刃物台移動機構を、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させるように構成してもよい。
この場合、前記送り手段が、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させる刃物台移動機構から構成され、固定的に位置決めされて回転駆動される主軸110に対して、切削工具台130Aを移動させることによって、前記切削工具130をワークWに対して加工送り動作させることができる。
【0028】
また切削工具台130Aを工作機械100のベッド側に移動しないように固定し、主軸移動機構を、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させるように構成してもよい。
この場合、前記送り手段が、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させる主軸台移動機構から構成され、固定的に位置決めされる切削工具台130Aに対して、主軸台110Aを移動させることによって、前記切削工具130をワークWに対して加工送り動作させることができる。
また、本実施例では、切削工具130に対してワークWを回転させる構成としたが、ワークWに対して切削工具130を回転させる構成としてもよい。
【0029】
主軸110の回転、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構は、制御装置Cが有する制御部C1によって駆動制御される。
制御部C1は、各送り機構を振動手段として、各々対応する移動方向に沿って往復振動させながら、主軸台110A又は切削工具台130Aを各々の方向に移動させるように制御する振動制御手段を備えている。
【0030】
各送り機構は、制御部C1の制御により、
図3に示すように、主軸110又は切削工具台130Aを、1回の往復振動において、所定の前進量だけ前進(往動)移動してから所定の後退量だけ後退(復動)移動し、その差の進行量だけ各移動方向に移動させ、協動してワークWに対して前記切削工具130を前記加工送り方向としてZ軸方向に送る。
【0031】
工作機械100は、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構により、切削工具130が前記加工送り方向に沿った往復振動しながら、主軸1回転分、すなわち、主軸位相0°から360°まで変化したときの前記進行量の合計を送り量として、加工送り方向に送られることによって、ワークWの加工を行う。
【0032】
ワークWが回転した状態で、主軸台110A(主軸110)又は切削工具台130A(切削工具130)が、往復振動しながら移動し、切削工具130によって、ワークWを所定の形状に外形切削加工する場合、ワークWの周面は、
図4に示すように、正弦曲線状に切削される。
なお正弦曲線状の波形の谷を通過する仮想線(1点鎖線)において、主軸位相0°から360°まで変化したときの位置の変化量が、前記送り量を示す。
図4に示されるように、ワークWの1回転当たりの主軸台110A(主軸110)又は切削工具台130Aの振動数Nが、1.5回(振動数N=1.5)を例に説明する。
【0033】
この場合、1回転目(n回転目:nは1以上の整数)の切削工具130により旋削された形状の位相の谷の最低点(実線波形グラフの山の頂点)の位置に対して、2回転目(n+1回転目)の切削工具130により旋削されるワーク周面形状の位相の谷の最低点(切削工具130によって送り方向に最も切削された点となる点線波形グラフの山の頂点)の位置が、主軸位相方向(グラフの横軸方向)でずれる。
【0034】
これにより、切削工具130の往動時の切削加工部分と、復動時の切削加工部分とが一部重複し、ワーク周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれ、振動切削中に加工送り方向において切削工具130がワークWを切削しない所謂、空振り動作が生じる。
切削加工時にワークWから生じる切屑は、前記空振り動作によって順次分断される。
工作機械100は、切削工具130の切削送り方向に沿った前記往復振動によって切屑を分断しながら、ワークWの外形切削加工を円滑に行うことができる。
【0035】
切削工具130の前記往復振動によって切屑を順次分断する場合、ワーク周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれていればよい。
言い換えると、ワーク周面のn+1回転目(nは1以上の整数)における復動時の切削工具130の軌跡が、ワーク周面のn回転目における切削工具130の軌跡まで到達すればよい。
つまり
図4に示されるように、n+1回転目とn回転目のワークWにおける切削工具130の軌跡の位相が一致(同位相)しなければよい。
【0036】
ところで、例えば、
図4に示されるように、振動数N=1.5の場合、ワークWにおける切削工具130の軌跡の交差部分CRが、主軸位相のいくつかの所定位相で加工送り方向に揃う。
図5(A)は
図4における5A−5A断面、
図5(B)は
図4における5B−5B断面、
図5(C)は
図4における5C−C断面を現しており、いずれもワークWの加工面の起伏を示している。
図5(A)乃至
図5(C)に示されるように、切削工具130がワークWに対してワーク径方向に振動せずに加工送り方向であるZ軸方向に振動している場合、ワークWにおいて、切削工具130の先端が通過した箇所が凹となり(ワークWの表面を切削しているため)、切削工具130の軌跡と軌跡との間が凸となる(ワークWの表面で切削した箇所と切削した箇所の間で切削されていないため)。
図5(A)に示されるように、交差部分CRが揃った所定位相(
図4の5A−5A)では、切削工具130の軌跡と軌跡との間が、
図5(B)および
図5(C)と比べて広いため、凸と凹との差が、
図5(B)および
図5(C)と比べて大きくなる。
【0037】
さらに、凸の高さが、
図5(B)および
図5(C)と比べて高くなる。
つまり、ワークWの加工面の表面粗さの要因になる凹と凸とが、いろいろな高さで主軸位相方向において配置されることになる。
つまり凹と凸との差が均一に配置されず偏在して配置されることになる。
ここで、
図6に示されるように、振動数から算出されるワークWの加工面の粗さの規格の1つである算術平均粗さRaは、振動数に応じて変化する。
【0038】
本実施例の工作機械100では、制御装置Cの制御部C1および数値設定部C2が、主軸1回転当たりの往復振動の振動数をパラメータとして設定する設定手段を構成し、ユーザによって、送り量F、主軸回転数、振動数Nを、数値設定部C2等を介して制御部C1に設定するように構成されている。
また、制御部C1が、設定手段によって設定されたパラメータを後述する振動切削の所定条件に基づいて設定する振動数設定手段を備えている。
【0039】
制御部C1が、設定手段によって設定されたパラメータ等に基づいて計算し、所定条件として算術平均粗さRaが所定許容値未満となるか否かを判定する。
例えば、算術平均粗さRaの最大値と最小値との差が、設定された第1所定許容値未満となるか否かを判定するとともに、算術平均粗さRaの最大値が、設定された第2所定許容値未満となるか否かを判定する。
両者のどちらかが所定許容値以上のとき、制御部C1が、振動数Nを設定して両者を所定許容値未満にするように構成されている。
【0040】
図6はワーク加工面の粗さを、粗さの規格として算術平均粗さRaを1回転当たりの振動数を横軸にしてプロットした結果である。
一例として振動数N=1.5の場合には、ワークの周面のRaの中で最大値(Ra最大:実線)と最小値(Ra最小:点線)の差が大きくなっている。
つまりこの振動数N=1.5の振動条件のときのRaの最大値を示す箇所は、
図5(A)のような凸と凹との差が大きいワーク加工面の状態になっている。
逆にRaの最小値を示す箇所は、
図5(C)のような凸と凹との差が小さいワーク加工面の状態になっている。
そこで制御部C1は、例えば振動数N=1.5から算術平均粗さRaの最大値と最小値との差が減小する側(例えば
図6における振動数N=1.5から左側の位置にある少し小さい振動数)へ振動数を変化させて、この差が最小となる値N=1.44に変更する振動数の設定を行う。
制御部C1の振動数の設定により、
図7に示されるように、切削工具130の軌跡の交差部分CRが主軸位相方向(つまりワークの周面)に分散配置され、すなわち、主軸位相方向に互いにずれて配置され、切削工具130の軌跡の交差部分CRのワークの周面における粗密分布が主軸位相方向において均一化される。
つまりワーク加工面の凸と凹との差が小さくなる。
この振動数の設定によれば、振動数の設定前後で振動数Nの値の変化量が比較的小さいため、振動数Nの大きな変更を伴わずにワーク加工面の粗さを改善できる。
【0041】
またワーク加工面の粗さについては算術平均粗さRaを使用したが、他の粗さ規格(最大粗さRz等)を使用しても良い。
【0042】
制御部C1の振動数の設定に加えて、往復振動の振幅の設定を行う振幅設定手段を備えていることにより、
図8に示されるように、切削工具130の軌跡の交差部分CRが加工送り方向にも分散配置され、切削工具130の軌跡の粗密も加工送り方向に分散される。
すなわち加工送り方向へも切削工具130の軌跡の交差部分CRがずれて配置され、主軸位相方向への交差部分CRの粗密分布の均一化に加え加工送り方向への粗密分布の均一化が図れ、加工送り方向で切削工具130の軌跡の間隔の差を減小させることができる。
具体的には制御部C1が、振幅を送り量で割った値である振幅送り比率を変更して1.0から2.0に変更してもよい。
これにより、切削工具130の軌跡の交差部分CRが主軸位相方向と加工送り方向の両方向において分散され、ワーク加工面上の所定方向(例えば
図8に示す線Lの方向)で切削工具130の軌跡の間隔の差が減小して前述した凸の高い部分が減るとともに凸の配置の粗密が分散されるため、より一層ワーク加工面の粗さが改善できる。